
ON THE REALIZATION OF THE STIEPEL-WHITNEY

CHARACTERISTIC CLASSES BY SUBMANIFOLDS

BY

HARUO SUZUKI*

(Received March 1, 1958)

TABLE OF CONTENTS

INTRODUCTION
Chapter

I. REALIZATION OF THE STIEFEL-WHITNEY CLASSES
BY INDUCED SCHUBERT MANIFOLDS

1. Preliminaries
2. Subvarieties Corresponding to Wi
3. Examples
4. A Sufficient Condition

II. REALIZATION OF THE STIEFEL-WHITNEY CLASSES
BY THE CONSTRUCTION OF MAPPINGS

5. A Necessary Condition
6. On The Spaces K(Z2,2; Z,A; k5) and M(O(2))
7. W> in VQ

III. SPECIAL MANIFOLDS

8. Totally Realizable Manifolds
9. Complete Intersections of Hypersurfaces

REFERENCES

Introduction

We know several results on the realization of cohomology classes by sub-
manifolds in a compact differentiable manifold [2,3]. A fundamental theorem
by R. Thorn [3] shows that the realizability of cohomology classes can be
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reduced to existence of a mapping with certain properties (see section 1).
It is quite natural to ask whether the Stiefel-Whitney classes are

realizable by submanifolds. There are two ways to attack this problem.
The first one is to Use Schubert varieties in a Grassmann manifold. It gives
rather general information about the problem in vector bundles. The second
one is to find directly a map satisfying the requirements of Thorn's fun-
damental theorem. It can be applied to the Stiefel-Whitney classes of any
vector bundles and it depends on the study of a homotopy type of a cell
complex M{O(k)). Thus we can use this method successfully for low dimen-
sional classes.

In Chapter I, we define induced Schubert subvarieties and obtain a series
of necessary conditions for realizability of the Stiefel-Whitney classes of
vector bundles over a compact differentiable manifold, calculating the coho-
mology class of a singular locus. If the dimension of the manifold is equal
to the codimension of the singular locus, then a sufficient condition for the
classes to be realizable is stated as follows: The cohomology class of the
singular locus with respect to integer coefficients vanishes.

In Chapter II, we discuss the realization of the Stiefel-Whitney classes
of vector bundles over a compact differentiable manifold, using the canonical
isomorphism from cohomology group of base space onto that of total space
and the Steenrod Square operations. We compute the second k-invariant of
M(O(Z)) and obtain a rather strong sufficient condition in order that W2 of
a vector bundle over F6 is realizable by a submanifold. In particular, any Wz
of a vector bundle of an orientable manifold VQ is realizable.

In the last Chapter, we consider complete intersections of non-singular
hypersurfaces, in which any Wt is realizable by a submanifold.

The author wishes to express his gratitude to Professors S. S. Chern
and R. Thorn for their interests and instructions while engaged in this work.
He also wishes to thank Professor E. Spanier for his valuable suggestions
and discussions.

CHAPTER I

REALIZATION OF THE STIEFEL-WHITNEY CLASSES

BY INDUCED SUBMANIFOLDS

1. Preliminaries.
Let ©w be an ^-vector bundle over a finite cell complex with any closed

subgroup G of the orthogonal group 0{n) as its structural group. It is induced
from an iV-universal bundle AG,Π over a classifying space B&ιn, for instance,
a Grassmann manifold GHiN- for a sufficiently large integer N (see Steenrod
[1]). Suppose SG,Π be an associated (n — l)-sphere bundle to Ae,w. Combining
&,„ and Aσ,n, one can make an associated closed n-cell bundle Aσ,n where
Sσ,n is the boundary. Shrinking SGin into a point, we get a cell complex
M(G, n) corresponding to the subgroup G of O(ri).
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Since BG,Π is a differentiable manifold, it has a simplicial subdivision.

We can assume that the diameter of each simplex is so small that it is

contained in a coordinate neighborhood. Let b be an w-cell of fiber in the

fiber bundle Aσ,n. We take all cells of the form σ x b for any simplex σ in

BGΠ- They give a cellular subdivision of AG,Π up to its boundary Sσ,n> Define

a cochain isomorphism φG,n of C(Boin; Z2) onto Cn+i(Aσ,n, SG,n; Z >) by the
formula,

φa.nic) {σ X b) = c(σ)

for any cochain c 6 O(BGΛU Z£) and for / i> 0. This induces the canonical
isomorphism φ%n' H}(BG,n; Z2) ^iP+<(A?,w, BG,n; Z»). Let lG>n be the unit
class of H*(BG,n Z,X IΓ{M{G, n) Z2) is generated by φ%tn(le,n) = UG,n which
is called the fundamental class of M(G, n).

If G = O(ri), then we denote AG,», BG.Π and Λf(G, w) by A0(n), Bow and

M{O(n)) respectively.
Let K be a topological space and let w be an element of i7%X\ Z2). We

say that w is realizable for GaO(ri), if there is a mapping/: K-+M(G,ri)
such that u=f*UGln. Suppose F r is a submanifold of dimension r in a
compact differentiable manifold Λf of dimension m>r and of class C~. Let
i be the imbedding F rc:M. If an element 2 of Hr(M; Z2) is the image of the
fundamental class of Fr, then we say that z is realized by the submanifold
Fr.

FUNDANENTAL THEOREM (THOM). A cohomology class u of
Hn(M; Z z) is realizable for the group G a O(n) if and only if the dual homo-
logy class z of u is realized by a submanifold Fr of dimension r and the fiber
bundle of normal vectors on Fr in M has the group G as its structural group
(see [2]).

A sum of two realizable classes is not necessarily realizable. Their cup-
product, however, is realizable (see [2,3]). All the above statements are valid
for integer coefficients if M is orientable.

It is well known that the Grassmann manifold has a cellular subdivision
by the Schubert varieties, where variety means a set defined by a system of
algebraic equations, which may have singular locus. The Stiefel-Whitney
class Wj of dimension j is defined as a cohomology class with coefficients in
Z2, determined by the Schubert class

{0,.,.., O,^^}.

i
It coincides with the class of obstruction cocycie of a field of in — j + 1)-
frames over the /skeleton of G»,y. We can see that any 1-dimensional coho-
mology class in a manifold is realizable. Hence W\ is necessarily realizable.

