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Introduction

We know several results on the realization of cohomology classes by sub-
manifolds in a compact differentiable manifold [2,3]. A fundamental theorem
by R. Thom [3] shows that the realizability of cohomology classes can be
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reduced to existence of a mapping with certain properties (see section 1).

It is quite natural to ask whether the Stiefel-Whitney classes are
realizable by submanifolds. There are two ways to attack this problem.
‘The first one is to use Schubert varieties in a Grassmann manifold. It gives
rather general information about the problem in vector bundles. The second
one is to find directly a map satisfying the requirements of Thom’s fun-
damental theorem. It can be applied to the Stiefel-Whitney classes of any
vector bundles and it depends on the study of a homotopy type of a cell
complex M(O(k)). Thus we can use this method successfully for low dimen-
sional classes.

In Chapter I, we define induced Schuber! subvarieties and obtain a series
of necessary conditions for realizability of the Stiefel-Whitney classes of
vector bundles over a compact differentiable manifold, calculating the coho-
mology class of a singular locus. If the dimension of the manifold is equal
to the codimension of the singular locus, then a sufficient condition for the
classes to be realizable is stated as follows: The cohomology class of the
singular locus with respect to integer coefficients vanishes.

In Chapter II, we discuss the realization of the Stiefel-Whitney classes
of vector bundles over a compact differentiable manifold, using the canonical
isomorphism from cohomology group of base space onto that of total space
and the Steenrod Square operations. We compute the second k-invariant of
M(O(2)) and obtain a rather strong sufficient condition in order that W, of
a vector bundle over V; is realizable by a submanifold. In particular, any W,
of a vector bundle of an orientable manifold V; is realizable.

In the last Chapter, we consider complete intersections of non-singular
hypersurfaces, in which any W; is realizable by a submanifold.

The author wishes to express his gratitude to Professors S.S. Chern
and R. Thom for their interests and instructions while engaged in this work.
He also wishes to thank Professor E.Spanier for his valuable suggestions
and discussions.

CHAPTER I

REALIZATION OF THE STIEFEL-WHITNEY CLASSES
BY INDUCED SUBMANIFOLDS

1. Preliminaries.

Let ©® be an #n-vector bundle over a finite cell complex with any closed
subgroup G of the orthogonal group O{n) as its structural group. Itis induced
from an N-universal bundle Ag¢, over a classifying space Bg ., for instance,
a Grassmann manifold G,,» for a sufficiently large integer N (see Steenrod
[1]). Suppose S¢,» be an associated (# — 1)-sphere bundle to A¢.. Combining
Si,, and Ag ., one can make an associated closed #n-cell bundle Ag,n where
S¢.n is the boundary. Shrinking Sg, into a point, we get a cell complex
M(G, n) corresponding to the subgroup G of O(n).
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Since Be,. is a differentiable manifold, it has a simplicial subdivision.
We can assume that the diameter of each simplex is so small that it is
contained in a coordinate neighborhood. Let & be an z-cell of fiber in the

fiber bundle Ae .. We take all cells of the form & X & for any simplex o in
B ,. They give a cellular subdivision of Ag¢ » up to its boundary S¢.,. Define

a cochain isomorphism @e,. 0f C{(Bsn; Z,) onto C**(A¢,, Sen; Z,) by the
formula,

@en(c) (o X b) = c(a)
for any cochain ¢ € C(Bg; Z.,) and for 7 =0. This induces the canonical
isomorphism @7, H'Ben; Z;) ~H"*"(A¢n, Ben; Z:). Let lg, be the unit
class of H*(Ben; Z,). H(M(G,n); Z,) is generated by @¥ ,(1¢,») = Ue,» Wwhich
is called the fundamental class of M(G, n).

If G = O(n), then we denote Agn Ben and M(G,n) by Aow, Bowm and
M(O(n)) respectively.

Let K be a topological space and let # be an element of H*X; Z,). We
say that u is realizable fcr G < O(n), if there is a mapping f: K— M(G, n)
such that # =f* U;, Suppose F, is a submanifold of dimension 7 in a
compact differentiable manifold M of dimension 7 = 7 and of class C=. Let
7 be the imbedding F,<M. If an element z of H, (M ; Z,) is the image of the
fundamental class of F,, then we say that z is realized by the submanifold
F..

