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1. Introduction and notation. Otto Szasz ([5], p.1139, Theorem 4 and
p. 1223, Theorem 1) has proved Tauberian theorems for series, involving the
passage from Abel or (A) summability to each of the Riemann summabilities
(R,1) and (R,), included in the statement:

THEOREM A. If 2 . 1S summable (A) to a finite value I, and
k=1

(T4) either > klay) = On), or >, (|a| —a) = O1), n—r,

k=1 k=n

then 2% s summable (R, 1) to | and also summable (R,)to 1.

k=1

It is known ([5], p.1139, Lemma 1) that the second alternative of condi-
tion (7 4) along with the summability (A) of 3 @, implies the first alternative
of (T4); and so Theorem A need be stated with only the first alternative of
(T4) which Szasz uses in his proof of Thesrem A without however, explicitly
mentioning it as an alternative hypothesis. The main object of this paper
is to establish two results: (i) Theorem I'(A) at the end, which is a gene-
ralization of Theorem A with the first alternative of hypcthesis (T,), for the
Riemann-Cesaro summability (R, p, &) recently defined by Hirokawa ([2], § 1)
whose case p =1, «a = —1 is summability (R,1) and case p=1, a =0 is
summabity (R;), (ii) an integral analogue of Thedrem I' (A) stated as Theorem
I(A) in the last section.?

The notation and the definitions used in Theorem I(A) and other integral
theorems are as follows. For a real function a(x) bounded and integrable®

1) It must be borne in mind that the parallelism between series and integrals
is destroyed to some extent by instances of theorems for series, such as the limi-
tation theorem for series summable (C,e), ¢>—1 ([1], Theorem46), which have no
integral analogues. Thus one of Hirokawa’s general theorems ([2], Theorem 3) has
no integral analogue which can be proved by his method since it depends on the
limijtation theorem referred to. On the other hand, a theorem for integrals, such
as Theorem I (A) of this paper, may present additional complications when. we try
to adapt its proof to obtain its analogue for series. It may be added here that
analogous theorems or formulae for integrals and for series, wherever they occur in
this paper, bear the same number, unaccented (e.g.I, 1 etc.) or accented (e.g.l’,1’
etc.), according as the theorems or the formulae are for integrals or for series.

2) As in Hardy [1], integrability is in the Lebesgue sense and every integral f :

is defined in the Cauchy-Lebesgue sense as lim f : .

T>eo
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in every finite interval of # =0, the Cesiro sum of order ¢ = —1 and the
Cesaro mean of order « = —1 are defined by the integrals

(1.1)  so(ee) = f‘(—aL-i-_l)f (# — x)* a(x)dx if > —1, s_«(u) = alu), u=0,

nd
(1.2)  oulw)=T(a+1) si#) i o> —1, o) = us(w), u=0,

respectively. The Riemann-Cesaro transform of a(x), of positive integral
order p with index a = —1, is defined by

o »
(1. 3) P(p’ o, t) = "_17 } tm-l»lf (Sln,’;‘g ) s“(u) du’ 0 <t< tﬂ,
Cra v tu

where
"~ either —l<a<p—1

#f u*~? sin? u du if ?

(1.4) Coa = F(“"‘l)o or a=0 p=—1,
1 if a=-—1
and the Laplace-Abel transform of a(z) by
(1.5) i) = f e % a(u)du, t>0.
0

The integrals in (1.3) and (1.5) are each 'supposed to exist for every fixed
t in the interval noted against each. There is a similarity between them in
that the existence of #z) for every ¢ >0 enables us to express it as an

absolutely convergent integral in the form ([6), Chapter II, proof of Theorem
8.1):
(1.6) i) = t‘”“f e~ s,(u) du, a=0.
0
2
The different kinds of summability of s(x) = f a(x) dx required in Theorem

0
I(A) and elsewhere are the following, / in each (as everywhere in this paper)
denoting a finite number : —

summability (C,a), a > —1, to /: lim ou(u) = [,
U-ro0
written s(#)—! (C,a),
(1.7)/ summability (A) to /: lim0 i) =1,
t>+
written s(z)— 1 (A),