Now we mention the following important relation due to Thorn [4],
between Wj of the iV-universal bundle over BG,n and the Steenrod square-
operation Sqj
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^φt^Wj for O^JSn. (1.1)

Let/ be a mapping of a finite cell complex L into BGn which induces an w-
vector bundle @n over £. The Stiefeϊ-Whitney class T7/©w) is given by

Let φ%n be the canonical isomorphism of ©w defined in the same way as φ%n.

Suppose Bn be an associated (n - l)-sphere bundle to &, which can be

regarded as the boundary of an associated n-cel\ bundle @n. φ%n is the

isomorphism of H\L; Z2) onto Hn+i(βn,Bn; Z3). Putting /* UG,n - Uz« =

(1.1) leads immediately to the relation,

= φ%*Wj(β»), (1.2)

for 0 < / <ί w.
Suppose Fr be a subvariety of a compact differentiate manifold Mn+r

with a singular subvariety F n of dimension rx < r, Fr2 denotes a singular
subvariety in Fri of dimension r2 < n and so on. The sequence Frχ ZD Fr2 ~D
. . . . ends by Fri after finite repetitions. The transversality theorem1} says
that for any differentiable mapping f of a compact differentiable manifold Vn to
Mn+r, there exists a mapping which is homotopic and arbitrarily near to f and
also transυersally regular with respect to Fr => Frι ZD Fr2 ZD .... ID FVi (see Thorn
[5,17]).

2. Sub varieties Corresponding to Wt.

Suppose Vn be a compact differentiable manifold of dimension n, and
suppose 6™ be an m-vector bundle over Vn. Then we have a mapping / of
Vn into a Grassmann manifold Gm,y such that the induced bundle is (?"*.

Wi in Gιn^ is realized by the Schubert variety [N - 1, N - 1, . . . . , N - 1,

i
N, , N] = Fi. By the transversality theorem, there exists a differentiable
mapping Λ which is homotopic to / and transversally regular with respect to
singular sub varieties of [N - 1, . . . . , TV - 1, N, . . . . , iVJ. Therefore TFi(6m) is
realized by the subvariety2) f{\Ft)t which we call an induced Schubert variety.
It has a singular subvariety Si which is a realization of /*{0, , 0,2, ,2}

= S* and Si has a singular subvariety {Si}2 which corresponds to /*{0,
. . . . , 0, 3, . . . . , 3} = [{Si}3]* and so on.3) Thus we can say that S* is the

first obstruction to the realization of Wi(®m) by an induced Schubert variety.
[{Si}2]* is the second one. Hence we get the idea of higher obstructions.

1) When Fr has no singularity, the transversality theorem is given in f2,
Theorem 1.6]. Its proof in general case is found in [5, Chap. II, Theorem 1] and [17].

2) We use the term of subvariety for a subset defined by a system of algebraic
equations, which may have singularities, and also its inverse image by a differeatiahle
map.

3) See [5, Chap. I].
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If S* vanishes'then the Schubert variety becomes an actual manifold. This
idea is the main tool of this section and section 4.

According to Chern's paper [6J, we have several relations for multipli-
cation of the Schubert classes. For the sake of brevity, we denote {0, ,
0, ak, . . . . , an} by {ak, . . . . , an}. We have {0} = 1. Put '{a} = 0 if a < 0. Then
the following formula holds:

{ak, ...., an} {b} = %{ak + bk, . . . . , an + bn} (2.1)

where the sum extends over all partitions of b satisfying the conditions that

bj<: bj = b. We have also the relation,

- 1}, {β! - /* + 1}

{alt ...., an} =

{a, + n - 1}

Put {j} = Wj. Then (2.1) leads to

2 WjW*-j = o

{a2}

{an}

(2.2)

(2.3)

(2.3) shows that Wj can be solved in W3. Using (2. 2), it can be seen that
any Schubert classes are polynomials in Wj, since we have

Wι = Wi

+ (2.4)

4-

W5,

and so on.
Now we shall consider the realization of W* by the induced Schubert

variety without singularity which gives a method to solve realizability of
TFa. The first obstruction is the class {0, ... .0, 2, 2, 2}. Using (2. 2), we obtain
that

{0, 0,2,2,2}=!{3} {2} {1} . (2.5)
I {4} {3} {2}

Substitute (2.4) in (2.5), we get the relation,

{0, . . . . ,0,2,2/2} = WJV* + WΛ

If an induced Schubert variety is a subnanifold, then its singularity
vanishes. Hence we get the result:

THEOREM 2.1. If W-If^7") is realizable by the induced Schubert submanifold,

then we have

Y. (2.6)
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In the same way, the first obstruction of realization of W3(®
m) = /* {0,

, 0,1,1,1} by the Schubert manifold is given by the following formula

{0,....,0,2,2,2,2} = A

which is the Pontrjagin class of dimension 8 and is a cohomology class with
integer coefficients. Using (2.2) we have

{2} {1} 1 0
{3} {2} {1} 1
{4} {3} {2} {1}
{5} {4} {3} {2}

Substituting (2. 4) in (2.7), we obtain

P 8 = W3W5 + Wf, mod 2.

Thus, in order that W3(&m) is realizable by the induced Schubert submanifold,
it is necessary that

W9(<&m) TF5(@m) - (W<(®m))2. (2.8)

This result can be generalized for any Stiefel-Whitney class W2j+ι (6W) of
odd dimension.

THEOREM 2.2. // W2j+i(&m) is realizable by the induced Schubert sub-
manifold, then we have

P*u+Ό(&m) = 0 (integer coefficients) (2. 9)

and

WW>-i(©*) W2f,+i)+1 (6~) - (W4ϋ+i)(6m))a *«** 2.

PROOF. By definition we have {0, ,0,2, j2} = P 4 ( j + 1 ) and
Λϋ+i> (@™) =/*Λo+i) which vanishes. Thus the first part of TheDrem follows
immediately.

Let 1 be a canonical mapping of the real Grassmann manifold Gm,y
into the complex Grassmann manifold Cm,N and let C2k be the Chern class of
dimension 2k.