FUNDANENTAL THEOREM (THOM). A cohomology class u of
HYM ; Z,) is realizable for the group G < O(n)if and only if the dual homo-
logy class z of u is realized by a submanifold F, of dimension r and the fiber
bundle of normal vectors on F, in M has the group G as its structural group
(see [2]).

A sum of two realizable classes is not necessarily realizable. Their cup-
product, however, is realizable (see [2,3]). All the above statements are valid
for integer coefficients if M is orientable.

It is well known that the Grassmann manifold has a cellular subdivision
by the Schubert varieties, where variety means a set defined by a system of
algebraic equations, which may have singular locus. The Stiefel-Whitney
class W; of dimension j is defined as a cohomology class with coefficients in
Z,, determined by the Schubert class

{0,...., 0,1,....,1}.
J
It coincides with the class of obstruction cocycle of a field of (n —j+ 1)-
frames over the j-skeleton of Gy~ We can see that any 1-dimensional coho-
mology class in a manifold is realizable. Hence W, is necessarily realizable.

Now we mention the following important relation due to Thom [4],
between W; of the N-universal bundle over Bs, and the Steenrod square-
operation Sq';

SQ'UG,n = W/Us,n
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=gk, W;for 0Sj<n. (1.1
Let f be a mapping of a finite cell complex Z into Bg, which induces an #-
vector bundle &* over L. The Stiefel-Whitney class W,/&") is given by

W, = WS

Let @%- be the canonical isomorphism of ©" defined in the same way as @j ,,.
Suppose B, be an associated (# — 1)-sphere bundle to &", which can be
regarded as the boundary of an associated #-cell bundle &". @%. is the
isomorphism of HY(L; Z,) onto H"*Y(&" Bn; Z,). Putting f*Ug, = Us =
Wa(S"), (1.1) leads immediately to the relation,

S¢Uszn = WHE&") Us»

= gL W,(E"), 1.2)

for0sj<n

Suppose F, be a subvariety of a compact differentiable manifold M,.,,
with a singular subvariety F,, of dimension r; < 7, F,, denotes a singular
subvariety in F,, of dimension r, < n and so on. The sequence F,, D F,, D>

..ends by F,, after finite repetitions. The transversality theorem? says
that for any differentiable mapping f of a compact differentiable manifold V., to
Moy, there exists @ mapping which is homotopic and arbitrarily near to f and
also transversally regular with respect to Fr > F,y D Fy, D....D F,, (see Thom
[5,17].

2. Subvarieties Corresponding to W;.

Suppose V, be a compact differentiable manifold of dimension 2, and
suppose €™ be an m-vector bundle over V, Then we have a mapping f of
Va into a Grassmann manifold G, » such that the induced bundle is €™

W: in Gn ~is realized by the Schubert variety [N—1,N—1,...., N—1,

7

N, ....,N] = F.. By the transversality theorem, there exists a differentiable
mapping f; which is homotopic to f and transversally regular with respect to
singular subvarieties of [N —1,....,N—1, N, ....,N]. Therefore W:(G™) is

realized by the subvariety® f; 1(F) whlch we call an induced Schubert variety.
It has a singular subvariety S, which is a realization of /*{0, ...., 0, 2 , 2}

i+ 1

= Sf and S, has a singular subvariety {S,}* which corresponds to f*{0,

, 0, 3, ..,u} [{S.}*]* and so on.® Thus we can say that S} is the

i+ 2
first obstruction to the realization of W;(€™) by an induced Schubert variety.
[{S:}*]* is the second one. Hence we get the idea of higher obstructions.

1) When F, has no singularity, the transversality theorem is given in [2,
Theorem 1. 6]. Its proof in general case is found in [5, Chap. II, Theorem 1] and [17].

2) We use the term of subvariety for a subset defined by a system of algebraic
equations, which may have singularities, and also its inverse image by a differentiahle
map.