RIEMANN-CESARO SUMMABILITY OF SERIES AND INTEGRALS 249

summability (R,p,a) to : thmn e, a,t)=1,
>+
written s(z)—>1(R,p, a). ®

An additional definition needed in the case of a particular result for s(z),
namely, Corollary [(1), is that of (C, o) summability which follows.

lim sup o.(%), lim inf ou(2)
U0 U~yoo
whether finite or not, are defined for every a = —1; and they are, for

varying « =0, the first a monotonic decreasing function of « and the second
a monotonic increasing function of «. Consequently

e = lim lim sup oo(#), . = limlim inf ou(z)
W=3c0 UDeo - &—yco U—oo

exist, and, whether they are finite or not, ¢. = o.. We define for s(z)
(1.8) summability (C, ) to /: ¢« = o= = I, writing s(u)—[(C, ).

For a series 2 a; supposed to be real in this paper, there are the usual
k=1

analogues of definitions (1.1)—-(1.8). For instance,

(1.19 sy = 2 (” —2‘4‘ a) a; for a > —1, s;t = an,
k=1
and
- o
(1.2) s = %:yz/("ia) for a > —1, o;'=mns;'?

are the Cesaro sums and the Cesaro means respectively of order ¢ = —1 of
2 a.; while the Riemann-Cesaro transform, of positive intgral order p and
index a = —1, is

b N »
1.3) P, a,t) = C;h 17+ ( -IEF') sf, 0<t<ty,

k=1

3) The method of summability (R,p, a) for s(u) is regularif either (i) p>a+1
=1, or (i) p>1>a+1=0. For case (i) the proof is that, since a=0, s(u) = I(u—>
o) implies oca(#)—! and the existence of

sin %

o »
p(P,m,t)={Cp,mI‘(a+l)}—1f ( ” ) u® oa(u/t) du, t>0,
0
and finally implies p(p,a,t)—[ as t—-+0 by Lebesgue’s theorem of dominated conver-
gence. In case (ii), we argue similarly with
e 7 »
~{Cpar(atD} [ —(——sm”) w1 guyy (uft) du, >0,

du u
identifying this iniegral with p(p,a,t) by an integration by parts in which we use

oa+1 (u) > 1 (u—>o0).
4) The special definition of a;‘l is not adopted by Hirokawa and others for the

reason that it is- inconsistent with the definition of ¢% for «>-—1. However, this
definition of o7 enables us to unify in Theorem I'(A) the two cases @=-1 and @
>—1 although the first case often requires more elaborate treatment than the second.
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where C,,. is the constant in (1.4). The differeat kinds of summability of
2 a; explicitly figuring in this paper are
summability (C,a),a > —1 to /: lim ¢% =,

N>

written 2 a. =1 (C,a),

summability (A) to I: Iim 2 ap xF =1,

1.7
written 2 a. =1 (A),
1

summability (R,p,a) to /: lim p(p, a,t) = 1,
t>+0

written 2 a.=1 (R, D, o).
1

2. Lemmas. In the rest of the paper, the notation and the definitions
of the preceding section are used without further explanation. The lemmas
which follow are for integrals, and they have series-analogies which are
omitted for the reason that there is no special difficulty in either formulating
or proving these analogues. In fact, series-analogues of even the subsequent
results for integrals are taken for granted unless there is some such difficulty.

The first two lenmas have obvious proofs which are left to the reader.

Lemma 1. If flu) is non-negative and integrabie in every finite interval
of u=0, §>0, q+0, then

<

f (%) dx = Ou*=%) implies [ fx) x0dx = O (u%), u— .,
o

u

LemMma 2. U ¢t>0, u >0, then
“ i tx 4 2
*(tu)| = f SINEY gl < 2.
g = [ S ar < 2
Y ,
LEMMA 3. If k<1, f(u) is continuous in every finite interval of u =0,

Flu) = f S(x) dx, then flu) — ku='F(u) = O(1) implies f(u) = O1), u— .