W. T. Wu [7] proves that

1*C,* = (Wicϊ2 mod 2

and

l*C2fc = ( - W2 P2Jc + α/2) δ ^ - i
2J+1

where ^ = 2(i+ 1) and Uυ+3 = 2 ^ ' W^-M. It follows that
ΐ - 0

(2
^ i-o

(2.10)

= (1/2)8 (Wtj+t + WiW^+2 + - + W>2j+1 W2J+i).

We have the relations (Wu [9]),
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= W3W4j+

Substituting these formulae into (2.10), we obtain

(1/2)817*-! = W2j+i W>>)+3 mod 2,

which leads to the second part of our theorem.
Theorem 2.2 might be generalized for Wok, but we have no general

formula to compute it. If n < 6, then the both sides of (2.6) vanish. Hence
it holds necessarily. Similarly (2.9) holds necessarily if n < 4(k + 1).

3. Examples.

P(i) denotes an /-dimensional real projective space. The cobordism group
9ΐ6 mod 2 of real compact manifolds of dimension 6 admits as generators
(see Thorn [2]),

(i) P(6),

(ii) P(4) x P(2),

(iii) P(2) x P(2) x P(2).

THEOREM 3.1. The relation

Ws2 + W2W4 = 0 mod 2 (3.1)

holds for manifolds of type (i), and not for manifolds of types (ii), (iii).

PROOF. We denote by TF/i), , the /-th Stiefel-Whitney classes of
manifolds of types (i), . . . . It is well known that the total Stiefel-Whitney
Class of P(ί) is given by

where h is the generator of the cohomology ring H*(P(i) Z2).
In the case (i), we have

i) = Qh* = h\

TFΛi) =

Therefore it follows that

In the case (ii), we denote by hx and hλ the generators of cohomology
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ring fl*(P(4) , Z2) and H*(P(2) Z>) respectively. We have the total Stiefel-
Whitney classes,

W(P(4)) = 1 + hi + V ,

TF(P(2)) = 1 + fe + fea.
It follows that

Thus we get

Therefore we have

In the case (iii), let hu h λ and h3 be generators of cohomology rings of
first, second and third factors in P(2) x K2) x P(2). We have the total Stiefel-
Whitney classes

W(P(2)) = 1 + hi + A*8.

Thus it follows that
3

2 fea + 2 Aί̂ ,

&ii) - 2 fcaA/ + 2

Thus we get

(TΓ3(iii))
2 = 2 &%* + Ai3Aa

a

4(iii) = βhShShj* = 0.

Hence, we obtain the result,

Any other manifold else belongs to the trivial type, for which the theorem
always holds.

The cobordism group 9ΐ8 mod 2 of real compact manifolds of dimension 8
admits as generators,

(i)
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(ii) P(6) x P(2),

(iii) P(4) x P(4),

(iv) P(4) x P(2) x P(2),

(v) P(2) x P(2) x P(2) x P(2).

The first class of singularity of Wz is the Pontrjagin class P 8 = 0, since
Pontrjagin -classes are multiplicative and since they are trivial in any real
projective space. Thus any cobordism class of real compact manifold of
dimension 8 contains a manifold in which the first class of singularity in an
induced Schubert variety of Wz vanishes. By the same argument any cobord-
ism class of dimension 4(k + 1) contains a manifold in which the first class
of singularity in an induced Schubert variety of WM+I vanishes. (On the
contrary, we don't have a corresdonding result for the Stiefel-Whitney class
Woe as it is easily seen in Theorem 3.1.)

REMARK. (1) Equivalence in the sense of cobordism does not conserve
the realizability by the induced Schubert submanifold of cohomology classes.
For example, a complex projective plane PC(2) and P(4) belong to the same
cobordism type mod 2 because every corresponding Stiefel-Whitney numbers
of both manifolds are equal. We have, however, P4(PC(2)) =t= 0 and P4(P(4))
= 0, therefore W3 is realizable in P(4) and is not in PC(2) (see sec. 4).

(2) Theorem 3.1 shows that the method of the induced Schubert manifold is
negative for the cases (ii), (iii) of cobordism types mod 2 of dimension 6.
For any differentiate map V$ -> R5 (5-dimensional Euclidean space), the
critical variety has at least one singular point, if Fj belongs to classes (ii),
(iii).

4. A Sufficient Condition.

Let Vn and Mn+r be compact differentiate manifolds of dimensions n and
nΛ- r respectively. Suppose Fr be a compact subvariety4) in ilί»+r which may
have some singularities. Let f be a differentiate mapping of Vn into M»+r.
Using the transversality theorem and the assumption about dimensions of
manifolds, we can take a mapping of Vn into Mn+r which is sufficiently near
and homotopic to /, satisfying following conditions:

(1) It is a transversally regular mapping with respect to Fr and iU
singularities, that means, in particular:

(2) Its image intersects Fr in regular points.
(3) The inverse image of Fr is a set of isolated points.

Without loss of generality, we assume that / is such a mapping as far as
the induced homomorphism of homology groups is concerned.

Using the above property (2), we construct tubular sets Nrjc with respect to
singular loci Frk for 1 < k <| i which do not contain at all the image points
of /. Nrk is defined as the set of all points of normal geodesies of Frjc of length
pVk which we call the diameter of Nrk. Let Nro be a tubular set of Fro by means
of normal geodesies of length pro putting r = r0. Define a tubular neighborhood

4) See footnote 2 of section 2.
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N(Fr) of Fr as a union of all Nrfc (k = 0, ,/). We denote its boundary by
T(Fr). We can take ρric such that prA. is sufficiently small to prk+ι. It makes
the cellular subdivision of N{Fr) simple, namely the cellular subdivision
stated in section 1 can be applied for N{Fr) successively from lowest dimension.
We can construct a neighborhood deformation retraction of T(Fr) in N(Fr) by an
induction in k, using a deformation along normal geodesies in a neighborhood
of T(Fr). Put A = Mn+r - N(Fr). Obviously A is a neighborhood deformation
rectract in Mn+r. Using a triangular subdivision of Mn+r, we can construct
a cellular subdivision of Mn+r compatible with that of N(Fr).

We consider the problem to compress / into A in the sense of Spanier-
Whitehead (see [8]). Fr denotes also the chain determined by the subvariety
Fr and D denotes the homomorphism of chain groups to cochain groups by
taking intersection numbers in integer coefficients.

