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1. Let @(z) be an analytic function, regular for ¥ >0, and let
[ 1o+ i axs ko ®>0)

for all value y > 0. Then we say that @(z) belongs to the class §, ( = The
Hille-Tamarkin Class). E. Hille and J.D. Tamarkin [2], for p=1 and T.
Kawata [3], for 1 > p >0, proved the following theorems.

THEOREM A. (1) A function @(z) € §, tends to a limit function p(x) in
the mean of order p, and

f[¢(x+iy)l”dx¢f |p(x)|* dx asy | 0.

(2) Any @(z) € 9, for almost all x tends to its limit function @(x) along
any non-tangential path.

THEOREM B. A function ¢p(z) € §, can be represented as a product p(z) =
B(zr(2) where B(z) is the Blaschke product and r(z) € , which does not
vanish in y > 0.

THEOREM C. If the limit function @(x) € Ly, 1 <p =< oo has a Fourier
transform d(x) in L, (1< q = o), then the Poisson integral associated with
@(x) can be written in the form

1 yat 1 P—
;T—f ¢(t) (?f_x)j_ljyz = \/2;1 et e~V p(t)dt.

These theorems are counterparts of theorems on functions belonging to
class H, (p > 0)in a unit circle. Recently D. Waterman [6] proved 9, (p > 1)
analogue of the Littlewood-Paley and Zygmund theorems. In the present
note, the author shows some generalized theorems following on his former
paper [5].

We put by the definition

1 Tl + o)l
*, = * M = I 20 T N t
gaX) = g¥x; @) {Wf ¥ dy it —z| d}
0 ~co

*¥) Throughout this paper, A,B...... are constants and may be different from one
occurence to another.
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I . f l@@+ e+l 0
{ f ¥ dy 0" + ) dt} .
0

If a =1, this reduces to Waterman's g*(x), which is a counterpart of
g*(@) of Littlewood-Paley. Then we have

THEOREM 1. If @(z) € §,, then

f (GED)Y dr < Ay f o] dx,

— oo

where oo > 1/p for 0 < p <2 and a > 1/2 for p > 2.
For the proof, we need some lemmas.

LemMmAa 1. If a >1/2, then

=

dt
- f==4 O 1-20 > 0
f (3 + (1 =2%) for y

—o0

ProoF.

" a zzf"’_gt_, _ f f } dr
(y2+t2)a y (yz_!_tz)w +t
(f yw)+0(f tw) Olyi-22)
0

Proor orF THEOREM 1. The case p = 2. Since a >1/2, we have

I;z:'(x—l—l‘-l-zy)l‘
*( = = 200 dt
f {alm)y dx = f dxf d dy[ R

ifym _ +tz)uf l@/(x + ¢ + iy)|* dx.

By Theorem C and Parseval’s relation, this yields

= *f > yf v +t‘)"f wer Wi dx

1 ” dt
= - - x:P2 d 20 e~ d f - T
f P2(x) xf y [y (y + 15
0 0

—co

oo

= Af x*P*(x) dxf YI® g WEYL-2% dy (by Lemma 1)

0

oo

ng 22 P2(x) dxf ye W dy
0 0



ON FUNCTIONS REGULAR IN A HALF-PLANE 39

<cC f Xt @x) x2dx = C f ®xx)dx = D f (%) dx.
0 0 —oo

Thus we get theorem for the case p =2. For the sake of proving the
case 0 < p< 2, we need a more lemma.

LEMMA 2. If p(z) €y, and 1 < k< 2, then
e[ rE

I¢(x+t+zy)l<Au<p}'§(x){1+ |

where
1%k

@i (x) = sup ‘ f lp(x + u)|* du

o<ih |<

and

oo oo

flfpk(x)l‘dx<ka [p(x)]% dx.