3) See [5,Chap. II.
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If S¥ vanishes'then the Schubert variety becomes an actual manifold. This
idea is the main tool of this section and section 4.

According to Chern’s paper [6], we have several relations for multipli-
cation of the Schubert classes. For the sake of brevity, we denote {0, ....,

0,ax,...., an) by {ax, ...., an}. We have {0} = 1. Put {a} =0 if a < 0. Then
the following formula holds: o '
{ar, ...., au} {0}y =3{ar + b, ...., an+ b.} 2.1)

where the sum extends over all partitions of & satisfying the conditions that

a;+ by = a4, 2 b; =b. We have also the relation,
=k
i{a:}, {a, -1}, .... {aa—n+ 1}
_ {a:+1} A{a:}

{ay, ...., an) o o 2.2)
{a, +n—1} {a}
Put {j} = W,. Then (2.1) leads to
> WiWis=0 1<k=n @.3)
0sIsk

(2.3) shows that W, can be solved in W, Using (2.2), it can be seen that
any Schubert classes are polynomials in W; since we have

Wl = Wl
Wy= Wi+ W,
Ws =W+ Ws (2.4)

W4 = I’Vx4 + W.-.le + sz + W4
W5 = W15 + W22W1 + W/'.?I’V12 + W5,
and so on.

Now we shall consider the realization of W, by the induced Schubert
variety without singularity which gives a method to solve realizability of
W.. The first obstruction is the class {0, ....0,2,2,2}. Usmg (2.2),  we obtain
that

42 {1 {0y
{0, ..... 0,2,2,2} = {3y {2} {1}|. (2.5)
{4y {38y {2}

Substitute (2.4) in (2.5), we get the relation,
{O, ..... 0, 2, 2, 2} = W2W4 + W:a?'-

If an induced Schubert variety is a submanifold, then its singularity
vanishes. Hence we get the result:

THEOREM 2.1. If W.G™) is realizable by the induced Schubert submanifold,
then we have

WAC™) W(E™) = (W5(Em))2. (2.6)
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In the same way, the first obstruction of realization of Wi(€™) = f* {0,
0,1,1,1} by the Schubert manifold is given by the following formula
{0,....,0,2,2,2 2} = Ps
which is the Pontrjagin class of dimension 8 and is a cohomology class with
integer coefficients. Using (2.2) we have
{2}y {1} 1 0 ‘
(8 2 {1y 1
{4 {3 {2} {1}
{6} {4 {3} {2}
Substituting (2.4) in (2.7), we obtain
Ps = W3W5 + W42, mod 2.

Thus, in order that W5(€™) is realizable by the induced Schubert submanifold,
it is necessary that

ey

P = 2.7)

Wi(€m) Wy(Em) = (W,(Em)2. 2.8

This result can be generalized for any Stiefel-Whitney class Wy, (€™) of
odd dimension.

THEOREM 2.2. If W.;1(€™) is realizable by the induced Schubert sub-
manifold, then we have

Pyyen(€™) =0 (integer coefficients) 2.9
and
Wz(j+1)~1(@m) Wz(j+1)+1 (@m) = (I’Vﬂt(ﬁl)(@m))2 m0d 2-

Proor. By definition we have {0,....,0,2,....,2} = Py;+1y and
Py (€™ = f*Pyc;i1y which vanishes. Thus the first part of Theorem follows
immediately.

Let 1 be a canonical mapping of the real Grassmann manifold Gn,»
into the complex Grassmann manifold Cn,~ and let C. be the Chern class of
dimension 2%.

W.T. Wu [7] proves that

l*Czk = (Wk)2 mod 2
and
*Cyu = (— D¥? Pp + (1/2) 8Un—

2j+1

where 2= 2(j+ 1) and U3 = 2 W: Wys-i+3. It follows that
im0
25+1

A12)80 -1 = /25 (2 We Wes-is0) 2.10)

i=0
= (1/2)8 Wiz + WiWisue + ... +Waser Wassr).
We have the relations (Wu [9]),
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S¢W; =W, W; + {i _1'_ 1}Wi+|,

qu W4j+3 = W1W4;+37
Sq' (WiWisiz) = Wi Wias,
Sq* (Wa W) = Ws Wi,
S(Il (Ws W4j) = W; W4,1+1,
Substituting these formulae into (2.10), we obtain
1/2)8Uw-, = Wasrr Wages mod 2,
which leads to the second part of our theorem.