LEMMA 4.1. If we havef*DFr = 0 with respect to integer coefficients, then
we get f*Vn° Fr = 0, where o means an intersection of chains.

PROOF. It follows from the condition of our lemma that

DFr Π/*F» = /*(/"*flFV Π Vn)

=/*(o nV»)

namely
Fr°f*Vn = DFr()f*Vn

= 0.

The main theorem in this section is the following:
THEOREM 4.1. Suppose Mn+r be simply connected and Fr be a compact

subvariety. Let f be a mapping of Vn into Mn+r. If we have f*DFr = 0 with
respect to integer coefficients, then f is compressible into A.

PROOF. Let Mi be the /-skeleton of Mn+r. The theory of compression
by Spanier and Whitehead [8] tells us the following: Suppose A\) Mι-ι is
simply connected, i > 2 and dim(M« — A) = i. Let f% be a mapping of Vn into
(A U Mi, A). Let jg be the inclusion map (A U Mi, A) cz(A{JMi} A U Λfi-i).
Then we get the following diagram,

if f*
τr'(A U Mi, A U Afί-1)->7r'(A U Mi,A)^7r\Vn).

The first obstruction to compressing ft into A U Mi-ι is defined by
Λ(/i) =/£/? € Z (̂A U Λft, A ; Tr̂ Vn)). (4.1)

If Zi(fi) = 0, then/i is compressible into A U Mt-^
We have TΓ^F^) = 0 for n < i ^ n + r. Hence we get Zi(fi) = 0 for such /.

Therefore / can be compressed successively into A U Mn. zn(fn) is a critical
obstruction. On the other side, we can find a deformation dt (0 ̂  t ^ 1) of
A U Mn-ι in MM+r leaving T{Fr) fixed in such a way that the image of dλ

does not intersect at all with F r. Therefore if /„ is compressed into A (J
Mft-i, djfn-i which is hόmotopic to / is the required compression. We want
to show Zn(fn) = 0 under the assumption f*DFr = 0.
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We know τrn(Vn) ^ H*(Vn) (the Hopf's mapping theorem). Excising the
interior A* of A from (Mn+r, A) because of the neighborhood retraction of A
in Mn+r, we get the following result,

Zn(A U Mn, A 7Γn(Vn)) = Zn(Mn+r, A H*(Vn))

^Zn(N(Fr), T(Fr);

ψN{Fr)

; L®H»(Vn))

Fr; L®H«(Vn))

y
where L is a local system corresponding to the orientation of the normal
bundle over Fr. All groups of L are isomorphic to Z. From (4.1) we have

= avn,
where vn is the fundamental cocycle of Vn and a is an integer. It follows
that

f*(DFr) (Vn) •= DFr(UVn)

= I(f*{Vn\ Fr)

= a,
where /( ) denotes an intersection number. Lemma 4.1 shows that a = 0.
Hence we get *»(/„) = 0.

Since Mn+r is simply connected, so is Mn-ι if n > 3 , because a homotopy
of a closed curve into a constant mapping can be compressed into Mn-i. By
the same reason, A\}Mn-\ is simply connected, if n ^>3. Moreover we can
assume that in the cellular subdivision of N(Fr), any 1-cell is in T(Fr).
Hence, A U Mn-i is still simply connected if n = 2. Thus the conditions of
the Spanier-Whitehead's theorem about compression are satisfied. Namely,

fn is compressed into A U Mn-i for n > 2.
Proof of our theorem is given except for n = 1. In this case, however,

any closed path is deformed into a point outside of Fr. Thus the the rem is
completely proved.

THEOREM 4.2. Z#£ f be a differentiable mapping of V of dimension rSΞ n
into a simply connected manifold Mn+rt and let Fs be a subvariety i i Mn+r

which has the singular locus Fr. If f*DFr = 0, then f*DFs is realized by a
non-singular submanifold induced from Fs by /.

PROOF. If the dimension of V is less than n, our theorem is obvious.
It is sufficient to consider the case where the dimension of V is exactly equal
to n. From theorem 4.1 and the property (1) in the beginning of this section,
there is a differentiable mapping which is homotopic to/, transversally regular
with respect to Fs and has no image points in Fr. The inverse image by this
mapping is the required manifold.
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COROLLARY 4.1. If n < 2{i + 1) then Wi(f&m) can be realized by an induced
Schubert submanifold.5)

P R O O F . P u t MmN = Gm,ir, DFS = (0, . . . . , 0 , 1 , . . . . , 1) and DFr = (0, . . . : . ,

i
0,2, . . . . ,2) , where ( ) means a Schubert cochain. f*DFr is of dimension

2(* + 1). Hence it is obviously 0. From theorem 4.2, we get the result.

COROLLARY 4.2. Wi(6m(F2(t+i))) is realized by an induced Schubert submani-
fold, z//*(0, 0, 2, , 2) = 0 in integer coefficients.

COROLLARY 4.3. Wat+iίS^FίXk+i))) is realized by an induced Schubert
submaifold, if P4(fc+n ( ^ ( ^ ( K D ) ) = 0 in integer coefficients.

CHAPTER II

REALIZATION OF THE STIEFEL-WHITNEY CLASSES BY

THE CONSTRUCTION OF MAPPINGS

5. A Necessary Condition.
Let © be an ^-vector bundle over a compact differentiate manifold F».

We denote by Wί(@) the f-th Stiefel-Whitney characteristic class.

THEOREM 5.1. If Wi($) is realizable by a submanifold in Vn, then the
class (W 2i+i(&))2 belongs to the ideal generated by W2ί(6).

PROOF. From the result stated in section 1, we can see that there is a
mapping / of Vn into M(O(2i)) such that

/*£/2 ί = W*(1S), (5.1)

where U>2i denotes the fundamental class of M(O(2i)). It also follows that

SqW* = φ% 2l WL (5.2)

Using (5.1), we get

Taking square in the sense of cup-product, we obtain

5) If singularities of an induced Schubert variety vanish, we call it an induced
Schubert manifold.
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l ψ (5. 3)
Using Wu's formula [9], we get

(Sq'W^my = (W:(6) Wai(@)V + (Wn+1(®))2 (5. 4)
(5. 3) and (5.4) prove our theorem.