Proor. Adapting a method of Hardy’s ([1], p. 107), we solve the differ-
ential equation for F(u) givea by

5) The infinite series involved in the definitions of summability (A) and sum-
mability (R, p,a), in (1.7"), are of course supposed to be convergent for the values
of x and ¢,i.e. |z|<1 and 0<z<#), which makes the limiting operations of the defini-
tions possible. Another point to be noted is that the method of summability (R, p, @)
for Zay is known to be regular for either p>ea +1=21 or p>1>a +1=0 ([2], Corollary
1 under Theorem 1) dut not so for p=1=Z«+1=0 ([2], Theorem 2).
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F(u) ~ kuF(u) = g(u)

and obtain
w

w ) = f x~*y(x) dx + a constant,

whence, as a result of our assumption g(z) = O(1), we get successively
w1 F(u) = O1) + O(u=+*), flu) = ku~'F(x) + O(1) = O(1),

LemMmA 4. I a > —1, thern
f oo(x) dx = O(u) implies ou+(26) = O), % —> 0.
0

If o = —1, the result is still true provided o,(u) = O(1).

Proor. For a > —1, we have by an integration by parts:

w

1 * 1 o 1

— o ax = - = + . &+ y
ufa(x)x lo-al(u)—i— +1uf¢r (%) dx
0

V]
from which we get the required result by using Lemma 3 with
k= —a, f(u) = car: ().
The case a« = — 1 is obvious since it is simply that s(z) = O(1) when we
= assume the two conditions :

U

s(s) — o1(2t) = -3; f xa(x) dx = O(1), oy(u) = O(1).

u

LemMMA 5. If a = — 1, then
S(w) > I(A).  casi(®) = OL1) D stu)—>IC,a +2)
which means that the two hypotheses on the left side, separated by a stop, lead

to the conclusion on the right side.
Ou(1) on the left may be replaced by Oxr(1), or a fortiori, by O(1).

Proor. The case a = — 1 is classical ([1], p. 154, integral analogue of
Theorem 94). If a > — 1, one method of proving the result is to note that
s(u) -1 (A) implies, by (1.6),

co

lim t“**’f e Sy () du = 1,
t>+0
0

and then appeal to a theorem due to Hardy and Littlewood (e.g. [4], pp.256-
7, proof of Theorem ¢, where 7, is used instead of a + 1).

LEMMA 6. If a = —1, then the two hypotheses

1

f oo(%) dx = O(u), s(u) = 1(A), %—> oo,

0
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together imply that
gas1(6) = O1), cass(tt)—1, % — oo,
Proor. If ¢ > —1, the conclusion follows at once from Lemmas 4,5.
If ¢ = —1, our first hypothesis is that

s(u) — o, () = 21‘ f xa(x) dx = O(1).
0

Therefore, by a well-known theorem of Szasz’s ([5], p. 635, Theorem 1; [4],
case 7, = 0 of Lemma III), the second hypothesis ensures that o;(#)—7 and
hence also that s(z) = O(1).

Lemma 7. If s(u)—1 (C, o), then there is an a such that, for a = ay,

O'a(u) = 0(1) 0'a+](u)—)'l.
The lemma is known (e.g. [4], Theorem ?2).

LEmMMA 8. If ¢ > —1 and
a'w(u) >—-H (H> 0), o’w+2(u) = OR(I)
then
aar1(%) = O(1)
Proor. It is obvious from ou(#) > — H that gae+1(#) = Or(1). On the
other hand, o..o(%#) = Or(1) implies the existence of a constant X > 0 such
that, for all large x,

Kx**2 > sup9(%) + H — = P(a T 3) f (x — %) [sa(u) +H TI‘( ) ] du

/2

>]'<x~w[&wyk P(“ )]m¢

0

>%szlz{sa(u)+ﬂp( :_1)]

_ % x ﬂ/_Z)““
2[%”(2)+Hrm+m}

i.e. K > WI%_C(—-FES [asi(%/2) + HI, O cgs:(%/2) = Or(1) as x— oo,
so that finally ou..(%) = O(1) as u — .

LEmMMA 9. If us(u) > — H(H >0), and either s(u)—1(C,k), >0, or
s(u) —~>1(A),
then

U

s(au) — 1, f x|a(x)|dx-= O(u).

0
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Proor. The first conclusion, that s(z)—{, is the result of a classical

Tauberian theorem, and it implies
U

f xa(x) dx = o(u).
0
The second conclusion follows from the above estimate together with the

estimate
u

f alla(x)| — a(x)] dx < 2 Hu
0
resulting from the relations

Ala@)] — a(®)] = 10 if an 20| Lo m.

