SUR LE PROBLÈME DE L'ÉQUATION FONCTIONNELLE

KAZUO ISHIGURO

(Received December 15, 1953; in revised form March 1, 1954)

Nous démontrons la proposition suivante.

Pour chaque suite décroissante de nombres positifs $\{\mathcal{E}_k\} \downarrow 0$, s'il existe une suite de nombres réels $\{\eta_k\}$, $\lim_{k \to \infty} \eta_k = 0$, et si une fonction mesurable réelle $\theta(x)$ satisfait à l'équation fonctionnelle suivante

(1)
$$\lim_{k\to\infty} \operatorname{mes} \{x | \theta(x+\mathcal{E}_k) \neq \eta_k + \theta(x)\} = 0,$$
 alors $\theta(x)$ est linéaire sur un ensemble de mesure positive.

DÉMONSTRATION. Il suffit de démontrer pour l'intervalle [0,1] de x. En outre, dans la condition énoncée, on peut varier & continument. Autrement dit: étant donné un nombre positif arbitrairement petit &, il existe un nombre $\eta(\mathcal{E})$ tel que

(2)
$$\lim_{\epsilon \to 0} \max \{ x | \theta(x + \epsilon) \neq \eta(\epsilon) + \theta(x) \} = 0.$$

Sinon, en effet, il existe un nombre $\sigma > 0$ et pour chaque intégral n il existe \mathcal{E}_n^* tel que $\frac{1}{n} > \mathcal{E}_n^* > 0$, et pour chaque η_n^*

mes
$$\{x \mid \theta(x + \mathcal{E}_n^*) \neq \eta_n^* + \theta(x)\} \ge \sigma > 0$$

Cela contredit l'hypothèse.

Par suite¹⁾, étant donné un nombre arbitraire $\omega > 0$, il existe ε_{ω} , tel que $\mathcal{E}_{\omega} > \mathcal{E} > 0$ entraine

$$\theta(x+\varepsilon)-\theta(x)=\eta(\varepsilon)$$
 pour tout $x\in E(\varepsilon)$,

où $E(\varepsilon)$ est un ensemble de mesure $> 1 - \frac{\omega}{3}$.

Si \mathcal{E}' et \mathcal{E}'' sont des nombres positifs tels que $\mathcal{E}_{\omega} > \mathcal{E}' + \mathcal{E}''$, on a donc les trois formules suivantes

(3)
$$\theta(x + \varepsilon' + \varepsilon'') - \theta(x) = \eta(\varepsilon' + \varepsilon'') \text{ pour tout } x \in E(\varepsilon' + \varepsilon''),$$
où mes $E(\varepsilon'' + \varepsilon') > 1 - \frac{\omega}{3}$.

(4)
$$\theta(x + \mathcal{E}') - \theta(x) = \eta(\mathcal{E}')$$
 pour tout $x \in E(\mathcal{E}')$, où mes $E(\mathcal{E}') > 1 - \frac{\omega}{3}$.

(5)
$$\theta(x + \varepsilon'') - \theta(x) = \eta(\varepsilon'')$$
 pour tout $x \in E(\varepsilon'')$, oû mes $E(\varepsilon'') > 1 - \frac{\omega}{3}$.

Soit $E^*(\mathcal{E}'')$ l'ensemble de tous les points $y = x - \mathcal{E}'$, où $x \in E(\mathcal{E}'')$. On a d'après (5)

(6)
$$\theta(x + \varepsilon' + \varepsilon'') - \theta(x + \varepsilon') = \eta(\varepsilon'')$$
 pour tout $x \in E^*(\varepsilon'')$,

¹⁾ Cf. Remarque.

où mes
$$E^*(\mathcal{E}'') = \text{mes } E(\mathcal{E}'') = 1 - \frac{\omega}{3}$$
.

Donc pour tout $x \in E(\mathcal{E}' + \mathcal{E}'') \cap E(\mathcal{E}') \cap E(\mathcal{E}'')$, on a (3), (4), (6) au même temps. (3) - (4) - (6) entraine

$$\eta(\mathcal{E}' + \mathcal{E}'') = \eta(\mathcal{E}') + \eta(\mathcal{E}'')$$

et
$$\operatorname{mes}\{E(\varepsilon'+\varepsilon'')\cap E(\varepsilon')\cap E^*(\varepsilon'')\} > 1-\left(\frac{\omega}{3}+\frac{\omega}{3}+\frac{\omega}{3}\right)=1-\omega,$$

οù ω est un nombre arbitraire.