The condition of theorem 5.1 is necessarily satisfied if n <; 2(i + 1). For
n < 2{i + 1), it is obvious that Wacι + n(@) = 0. For n = 2(ι + 1), the Poincare-
Veblen's duality shows the decomposition. The simplest example is the case
of TΓ3(©). If TΓa(©) is realizable by a submanifold in Fn, then we have

)* = T72((£){JΓK which holds necessarily if n < 6.

THEOREM 5.2. /y W2ί + ι ( 6 ) / s realizable by a submanifold, then
2(©))2 belongs to the ideal generated by W>n+ι((§) if i is even and

(Sqι W2i + ι(^))2 belongs to the ideal if i is odd.

PROOF. From the same argument as (5.3), it follows that

(Sq*(W,i + ιm
2 = Wzi+Mφ% iW M))2. (5. 5)

Using Wu's formula, we obtain

-I- j ^ }

®)- (5.6)

If / = 2k, then we have

9V 1 ϊ
M

χ

 i | - 1 mod 2,

Substituting these values in (5.6), we get

Stf Wϊί+](®) = Wm W,i + Im
From (5. 5) it follows that

(Wi(@) T^i+^ev = o

If i = 2k + 1, then we have

hence, we obtain

From (5.5) it follows that

(S?1 WW®))11 - 0 (Wίi

REMARK. (1) Theoremes 5.1 and 5.2 hold not only for the Stiefel-Whitney
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classes but also for any classes which satisfy the squaring formula by Wu:

(2) For large i, Theore n 5.1 takes a little more detailed form if
"is realizable, then it follows that

for 1 ^ k ^ 2/-1.
We will give an example of a tangent bundle with a non-realizable class

TF2 This is the tangent bundle of the manifold P = P(2) x P(4) x P(5). It is
easily seen that

W(P(2)) = 1 + Λ2 + AΛ

t + A/,

Then the Stiefel-Whitney classes of the above product manifold are given by

consequently

(WAP))* = WA!* + A!*W + As^a51

= fe4^!2 + A3*AΛ

On the other side, any classes of H\P; Z->) are sums of the following
elements ,

A!aAΛ AiaA,A,, AiaA3

a,

AiA2

3, hih/h3, h-Miil, hιh3

3,

h/, h./h3, hfhf, hjtf, hf.

H*(P; Z>) is a free commutative ring over Z> generated by hi, hL and hz with
relations hi3 = A2

5 = A36 = 0. Possible forms of the right side in the equation,

(WAP)? = WAP) {X} niod 2 (5.7)

are sums of the following elements

Uι = hiιhiλhiλ,

u.λ = A1

aA3A3

3,

w3 = Ai2A3

4,

vi = A ^ 4 + hvh?h?,

v, = A!aA3

3A3 + A,Aa

aA3

3,

z;3 = hfhfh? + A,A,aA3

4,

^4 = Ai*A2A3

3 -I- AiA3

5,

W l = ft^Λa* + A/As2,

m, = AiaA2

3A3 + AiAa

4A3 + Aa

3A3

3,
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w3 = Wfts* + hihfh? + h/hs\

w4 = Λ ^ f t s 3 + AtAa^s3 + A..A35,

wβ = Ai2A3

4 4- AiAaA3*.

I t is easily shown t h a t

Ai2/*34 = w>5 + *>s + «i,

namely

AiaA3

4Ξ=0 mod («,, w*, M3, t^, v.,, v3, v4,

Wu u>2, W3, w*, w&) = Λf

and

A2

2A3

4 - WsΛ UxΛ VγΛ- hι2h/

= W3 + «1 + ̂ 1 + Wl + A2

4A3

2,

namely

A*aA,4 Ξ A^A/ Ξ A/A32.

Since A2

4A3

2 appears only in f̂ , it does not belong to M. Consequently, (5.7)
has no solution, that is to say, (WsiP))2 * 0 (TΓa(P)), which implies that
Ws(P) can not be realized by a submanifold.

6. On the Spaces K(Z2,2; Z, 4 k5) and Λf(O(2)).
Now we shall consider the condition of Theorem 5.1 for W*. Our theorem

can be stated as follows if W4 6) is realizable then

(w3my = 0 (w,m,
that is to say, we can find a cohomology class {X} mod 2 of dimension 4,
satisfying

(W3(@))a = TΓ/S) {X} mod 2. (6.1)

Suppose the base space of 6 is a manifold of dimension 6. It is known
that K{Zi, 2) and M(O(2)) are of same 4 type. Let / be the canonical mapping

of M(O(2)) to K(Z>, 2). When we extend the homotopy inverse /"of / from 4-
skeleton to 5-skeleton, obstruction is given by the Eilenberg-MacLane in-
variant which is an element of JP(Z2,2 τr4(Λf(O(2)))). Let t be the fundamen-
tal cocycle of K(Z2,2). The invariant generates the kernel of the homo-
morphism/* of R\Z2,2; Z) to H*(M(0(2)) Z). Here we notice that τr4(Λf(O(2)))
= Z. H5(Z2,2; Z) is a cyclic group of order 4 generated by (l/4)Sp(ι) where p

is the Pontrjagin square and IP(M{0(2)) Z) is a cyclic group of order 2.
The kernel of /* is generated by (l/2)δp(ι) which is exactly the invariant (see
Thorn [2] and Eilenberg-Mac Lane [10]).

We construct a mapping h of VQ to K(Z^ 2) such that

6) Let u be a 2-cell of i£(Z2,2) which gives the fundamental cycle. Define h\ (Vβ)ι
as a constant mapping. Extend h over (F 6 ) 2 in such away that each 2-simplex <r2 of
Vβ goes to u in a degree which is equal to Wa(6)C<r̂ ) mod 2. Since we have δW2((ξ) =
0, /z can be extended over (V6)3, namely over F6.
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Since K(Z2,2) = PC(oo) has a simplicial subdivision, we can assume that h

is simplicial. According to Eilenberg-Mac Lane's paper [10], the obstruction

to extend the mapping//* of the 4-skeieton (F6)4 of F 6 to M (0(2)) over the

5-skeleton (VQ)5 is given by

/*f(l/2)8p(i)) = (l/2)δp(f*ι)

= (l/2)δp(TΓa). (6.2)

From Wu's paper [11], we have

p(TΓa) = (P4)4 + Θ2(WI2W,) mod 4,

where (P4)4 is the Pontrjagin class P4 reduced mod 4 and θ2 is a natural
homomorphism of Z? to Z4 defined by the exact sequence,

θ,
0 -> Z2 -> Z4 -> Z^ -> 0.