— 2 xa(x) if a(x) < 0/

LEmMMA 10. If a > — 1 and s(u) is summable |C, a + 1|, i.e.
f |dows1(2)| < oo,
0

then

%

[ teuwian= 0w,

]
If aa = — 1, the result is the familiar one that

w

f |a(u)] dé < oo implies f x|a(x)| dx = o(w).

0

Proor. For a« > — 1, we have successively

(a + 1) x—g; [oasi(X)] = oa(®) — can(x) for almost all x,

f ]aa(x)]dx_s_f |oas+1(%)] dx—}-(a—l—l)‘lf X|dogsqi(%)]

= fow+1(x)f dax + (a + 1)_1 u fda'u+1(x), = O(u)
/ /

8. Tauberian theorems connecting Cesaro summability with
Riemann-Cesdaro summability. Theorems [, I’ of this section are similar
to the following theorem which is mainly due to Obreschkoff 'and Hirokawa
([2], Theorem 1) and which, in fact, has a case in common with Theorem TI’.

THEOREM B. If 0< 8 < 1< p = a positive integer,

Sa=1(C,p—9),
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(Ts) e = Om), n—r oo,
k=1

then, for a such that —1<a<p—38—1,
Da.=1(Rpa.
k=1

REMARKS ON THEOREM B. (i) The theorem is due to Obreschkoff in the
cases a=—1,p=1 ([38], Satz 1), a=0, p=2 ([3], Satz 4) and due to
Hirokawa in the remaining cases.

(ii) The conclusion of Theorem B can be proved for p =1 and aa =0, a
case ruled out in the enunciation, by first using Hirokawa’s arguments with
p=1 a= —1, to show that

2 < - sinnt
& a, S S
’"'E % n tends to / as £— + 0,

as a result of our two hypotheses and the fact

{ exists for £ > 0,

f}: M’ =t~ O(k™Y), t>0, koo,

n=k ”n

which is analogous to Lemma 2 and now serves in lieu of the relation
|sin kt/kt| = t-1O(k~') used by Hirokawa. The proof can then be completed,
as pointed out by Szisz in a similar context ([5], pp. 1221-2, converse of
Lemma 1), by the observation that

2 < < Sin 7t 2 < sinkt
a a; o = Se T, = p(ly 0’ t)r ¢ > 07
o E gk n T E k
because s, = O(k!~%) = o(k), k— o, in consequence of the hypothesis ;1% — /.

(iii) In every case in which Theorem B holds good, it can be restated

with only (7T's) changed to
2 [sp=3-1] = O(n"-%) 71— o,
k=1

the proof of the changed theorem requiring an obvious modification of but
two steps numbered (3.3) and (3.4) in Hirokawa’s paper [2]. The cases a =
—1, p=1and a=0,p=1 of the theorem thus changed are due to Szisz
([5], p. 1159, Theorem A and p. 1228, Theorem 5),

Of our first pair of analogous results for series and for integrals, the
one for series, Theorem I’, is stated before its analogue for integrals, Theorem
I, but proved after, so as to facilitate the comparison of Theorems B, I’ and
present first the simpler of two ‘proofs. Our second pair of analogues, of
which the one for integrals is Theorem [I and the other for series is taken
for granted, can be deduced from the first pair, and the Tauberian condition

in them is one-sided.

THEOREM I, Ifa+1=0,
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B.1) >a=1C, a+2,
k=1

(3.2) > lorl = Om), n—roo,
k=1

then, for a positive integer p > o + 1,

2 a; = I(R,P, (X)

k=1
This conclusion is true in the case « = 0, p = 1 (ruled out above) if (3.1)
and (3.2') are assumed for o = —1.

TueorReM I. Fa+ 120,
3.1 s(u) ~>1(C, a+2),

(3.2) f loa(x)| dx = O(un), % —> 0,

then, for a positive integer p > o + 1,
s(tu) > I (R, p, a).
The conclusion remains true for o= 0, p =1 provided that (3.1), (3.2)
are assumed for o« = — 1.