—co —oo

For the proof, see Waterman’s paper [6].
The case 0 < p < 2. In the view of Theorem B, we can suppose that
@(z) is zero point free. Put

Y(z) = {p(2)}?/*

then
"l"(z)e‘bz-
Since
WO = ()T ),
we have
2 ; \
{g% (x5 cp)}z=$p_2 mdyf l\lf(y+t+zy)iyz+ﬂ[);lf(x+ + ) g
,,z ») = 2221 ; .
st oo [ {1 D"
0

< A, (K52 f o (2 gy f I\If’(x+t+zy)lz 7

0 ¥+ )" —1)
1/2
If we put a =(+&)/p (E>0), B=a— 7(f —1), and take % (< 2)

near enough to 2, then
28 —1= (22; ~1)(1-2)+ 27‘5 >0,

whence
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(03 P < Apn (WE@) ? P {g2x; VP

Applying Hélder’s inequality, the case p = 2 and Lemma 2, successively

f {9%(%; @} dx = Avp f {2 {g5(x: ¥} dx

(2-p)/2

<A, [ f (v ax | [ f (ks B d |

/2

éAp,kf I*lf(x)lzdxiAp,kf |p(x)|* dx.

Thus we get theorem for the case 0 < p < 2. For the case p > 2, the proof
is done by the standard argument of A.Zygmund, [cf. 6]. So we omit the
proof.

2. In the present section, we show some applications of the last theorem.
If we suppose the limit function @(x) € L, (1 <p =< ), and has a Fourier
transform ®(x) in L, (1< g < =), then

oo

P(2) = T;Tr f et ¢=9t () it y > 0.
0
Put
o o 1 f‘o — (2 izt —_—
% w, X) o) o (0 —2)* P e dt, a > —1
0
and

1 (O]
af - = — fye-1 izt
7w, x) T l)m“f (w — )P 1tP(t) et di, a >0
0

then we get easily
T%w, %) = a{c® o, x) — c%w, X)} = mc%a'“(m, x).

THEOREM 2. If ¢(2) € ), (1< p < ), then

- - Iz o
f dx{f E(Lm’{)lidw} éAp,wf [p(x)|” dx

where o >1/p for 1< p < 2, and for a > 1/2 for 2 < p < co.

Proor. Since

P(x+1+1iy) = ﬁf e eV ud(u)e’** du (y > 0)
0
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and

S B
(y—it)“—l‘(a)fu eWelttdy (a>0, y>0),
0

the convolution theorem yields

f P(x+t+ 1y) ~itw Jf — F(a) f (w0 — u)*~1 e~ (-4 gtau-vu 4 P(y) du
(y —it)*

l:;a) -wf (0 — u)* 1w ®lu) e du = I:/(g) e~ o 7w, X).

Applying Parseval’s identity, we have

l@(x+t+D)* 4 oy zfm oyt .
f tz 4 y2)® {F\a)} @ {T (w, x)} e dw

0
and

: . en]q)’(x—i—t )2
gy [ 1PEEET D G
f Y yf (2 + y4)*
0

oo

= A,f o | T w, x)|* dwf e~ ya+1-1 gy

o I'2a + 1)
__Af 0% | 1w, xX)|? (2wt dw

ng 17w, %)]* dw, (B +0).
w
0

Thus we get Theorem 2 by Theorem 1.

From this theorem we can easily deduce a strong summability theorem
and an absolute summability theorem, cf. [5].

3. Before proceeding to Theorem 3, we need some preliminary remarks.

Let X/a, t), t €(0,1) bz the Wiener process over (0, 1) and &, i), t €
{ — o0, ) be the same process over an infinite range, [cf. Paley, Wiener
and Zygmund [4]], then for any B(f) € Ly — o0, o),

: - k(13 —1ym( [ +
(3.1){f dau B(t)df(a,t)\ } = {Qi#ﬁ} {f I,G‘(t)lzdt}
0 —c0 -

On the other hand, if we write f~(x) for the conjugate function of f(x), then

)

oo

(3.2) flfx)ll’dx<A,,f [fix)|?dx, p>1.