Let ^>4, ^ and ^ 2 be representative cocycles of P4, Wi and TF* respectively.
It follows that

(l/2)δp(PΓa) = (1/2(8(0* +

= 0. (6. 3)

We denote by K = K(Z2,2 Z, 4 , k5) a space with τr2fϋΓ) ~ Z2, 7r4(/r) — Z,
7Γί(K) = 0 for ί=t=2, 4 and with the Eilenberg-Mac Lane invariant k5. In
particular, killing homotopy groups of dimension i > 5, we can get the cell
complex K(Z2,2; Z, 4 k5(M(Ov2)))), which is regarded as the second step of
the Postnikov system of M(O{2)).

Now suppose k5 = k5(M(O(2))) = (l/2)δp(ι). Because of (6.3), we obtain,
the following diagram of mappings

ϋl
*K ^ Λf(0(2)), (6. 4)

5
9

where the notation = means that spaces of both sides are of same 5 type.
5

LEMMA 6.1 The following relation holds .

H*(K; Z2) ^ H*(Z2,2 Z,) ® H*(Z, 4 Z2). (6. 5)

PROOF. According to the theory of Eilenberg-Mac Lane complexes,
H*(ZΔ, 2 Z2) and H*(Z, 5 Z'.>) are generated by cohomology operations of their
fundamental cocycles ι and v respectively (see [13, Exp. 16]). We have the
exact cohomology sequence of (K, K[Z, 4)) with coefficient group Z 2 :

j * i* g*

-+ H*(K, K(Z, 4) ; Z2) -^ H\K Z2) -> H{(Z, 4 ? Z2) -^Hi+1(K1 K(Z, 4) Z£) ->. (6,6)

Let p* be the homomorphism of H*(Z2,2 Za) to ^*(iiΓ, ϋΓ(Z, 4) Z3) induced by

the projection p : (K, K(Z, 4)) -> (ϋC(Z2,2), 0). From the definition of k-invariant,
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we have £*k5 = -8*v. By our assumption, we get k5 = (l/2)δpθ) = 2(l/4)δpO)
= 0 mod 2. Hence we have &*v = 0. Because of the exactness of (6.6), there

is a class v ^ H\K Za) such that i* v = v. Since the inclusion map i com-
mutes wifh any cohomology operations, «* is a homomorphism onto. (6.6)
causes the following exact sequence

, 4) ; Za) -> # * ( # Z3) -> #*(Z, 4 Za) -• 0. (6.7)

Consequently, ** is onto, that is to say, the fiber K(Z, 4) is totally non-
homologous to zero with respect to Zz. It is obvious that W(Zh2\ Z3) is of
finite dimension over Zλ for all i ^ 0.

Define a homomorphism #* of ^*(Z,4; Za) into H*(K; Z,) in such a Way

that g*z> = v which induces the homomorphism whole over H*(Z, 4 Z2), taking

corresponding cohomology operations of v and z; respectively. Obviously we

have i*q* = 1. Hence our lemma is a direct consequence of Chap. Ill, Prop.

8 by Serre [13].

LEMMA 6. 2. There is v of Lemma 6.1 such that the second ^-invariant
of Λf(O(2)) is given by

k6(M(O(2))) - (Sqh y+ΊΊ> mod 2, (6.8)

where ι = >̂*£.

PROOF. Γis a generator of # 2;if; Za). In the diagram (6.4), we have

It J s 'known that H\M(0{2)) Za) = Z2(ί7J(2), Z70(2)(Tfi)2) From Lemma 6.1, we

have H\K; Za) = Z2((i)2, ^). Since #* is an isomorphism of HHK ZJ to

Hi(M(0{2)); Za) for all / ^ 4 , including cup-ρroducts7 there is a unique zΓ

satisfying the relation,

#*7= ^ ( 1 7 : ) * - *77(2)(WV

Obviously we have

g*(Sqh Y = (SqiU0{2)y.

It is known that kδ generates the kernel of #*, i. e., {k6} = g^ΉO). We can

see from Lemma 6.1 that H6(K; Z2) = Z2(©3, (Sqh)2, ~ιv, Sqh>). It follows that

g*(Tγ = (TF2)
3 Φ 0,

Therefore only possible generator of g*"1^ is given by
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(Sqh Y + Ί v.

We denote again by K the mapping cylinder of g in (6.4). K contains
M(O(2)) which is denoted simply by M, here. M is closed in K. From the
•exact cohomology sequence, it follows that

H>-(K, M; Z2) = 0 for r < 6, H*(K, M; Z,) = Z>,

Hr(K,M; Zr) = 0 for r ^ 6 and any odd prime p.

Using the duality with respect to Zλ and Zv, we have

Hr(K, M; Z2) = 0 for r < 6, HQ(K, M; Za) = Z2,

Hr{K,M; ZP) = 0 for r <i 6 and any odd prime />.

From the universal coefficient formula, we get

Hr{K, M; Z) = 0 for r < 6, HQ{K,M; Z) = Z2.

Because of the relative Hurewicz theorem, we obtain

hence

τr5(M) = Z2.

Thus (6.8) is exactly the second invariant of M(O(2)).
Define in the singular complex S{K) the following relation of equivalence

(p): Two simplices σjt and σj2 (q £: 4) in S(iΓ) are equivalent by p if and only
if the mappings fγ and /a of the standard ^-simplex ΔQ in K coincide up to
the 3-skeleton of Δq. It is then well known (definition of the Postnikov system)
that the quotient complex S(K)/p can be identified (up to homotopy) to
S(K{Z,,2)).