Proor oF THEOREM I. In all cases except the case a =0, p =1, the
transform p(p, e, t) of (1.3) exists as an absolutely convergent integral for
fixed ¢t > 0. For, if the integral in (1.3) is taken from a positive U to «
and the integrand is replaced by its absolute value, we get

! 15a(20)]

by (3.2) and an appeal to Lemma 1 with flu) = |oa(w)], g =0 —«, &=

p—a—1
If a=0, p=1 the existence of pp, «,t) for fixed ¢ >0 is proved as

follows from (3.1) and (3.2) each with « = — 1. The integral

3.3) % f a(x)¢*(z‘x)dx5% f a(x) dx f Si—“u-”idu, t >0,
0 1)

r

- t p
sin tu ‘ du <

sin L"l@l—du—:O(ML*)_’O!U_*OO’
tu

. -
T« + 1);:7»{ ur-* Ur-o-1

is absolutely convergent, since

!w!a(x)l'w*(tx)! drx < gfula—(;)ldx= 0(%};)—»0, U — o,

t
U
by an appeal to Lemma 2, followed by (3.1) with a = — 1, and an appeal
to Lemma 1 with f(x) = x|a(x)|, ¢ =2, § = 1. Since, as a result of (3.1) and
(3.2) each with a = —1, s(#) = O(1) by the case a« = — 1 of Lemma 4, we
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get from (3.3), by an integration by parts,
(3.4) ;21_- f a(2)*(tx) dx = % f s(x)‘“li“—x’ji dx=p(1,0,8), ¢>0.
We procZ:ed to show that in alol the cases considered above, p(p, a, t)—1

as t— + 0. :

Case:p > a + 1> 0. Writing ¢(z) = (sin »)?/u?, we get by two integrations
by parts, for fixed £ >0 and x >0,

pD, a b) = C;, 22+ ( f " + f N)sm(u) S(tu) du
0 2/t

U=zt

= Gyl 1ot [s“mu) BEU) — Swrslte) ;’—u b(t2) ]
u=0
2/t

+ G, 1o [f Sw+z (%) Zi% P(tu) du + f Sa(u) Plta) du]

4 zft
(3.5) =ClLi+ T+ I+ 1)
where
- O'aHL(x/i) @+1 e — ,q-,".‘*‘z(x,._/t) X9+2
A Ta+2) " ox), L Ta + 3) @'(x),

— : q:w+2(u/t) G2 AT . ] i 0“a<u) '3
L Tat3 > ¢wds L=t Tla + 1) %P0 du.

Tt

We shall suppose (as we may) that # < 1 and fix x subject to certain conditions
to be specified presently. To begin with, (3.2) and Lemma 4 in the case
a > —1 show that gu.; (#) = O (1) as #—  and that there is a constant M

which makes
(3.6) | < Mx**1|p(x)|

for all large x; while (3.2) and Lemma 1 with fu) = |ow(®)|, ¢=p —a,
8 =p —a — 1, show that there is also a constant N making

3.7 114l<t““"’f '1'{';:(1)% < eier NUj ) et = Nyees
zjt

for all large x. On the other hand, (3.1) is oa+2(#)—! and it gives, when
x is fixed and £ > + 0,

- X%+ (%),

!
L= pat )

T I , !
42 A = @42 '/ (x) — go+1
& "’Of a3 @ = g F O T g gy T W
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+0f Ta + 1) ¥ P,

so that, by the definition of C,. in (1. 4),

l ” l
(3.8) L+ L—Copal—>—  ——— xo+l _f Lt
) 3 b, Tla +2) x%*1 p(x) T u®P(ze)du, t - + 0.

Given any small &€ >0, x can be chosen so large that the right-hand members
of (3.6), (3.7), (3.8) are each less than C;.,&/3 in absolute value. With this
choice of x, (3.5) gives when taken along with (3.6), (3.7) and (3.8):

limsup|pp,a,t) — 1| < &, i.e. limpip,a,t)=1.
t>+0 t->+0

Case: p =1, a = —1. (3.5) will now be replaced by

(3.5;) PP, =1L, =ID + I{D + IV 4 IY
where 19, 7179, I, IEY are I, I, I, I, respectively with a = —1, so
that

IIiP] < Mig(®)|, [I7P] < Nx™7,

for all large x; and when ¢ — + 0, x remaining fixed,
I — — Ix'(x), I8P —+f lud" (1) du = lxp'(x) — Ip(x) + Ip( + 0).
1]

Substitution of these estimates for 7V, 19, 157D, I{™V in (3.5;) leads to our
conclusion in the penultimate from

liggi}lp lpp, —1,8) —Ip( + 0)] < M|p(x)] + Nx~? + |Ip(x)| < &€
since evidently x may be supposed to have been fixed so as to satisfy the
last inequality.