D'ailleurs d'après l'hypothèse

$$\lim_{\epsilon \to 0} \eta(\epsilon) = 0.$$

Donc il faut $\eta(\mathcal{E}) = a\mathcal{E}$ pour \mathcal{E} assez petit, où a est un quelque nombre réel. Considérons la signification de la proposition. Le graphique de la fonction $y = \theta(x + \mathcal{E})$, A, est la figure translatée à gauche seulement de \mathcal{E} du graphique de $y = \theta(x)$. Le graphique de la fonction $y = \theta(x) + a\mathcal{E}$, B, est la figure translatée en haut (ou bas) seulement de $a\mathcal{E}$ du graphique de $y = \theta(x)$.

$$E(\varepsilon) = \{x \mid \theta(x + \varepsilon) = \theta(x) + a\varepsilon\}$$

est l'ensemble de x-coordonné de $A \cap B$. Autrement dit, $E(\mathcal{E})$ est l'ensemble translatée à gauche de x-coordonné de $X \cap Y$, où X est le graphique de la function $y = \theta(x)$ et Y est la figure translatée vers la direction $\tan^{-1}a$ seulement $\det \sqrt{1+a^2} \mathcal{E}$. Il est remarquable que a est un nombre constant et indépendant de \mathcal{E} . Alors $x \in E(\mathcal{E})$ est équivalent à $(x + \mathcal{E}, \theta(x) + a\mathcal{E}) \in X$.

Constituons l'ensemble S de la manière suivante. A partir de chaque point $(x, \theta(x)) \in X$ on tire la demi-droite vers la direction $\tan^{-1}a$, soit l(x). Si l(x) contient le point $(x^*, \theta(x^*))$ de X à distance $\mathcal{E}^* \sqrt{1+a^2}$ du point $(x, \theta(x))$,

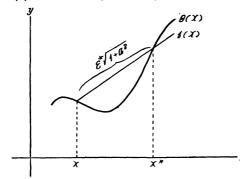


Fig. 1

on met le point (x^*, \mathcal{E}^*) sur (x, \mathcal{E}) plan. (Fig. 1) Soit S l'ensemble
de tous les points (x^*, \mathcal{E}^*) . Soit $P(\mathcal{E}^*)$ la projection sur x-axe
de l'intersection de S et la droite $\mathcal{E} = \mathcal{E}^*$. $P(\mathcal{E}^*) = \{x | (x, \mathcal{E}^*) \in S\}$.
Soit $Q(x^*)$ la projection sur \mathcal{E} -axe
de l'intersection de S et la droite $x = x^*$. Alors mes $P(\mathcal{E}^*)$ = mes $E(\mathcal{E}^*)$ pour tout \mathcal{E}^* .

A la fin, l'hypothèse de la proposition est la suivante.

Pour chaque nombre positif σ , il existe un nombre $\varepsilon_{\sigma} > 0$ tel que $\varepsilon_{\sigma} > \varepsilon > 0$ entraine

$$1 > \text{mes } P(\mathcal{E}) > 1 - \sigma$$
.

Si nous montrons que mes $Q(x^*) > 0$ pour quelque x^* , la proposition est démontrée.

Si S est un ensemble général, cela n'est absolument pas vrai dans

l'axiom de Zermelo. Mais, si S est un ensemble mesurable, cela est évident d'après le théorème de Fubini²). En effet, pour un ensemble mesurable S.

$$\begin{split} \text{mes (plan)} \, S &= \int \text{mes (lin\'eaire)} Q(x) dx \, , \\ &= \int \text{mes (lin\'eaire)} P(\mathcal{E}) d\mathcal{E} > 0 \, . \end{split}$$

Par suite pour quelque x mes (lin.) Q(x) > 0. Donc il suffit de montrer que S est un ensemble mesurable.