Let w be a 4-dimensional cochain in S(K) with values in Z, with the
following property: If two 4-simplices σ\Ύ and σ4

fo are p-equivalent, then

uKσtt - Ufa*) = d(fltft) € τr,{K) (6. 9)

It is obvious that such cochains do exist. Take arbitrarily the value of w on
some representative of any />-class, and compute the value of w on any other
simplex of the class according to (6.9). Consider now the 5-skeleton P5 of the
"base" K(Z2,2). We can extend the map of P 5 to K already given on the 3-
skeleton to the 4-skeleton (because of msiK) = 0). Let Λ be such an extension.
The extension of fx to the 5-skeleton gives rise to an obstruction cocycle ajλ

€ C5(K{Z>2,2): Z). This cocycle depends on the extension fΎ. But I claim that
the cocycle,

-does not depend on the particular extension /> In fact, if we replace fλ by
an other extension/2, we have

hence, according to (6.9)

ccfι - δlfSiw)] = α/ s - δ[/i*(«>)], (6.10)
cohomology class of this cocycle does not depend on the particular choice
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of the cochain w : Suppose we replace the cochain w by another cochain Ίϋ*
satisfying also

w(σ4

fl) - w(σ4

2) = d<fltft).

Then the difference w — w takes the same value of any couple of 4-simplexes

σ£ and σ4

ΐ2 which are p-equivalent, hence w — w is a 4-dimensional cochain
u in the base space K(ZZ, 2). And we get

(afl -ffSw) - (afl -Λ* Bw) = &u.

It is readily seen that the cohomology class of afl —fι*8w is nothing but the
Eilenberg-Mac Lane invariant, as defined in [14], with the use of a minimal
complex. Using such a minimal complex, and taking the lifting Λ for which
w = 0, we get into the original definition of the Eilenberg-Mac Lane invariant
k5 as an obstruction.

&τi —/i*(δw;) = k is a representative cocycle of the invariant k5. Let us
compute its image p*k in S(K). On any 5-dimensional simplex σ5 in S(K), we
have <p*k, σ5 > = < k,p*(σ5) > = < α, -f*(δw), p*(σ5) > for any lifting/.
But if we take the lifting / already given by σ5 in S(K), we have α/σ5) =
0, hence p*k = - 8w.

The cochain ίί; plays the role of a transgression cochain (it is obvious
that w restricted to the fiber of P gives the fundamental cocycle). It should
be observed that the Eilenberg-Mac Lane invariant k and the image by
transgression of the fundamental cocycle are of opposite signs.

The relation p*k = - Sw leads

iv = (l/2)δp(7) = 0 mod 2. (6.11)

Obviously, w is a cocycle mod 2. We denote by {w} the cohomology class
mod 2 determined by w. There are two possibilities in the value of g*{w}:

(A) C/o(2)Wi2 or (B) UocvWr + Uo^
2. In the case (A), we have zΓ= {w}. In

the case (B), we replace {w} by {w} = {zi;} + 0)2; namely z> = {^}.7) In both

cases, therefore, we can find a cocyle w mod 2 satisfying (6.9) and v = -{V}-.

LEMMA 6. 3. One can choose a mapping g2 of (T/"6)β ίo K instead of gτ in
(6.4), satisfying the following conditions

^*(7) = Wa(6), (6.12)

g2*(w) = X"/(W gwew X € Z*(F6 Z). (6.13)

PROOF. Suppose gx*w = X3 Φ X gx \ (F6)4 is a mapping induced by a map-
ping /i, namely ^i =/i/i. <7I*M; is a cocycle, since ^i is defined over (F6)5

we can find a mapping / a of the 4-skeleton of K(Z2f 2) to K in such a way
that its induced mapping g2 =/2ft of (F6)4 to ϋΓ satisfies the following condi-

7) Since/i and/ 2 coincide on the 3-skeleton of K(Z2, 2), the added term ( O 2 does

not affect at all the formulae (6.9), (6.10) and (6.11). The cocycle (Γ)a is zero on any
4-dimensional spherical cycle.
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tions,

(6.9) leads the relation,

gx*W — g.z*w = h*(fι*w —f-2*w)

= ΛWi,Λ)

- d(Ah,f2h)

= Xo - X,

namely

Taking coboundary, the obstruction cocycle to extend g2 over (Fβ)5 is given
by

= 0,

with respect to integer coefficients. Hence g2 can be extented over (F6)5.
Since g% is not changed on (F6)3, the relation (6.12) holds for #2 as for #!.
From the construction of g2, we have g2*w = X which is the second relation.

7. T 2̂ in F 6 .

THEOREM 7.1. // there is an integral class {X} € H\V$ Z) such that

(SqιW*(®)Ϋ = Wi(g) {X} mod 2 (7.1)

where the right side of (7.1) is the cup-product by the natural pairing

then Wa(©) is realizable by a submanifold in F 6 .

PROOF. Using Lemmas 6.2 and 6.3, the obstruction class to extend the

mapping gg2 of (F6)5 to M(O(2)) over the whole manifold F s is given by the
following formula,

)* + gS

= 0.

Therefore we can construct an extension of gg2 over F 6 which is denoted by
H: F 6 -> Λf(O(2)). It follows from the Lemma 6.3 that
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Thus our theorem is a direct consequence of Thorn's fundamental theorem
which is stated in section 1.

When VQ is orientable, then the above theorem leads the following result:

THEOREM 7.2. In an orientable manifold F6 the Wι class of any vector
bundle is realizable.

PROOF. In the orientable manifold F6, using the formula of iterated
square operations (see J. Adem [5]), we have the following relation,

as Wi(Vb) = 0 in Fβ, where Wi(VQ) is the TΓi-class of the tangent bundle on
F6(see W.T. Wu[lβJ). Consequently the equation (7.1)

has always a solution X = 0.
Examples of non-orient able manifolds of dimension 6. We shall show that

(7.1) holds for each generator of cobordism group mod 2 in dimension 6,
which are denoted by (i), (ii) and (iii) in section 3. It is easily seen by a direct
calculation that

(Sq'W2(i)y = 0.

Hence we can take X = 0 for manifold (i), Pίβ).
For the manifold (ii), P(4) x P(2), we have

TΓs(ii) =

Hence we get

Putting X = fti4 which is an integral class, we obtain (7.1).