Case: p=1 a=0. We see from (3.4) that the treatment of this case is
like that of the case p =1, a = —1 with the difference that we have now
27~ ¢*(u) instead of ¢(x). Hence our conclusion will now assume the penul-
timate form

limsup | [p11,0,8) = - $*0)| < Mig*(n] + N + | Zgrm| <,
t5+0 " ™ | T
a choice of x satisfying the last inequality being possible by Lemma 2.

ProorF oF THEOREM I'. The case a +3=p >a+1>0is reducible to
Theorem B with its two hypotheses replaced by the single stronger hypothesis
a2-%-1— ] as n— . For, (3.2') implies, by the series-analogue of Lemma 4,

o%*1=g2* = O(1) which together with (3.1’) leads to o%7°7'—/ for every
positive 8 < 1 by a well-known theorem ([1], p. 127, Theorem 70). The case
p =2, = —1 follows from the case p = 1, @ = —1, since we have, assuming

the result for p =1, a = —1,
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Sa=1C1, Xklal=0n D Xa=IR1 D Za=1(R,2),
k=1 k=1

k=1 k=1
it being well-known that (R,1)>(R,2) ([1], Appendix III). Hence we may
suppose that ¢ +3+=p >a+1=0.

Case: aa+ 3 =+=p>a+1>0. After establishing the existence of the p(p,
a,t) in (1.3) as in the proof of Theorem I, we proceed to the step correspo-
nding to (3.5) there, which is now obtained by two Abel or partial-summation
transformations, in the form

D, 1) = Gyl #7537 /) + 141 5523 A — 1t
m-—2 -

2 D sE Arp(Rt) + 1L sgqb(kt)J

k=1 kE=m+1
=Gl + I+ I, + 1), say,
where m = the integral [part of x/#, x >0, ¢ >0. By (3.2") and the series-
analogue of Lemma 4, ¢¢*!= O(1) as k—> oo, so that, as in the proof of
Theorem I, there is a constant M such that
(3.6) [7;] < Mx*+| ()]
for all large x. By (3.2) and the series-analogue of Lemma 1, there is also
a constant N such that
3.7) |1,] > Nx*+1-»
for all large x. If x is fixed, using the hypothesis (3.1’) that ¢%**—1 as
k-0, we can show that '
(3.8) litrn sup | I, + I, — Cp,at]
>+

121

B A
S T X + U a1 q,'x,u)du: + Fl%)

where F(x) is a certain positive function of x tending to 0 as x— oo. After
this we can complete the proof like that of Theorem I, postulating that x
has been chosen so as to make right-hand members of (3.6), (3.7’) and (3.8)
each less than C;’, €/3.

It remains to show how (3.8') is reached. F(x) having been defined as
in (3.18) below and x > 1 having been chosen as indicated above, we can
state the hypothesis (3.1’) in the form

spt? = J A% + &1 AZY? EIAXT Rt —0 as k— oo,
and find mz; so that, for 2 =ms + 1,
(8. 9») s:+2 — lA’?+'£ + &clA',’:"'?', lelc lA,':"'zl < x~Uo+3-p] patz

With this choice of m, and with m = theintegral part of x/¢ > m, + 2in (3.5)®,

6) Since finally ¢—+-0, the supposition regarding m, viz., that m=my-+3, is
valid.
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we can write
L+ I, = 1" L A% Apim — 1) + £+ ] &y A2 Adp(m — 1¢)

m—1

m=-2 Mo m-2
+ 2941 DT AL APRL) + 1) (2 + 2 )l EnAi™* A(kL)
Tl k=1 E=mg+1
(3.10") =1I,+ L+ I, + I, + I;, say.