Pour cela, considérons dans l'espace (x, y, ε) le hexaèdre rectangle duquel les sommets sont (0, 0, 0), (1, 0, 0), (0, 0, 1), (0, a, 1), ..., (1, 1, a). (Fig. 2)

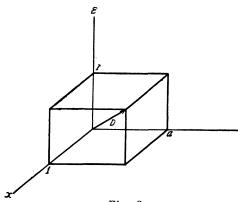


Fig. 2

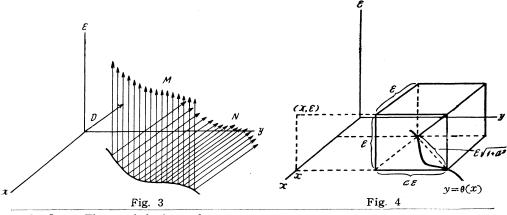
Soit \mathfrak{D} la direction de (0,0,0) vers (1,1,a). Mettons le graphique de $y=\theta(x)$ sur (x,y)-plan. A ce moment on enlève l'ensemble de mesure nul de x-axe tel que sur le reste, $K(\in \mathfrak{F}_{\sigma})$, $\theta(x)$ est une fonction mesurable B. Soit $\theta^*(x)$ la restriction de $\theta(x)$ sur K. Constituons S^* de cette fonction $\theta^*(x)$ comme on contitue S de $\theta(x)$. Il suffit de démontrer que S^* est mesurable puisque mes K=1.

Posons

$$E(x,y) = E\{(x,y)|y = \theta(x), x \in K\}.$$

A partir de chaque point de E(x,y), on tire la droite parallel à ε -axe, soit M. Dans même espace à partir de chaque point de E(x,y), on tire la demidroite vers la direction \mathfrak{D} , soit N. La projection de $M \cap N$ sur (x, ε) -plan est S^* . (Fig. 3)

D'ailleurs E(x,y) est l'ensemble borelien, puisque $K \in \mathfrak{F}_{\sigma}$ et $y = \theta^*(x)$ est un



2) SAKS, Theory of the integral.

ensemble mesurable B^3). Par suite M et N sont les ensembles boreliens⁴). Donc $M \cap N$ est l'ensemble borelien, et S^* est l'ensemble analytique, 5) donc mesurable. c.q.f.d.

J'exprime ma reconnaissance sincère à professear Kunugui.

REMARQUE. Après avoir envoyé ce travail a l'éditeur, j'ai reçu un avis très intéressant, celui d'écrire la dernière partie de mon travail comme cidessous. Cela grâce à M. Shigeki Yano à qui l'éditeur en avait parlé. A tous les deux mes remerciements sincères.

DÉMONSTRATION. Posons

$$F(x, t) = \theta(x + t) - \theta(x),$$

F(x, t) est une fonction mesurable de (x, t),

$$\varphi(t) \equiv \max\{x | \theta(x+t) = \theta(x), x \in (0,1)\} = \max\{x | F(x,t) = 0\}$$

donc si t tendent vers $0, 0 < t < t_0$, il résulte $\varphi(t) > \frac{1}{2}$. Donc

$$\int_{0}^{t_{0}} \varphi(t) dt \geqq \frac{1}{2} t_{0}$$

Posons la fonction caractéristique de $\{(x,t)|F(x,t)=0\}$ comme c(x,t), if résulte

$$\varphi(t) = \int_0^1 c(x,t)dx.$$

Donc

$$\int_{0}^{t_0} dt \int_{0}^{1} c(x,t) dx \ge \frac{1}{2} t_0$$

et d'après le théorème de Fubini, il existe un certain x₀ tel que

$$\int_{0}^{t_0} c(x_0, t) dt > 0$$

C'est-à-dire

$$\max\{t \in (0, t_0) | F(x_0, t) = 0\} > 0.$$

Donc

$$\theta(x_0+t)=\theta(x_0)$$

sur un ensemble de t de mesure positive, et $\theta(x) = \text{const.}$ sur un ensemble de x de mesure positive. c. q. f. d.

INSTITUT DE MATHÉMATIQUES, UNIVERSITÉ DE HOKKAIDO, SAPPORO.

³⁾ KURATOWSKI, Topologie 1.4) KURATOWSKI, Topologie 1.

⁵⁾ KURATOWSKI, Topologie 1