For the manifold (iii), JP(2) x P(2) x P(2), we have
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3

W/rn) = 2 W + Σ *<**
1 /Φ.7

Consequently we get

= 0.

Hence we can also take X = 0.
No examples are known of a non-orientable F6 in which W2 is not

realizable.

CHAPTER III

SPECIAL MANIFOLDS

8. Totally Realizable Manifolds.
In the following, © denotes any commutative ring. In particular, Z and

Zp denote the ring of integers and the ring of integers modulo p as usual,
where p is a prime number. Let M be a real compact differentiate manifold.
If every homogeous class of the cohomology ring H*(M; (#) is realized by a
compact submanifold which is not necessarily connected, then we say that
the manifold M is totally realizable for the coefficient ring (8.

For example, an ^-sphere Sn and more generally a product space of
spheres, Sm x Sno- x x Sn* is totally realizable for Z2 but not for Zp(p > 2)
and Z. Now we consider the following manifold. Let S be a sphere of
dimension ^ 2 and let q be the symmetric transformation of S with respect
to a hyperplane which determines its equater. Then q is a homeomorphism
of S onto itself changing its orientation. We denote by x a point of S and
denote by / the unit interval. In a product space S x I, we identify a point
(x, 0) with (q(x), 1) and denote by L the manifold which is thus obtained. It
is easily seen that L is a sphere bundle over a circle S1 with G = {1, q} as its
structural group. We denote by s and s1 the fundamental classes of H*(S Z2)
and H*(SL Z2) respectively. Let i be an inclusion map of S into L and let
7r be the projection of L onto S1. Then we have an isomorphism,

H*{L; Z2) ~ H*(S Zύ ® fi*(ff ^ )

by a similar argument to Lemma 6.1, Chap. II. Non-trivial elements of
H*(L, Z2) are
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where / is the findamentaJ cocyle of L. They εfcre all realizable by compact
connected manifolds: L, Sx (a fiber over #<E S-), jy x Si (y is a point on the
equator of S) and a point of Z, respectively.

A real projective space Pin) of dimension n is totally realizable for Z>,
because a non-trivial cohomology class of each dimension is realized by a
linear subspace of corresponding codimension. In a similar way, we can see
that a complex projective space PC{n) of complex dimension n is also totally
realizable for Z>.

9. Complete Intersections of Hyper surfaces.
Let M and V be real compact differentiate manifolds of dimension n + r

and n respectively. Suppose V is imbedded in M by a differentiate map.
A set of all normal vectors on V in M makes a fiber bundle over V with
an r-dimensional vector space as fiber. It is well known that this fiber
bundle is isomorphic to an open tubular neighborhood N(V) of V which consists
of all normal geodesies with sufficiently small distance fron V. We shall
call a sub.nanifoJd of codimension 1 in M a non-singular hypersurface in some
generalized sense of that of the projective space. We consider r non-singular
hypersurfaces HΊ. H«. . . . . , Hr in M which are in general position, that is
to say, each point x of Hλ Π H> Π Π Ά in M has a neighborhood U in
which local coordinates xL, , #.»+r with Λ; as its center are defined and
U Π Hi is given by xn+i = 0. Suppose F/4 is such an intersection and we call
it a complete intersection 8 ) of non-singular hypersurfaces Hu H~, , Hr.

THEOREM 9.1. The Stiefel-Whitney characteristic classes of normal bundles
over a complete intersection Vn of non-singular hypersurfaces in M are alt
realizable by submanifolds.

PROOF. The normal bundle decomposes into r real line bundles, each
of which is induced by the corresponding hypersurface Hi{χ^i^r). It&

characteristic class hi is the restriction of the cohomology class hi which is

dual to the homolcgy class of Hi. The total Stief el-Whitney class of the
normal bundle N is given by the'following formula,

= PΠα+ hi
L i

r

= Π (1 + hi),

8) This definition is esseni ially due to F. Hirzebruch, Proc. Int. Congress of Math..
(Amsterdam) Vol. 111(1954), pp. 457-473.
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ίi,...,'*

Let D be the duality operator of Poincare-Veblen. We have

D(hi) = hi ()Vn

= DHi Π Vn
= ffioF, (9.2)

Therefore each hi is realizable by submanifoJd in Vn. We have already
known in section 1 that a product of realizable classes is also realizable. On

the other side 2 *<i ^h *s a class in the totally realizable manifold

M. Hence, it is realized by a submanifold Hfc in M. By the same way as

(9.2), W*(N) = 2 (^i ••*"/>„ is realizable in F».

Consider the restriction of the tangent bundle of M over the submanifold
Vn. Since Wi(M) are all realizable in M, it the follows that the Stiefel-
Whitney classes (Wt(M))rn are realizable for 0<Sz</ι, The restriction of
the tangent bundle of M over Vn is a Whitney sum of the tangent bundle
of Vn and the normal bundle over Vn in M. Thus, using the Whitney duality,
we get the following relation,

Xa+β=iWΛ(N)Wβ(Vn) = Wi(M)vn, (9.3)

for 0 ̂  a ^ r, O^β^n and O ^ f ^ w + y.

LEMMA 9.1. Let V be a submanifold in a totally realizable manifold M.
If one of two fiber bundles, the normal bundle or the tangent bundle over Vn

has Stiefel-Whitney classes which are all restrictions of some classes in M, then
so does the other.

PROOF. Characteristic classes of one fiber bundle in (9.3) can be solved
with respect to those of the other. Suppose Wa(N) are all restrictions of

classes Wa in M. Then Wβ(Vn) are all polynomials in W<*{N) and Wt(M)vn.
Since Wa and Wt(M) can be realized by submanifolds in the totally realizable
manifold M, polynomials in them are also realizable in M. On the other
side, polynomials of Wβ(Vn) in Wa{N) and Wt(N)vn are restrictions of cor-
responding polynomials in Wa and Wt(M). Hence Wβ{Vn) are also realizable.

THEOREM 9.2. A complete intersection Vn of non-singular hypersurfaces in
a totally realizable M for Z£ has the tangent bundle whose Stiefel-Whitney
classes are all realizable.

PROOF. It is seen in the proof of theorem 9.1 that W*{N) are all
restrictions of classes in M. Our theorem is a direct consequence of lemma
9.1.
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