—oo
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Further let us suppose f(x, ) =f(x,+) be L,valued and B,-integrable in the
Bochner sense over — oo < x < oo and

f fix, t) dE(a, t)
be conjugate*) to
f fx, 1) dE (au, 1)

Then (3.2) gives

o o m oo co 2m
f \ f Fix t)dEe, )| 'dr< Aun f ] f f(x,t')df(a,t)‘ dr.

—o0 ~co

2

Integrating with respect to «,

1 oo co
f daf dxlf 7(x, t)dE(a, t)
0 —oo e

and changing the order of integration and applying (3.1), we have

> 2 2m - m
f{f I?x,t)IZdt}g dt < Asn {f |f<x,t)lzdt}2dx,

oo
—co

2m

2m 1 o0 o
§Asz daf de. flx, t) dE(a, t)
0 —co —c0

m=12.....

By the device of Boas and Bochner [1], applying generalized M. Riesz’s con-
vexity theorem and the conjugacy method, we establish

TueoreM 3. If fix,-) € B,{L,}(p > 1) and 7(x -) is its conjugate function,

then
oo oo D2 oo o D2
f{f If(x,t)lzdt} dng,,f {f If(x,t)[zdt} dx.
Moreover
G o N oo oo /2
[ sty at) “ax=c, [ {f e iear) s
where

1 U
W%,8) = —— | Flu,t)etw
su(x, 2) NG f (u,t) et du

and F(u,t) is the transform of fix,t), that is

*) It is sufficient to consider simple functions f(z,:) only for our Theorem 3. Then

we may define ?(x,-) as the function whose transform is —iF(x,.)sgnz, where
F(z,.) is the transform of f(z,-).
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Faut)=19m. L ”Lf( P
u,t)=1lim. —, = x, t)e " dx,
) a>o0 \/2'71'.} )

From this theorem we can prove

THEOREM 4. Let flx) € L, (1< p < ), F(t) be its transform and put

n+1

An(x) = ,\/2 f ) F(t)e™ dt

then

vz

j (EIAn(x)|‘> dxgc,,fmm‘x”rdx

n=0

Proor. Since
™Hw, x) = 1 f tFt e dt = L s'(w, %)
@ ()]
0

where s(w, 2) is ¢%w, x), we have
vz

f:{io w(zn,xW} dx

2 D2

- “f tF(t)eMdt\} dx

n=0
co o I‘ 2
<B, f { tR(t) e at f 7-_—} dx
2 J nz—u g ) l
. 2n-i--l 2 »[2
<c f [ f 1] tF(t) oot gt | da)} dx (by Theorem 3)
l n=0 w3 l() |
oo oo L . /2
=G, f { f e, 2)|’ dw} dx.
)
—oco 0
Now
,n+ 2
|o(27+1) x) — (27, x)|‘<A[f ]uwr(w x) dw}
o+t 1/2 g+l 1/2
gB{f ® —d—o-(co,x) dw} {f @-}
dw ®
2" on

*) This Theorem was stated without proof by D.L. Guy, Weighted p-norms and
Fourier transforms (Preliminary report), Bull. Amer. Math. Soc, 62(1956) p. 159, but
my paper is independent of his result.
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o+l 2
§B{f m,—d—o'(w,x)’dw}
dw

2:

1

12 g+t
= 7-1 2
@
2"

and
|An(x)]2 = |s(27+1, x) — s(2", x)|*
= |82 x) — (2%, ®)|* + [s(2", %) — o (2%, X)|* + |27, %) — a(2", D)%
Thus we establish

»l2 oo P2

fm{émfxx)IZ} avsa, [ {g,ﬂ(zn,x)lz} o

=1
) oo L . pJz
+ Bpf {f |T—(w’ﬁl— d(l)} dx
@
0

—co

-0

oo

= Cpf [f(x)[” dx.

—co

This is the required result.
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