Since there is a constant K such that |A¢(kt)] < Kt2~?k~? for all £ >0 and
k=1 ([3], p.443), we first get, using (3.9') in I,

m—2
[ 2] < K tovsor gbiovsonl 3 vy,
k=mo+1
m
Since there is evidently also a constant K; such that > k*+*? < K; m**3-7,
k=1 .

the above step gives us
lls’sl < KKl(tm)wrz-p x—ANa+3-p|
where ¢tm—x as t— + 0. Thus
(3.11") ﬁlﬁ,flolp || < KK, x0+s-r=2e+3-01 < KK, 5~ 19+3-91,

Secondly, there is a constant Z such that |A¢(kt)| < Lt*-?p~? for all ¢ >0
and 2= 1 and so we find, recalling that
Ilgm—l A::'-:‘.{l < x—zim-x-s—pl(m — 1)a+2’
'1;21 < L(t;nTI)a+2—-p x—2a+3-0]
whence follows, exactly like (2.11'),
(3.12") lim sup |[I,| << L x¥+2-p-2fe+3-pl < [, g-1-la+3-2]
t>+0
Thirdly, |A2p(kt)] = O(t2) as ¢t — -- 0 where the constant implied by O(#?) can
be chosen to be the same for %2=1,2,3,...., my; while & A**/k*+%is
bounded for 2= 1. Hence there is a constant Z, such that, for all sufficiently
small £,
My
(3.13) [Z,] < Ly t%+3 D> k%2, i.e. lim |I,| = 0.
k=l >4+0

Lastly, we have, by two Abel or partial-summation transformations,

m

(3.14) L+ Ly =t 20 1 Agp(kt) — t241 1 A% (mt)
k=1
where, since mf —x as t— -+ 0,
) (mit)*+1 2+ plx).
2+l Aa ~ — et A —
(8.15") 12+1 A% p(mt) Tl +2) P(mt) — Dl + 2)

and further, as shown by an argument elsewhere ([3], proof of Lemma 3),

x

< 1 B
(3.16) 1 ATk ~ Ty 1Ty f w> (sinw)? du, t— + 0.

k=1 0
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From (3.14'), (3.15), (3.16') it follows that

NI o 1 x%+1 (x)
1 ” Ty x—p v AN/
Hm (In + L) Da+ 1) f w*=> (sinu)’ du T + 2)
) 0
, i o 1 5% +1gh()
3. 17 = ] —_— % 4 —_— =7
(3.177) Cra T + 1);.[ u"™r (sinw)” du Tla +2)°

Using (3.119, (3.12%), (3.13"), (3.17’) in (3. 10"}, we finally obtain (3.8") with
(3_ 18) F(x) — KK1 x—]u+3-p| + Lx—1—|u+3—p]

where K, K,, L are absolute constants. This completes the proof as already
explained.

Case: a+1=0, 2=p=1 We merely put @ -+ 1 =0 in all the steps of
the preceding proof except (3.8'), (3.14')——(3.17"). The excepted steps, after
the changes obviously necssary, culminate in the following steps instead of
(3.17") and (3.8):

tlir? Iy + 1) = 1 — Ig(x), lirm sup I, + I, — | < |igp(x)| + Fix).
>+
Otherwise the proof is as before.

Case: aa=0,p =1 The passage to this case from the case a = —1,
p=11is as in the proof of Theorem I with the necessary modifications for
series indicated in Remark (ii) following Theorem B.

DEDUCTIONS FROM THEOREM 1.

COROLLARY I(1). If s(u) — 1 (C, o), then, for all large «, say & = oy, S(u)
—1(R,p, ) if p is a positive integer chosen corresponding to each «, so that
p>a+ 1.

Proor. By Lemma 7, the hypotheses (3.2), (3.1) of Theorem [ now obtain
in the stronger form

o) = o), 0’a+1(u)’_*l,

Corollary [(1) invites comparison with the known result « = ay. ([4],

Lemma II) that, if s(z) —1(C, =) then, for all & = a,,

o

t‘“lf et sy(u)du — 1, t—> +0.

0

COROLLARY I(2). If o = —1,s(x) is summable |C,a + 1| to 1, then s(u) is
summable (C,p, ) to 1, if p is a positive integer such that p > « + 1.

oo

The conclusion is true for p = 1, a = 0 on the hypothesis that f a(u) duw
0
is absolutely convergent.

Proor. The two hypotheses (3.1), (3.2) of Theorem [ are ensured, the
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first one obviously and the second one by Lemma 10; and so every case of
Corollary I(2) is reducible to the corresponding case of Theorem I.
THEOREM II. If a = —1, H >0, then, for a positive integer p > a + 1,
() > 1(C,ax + 2). ou(t) > —H psu)—>1(R,p, ).
The above result is additionally true with o = — 1 in the hypothesis (left
side) and o« = 0, p =1 in the conclusion (right side).

Proor. If a > —1, Lemma 8 shows that os..(#) = O(1) and that con-
sequently

”;l;f loa(x) + Hldx = a+ [G'm+1 (u) + H] + &‘:a*_—l”u—f [ewri(x) + Hldx = o(1).
0

Thus Theorem II is simply Theorem I with o«(x) + H instead of o4(x) in (8.1)
and corresponding changes elsewhere, in particular, with the conclusion, for
P>a+1>0,

sin tu)” {exists for‘t >0,

1 t!l-l-l .
Cola of [s,,(u) +H I‘\a + 1) } tu tends to I + H as t— + 0.

This is the conclusion sought since the terms in H can be removed from both
sides.
If « = —1, Lemma 9 gives
f x|a(x)|dx = O(n)
0
which together with the hypothesis s(z) —1(C, 1) shows that the case p >
a + 1 =0 of Theorem II is included in the same case of Theorem I.
Finally, the additional result follows from the case ¢ =0, p=1 of
Theorem [.

CoROLLARY II. For s(u) > — H, summabilities (C,2) and (Rz) are equivalent.
Proor. For the class of s(z) in question, we have, taking a =0, p =2
in Theorem I,
while, by a known theorem ([1], p. 305, Theorem 237),
(Ry) > (C, 1) (C, 2).
4. Tauberian theorems connecting Abel summability with Rie-

mann-Cesaro summability. The theorems of this section are derived from
those of the last section.

THEOREM I(A). Theorem I can be restated with the hypothesis s(u)—1
(C,a +2) of (3.1) changed to s‘u)—1(A) and no other change.

Proor. From (3.2) and s(x)— I(A), it fcllows, by an appeal to Lemma 6,
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that s(z)—1(C,«x -+ 2). Theorem [(A) is thus reduced to Theorem I.
The integral analogue of Sz4dsz’s Theorem A at the outset is generalized

in the following corollary obtained by taking « = —1 and « = 0 in Theorem
I(A).
COROLLARY I(A).
A) {either fo #law)| dx = Owp } {s(u)—)l(R,P)
s(z) — L (A). B
or f “lam| — axwlds =01y a>1)  SEIRY.

THEOREM II(A). Theorem 11 is true with siu)— I(C, « + 2) replaced by s(u)
—I(A).

Proor. For « = —1, the hypothesis os/%#) > —H gives ouw:(u) = O(1)
which, in conjunction with the hypothesis s(z) — I (A) leads to s(z) — I(C, a +
2) by Lemma 5. And so Theorem [I(A)is reducible to Theorem II.

Whether for series or for integrals, the known theorems ([1], Appendix
III) connecting each of the summabilities (R, 1), (R,2), (R,) with summability
(A) are that

R, 1)>—>(R,2)>—>(A), R.)——>(A4A).
There are non-trivial converses of these theorems for integrals, under a one-
sided Tauberian condition, contained in Theorem II(A) and explicitly stated
below.

COROLLARY II{A).
{su)—>1(R,1)
1s(2) 7 (Ry),
()~ U(A). s(u) > —H—>—> su)—>I(R,).
The series-analogues of all the results in this section can be stated and
proved on the same lines as these results. In particular, Theorem [(A) has

the series-analogue which is given below and deduced from Theorem I’ ex-
actly as Theorem I(A) from Theoren I.

THEOREM I'(A). In Theorem U, the hypothesis 3 a;, = I(C, a + 2) of (3.1')
can be changed to S, a, = I(A) without any other change.

su)—UA). uan) > —H—>—

In conclusion, I wish to thank Professor V.Ganapathy Iyer for generously
setting apart time to serutinize the manuscript of this paper.

7) On the hypotheses of Corollary I(A), s(%) is summable (C,8) for every >0
(cf. [5], p.1141, Lemma 3), but not necessarily convergent. The negative part of
this statement has been demonstrated -by Szdsz by means of an example for the
analogous case of series ([5], p.1143). In this analogous case, there ‘is also an ad-
ditional conclusion proved by Hirokawa ([2], Theorem 4), namely, that the series
considered is summable (R,1,a), ~1<ae<O0.
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