Theorem 2.2 might be generalized for W.,;, but we have no general
formula to compute it. If #» < 6, then the both sides of (2.6) vanish. Hence
it holds necessarily. Similarly (2.9) holds necessarily if n < 4(k + 1).

3. Examples.

P(i) denotes an i-dimensional real projective space. The cobordism group
N6 mod 2 of real compact manifolds of dimension 6 admits as generators
(see Thom [2]),

(i) P(6),
(i) P@) x P2),
(iii) P2) x P(2) x P2).
THEOREM 3.1. The relation
Ws + W,W, =0 mod 2 3.1)
holds for manifolds of type (i), and not for manifolds of types (il), (iii).

Proor. We denote by Wyi),...., the j-th Stiefel-Whitney classes of
manifolds of types (i), .... It is well known that the total Stiefel-Whitney
Class of P(7) is given by

W(P@E) = (1 + h)t+?

where £ is the generator of the cohomology ring H*(P(i); Z,).
In the case (i), we have

W) = (Z)w =,

witi) = (L)rs = w,

wii) = (Dne = ne
Therefore it follows that
(Ws(i))* = hs = h*h*
= WAD)W.().
In the case (ii), we denote by &, and h, the generators of cohomology
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ring H*(P(4); Z,) and H*(P(2); Z,) respectively. We have tae total Stiefel-
Whitney classes,
W(P4) =1+ hy + kit
W(P2)) =1+ hs + B2
It follows that
Wz(ll) =R’ + hlhzy
Wi(ii) = hih?,
Wil) = m*.
Thus we get
(W3(ii))2: 1200,
Wz(ii)W4(ii) = (h* + hiho)hyt
= Ith,® + hh..
Therefore we have
(W5'ii))? &= Wa(ii) W(ii).

In the case (iii), let %, h. and %; be generators of cohomology rings of
first, second and third factors in P(2) x P2) x P(2). We have the total Stiefel-
Whitney classes

W(P(2) =1+ i+ h®
Thus it follows that
3
Wiil) = > hi* + > Ry,
1

i#J

Wy'iil) = X hithy + hhohs,

i
Wi(iii) = > hht + > .
% (i,4,k)

Thus we get

(Wsiid))2 = D Atk + h2hathst

i+
= h*hyhs,
W,(iii) W,(iii) = 6h2h,%hs* = 0.
Hence, we obtain the result,
(W(iii))? = W.(iii) Waiii).
Any other manifold else belongs to the trivial type, for which the theorem

always holds.
The cobordism group N® mod 2 of real compact manifolds of dimension 8

admits as generators,
i PO,
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(i) P(6) x P(2),

(i) F@4) x P(4),

(iv) P4) x P@2) x P(2),

(v) P(2) x P(2) x P(2) x P2).
The first class of singularity of W; is the Pontrjagin class P; =0, since
Pontrjagin -classes are multiplicative and since they are trivial in any real
projective space. Thus any cobordism class of real compact manifold of
dimension 8 contains a manifold in which the first class of singularity in an
induced Schubert variety of W, vanishes. By the same argument any cobord-
ism class of dimension 4/%Z + 1) contains a manifold in which the first class
of singularity in an induced Schubert variety of Wyks: vanishes. (On the
contrary, we don’t have a corresdonding result for the Stiefel-Whitney class
Wa as it is easily seen in Theorem 3.1.)

ReMARK. (1) Equivalence in the sense of cobordism does not conserve
the realizability by the induced Schubert submanifold of cohomology classes.
For example, a complex projective plane PC(2) and P(4) belong to the same
coberdism type mod 2 because every corresponding Stiefel-Whitney numbers
of both manifolds are equal. We have, however, P(PC(2)) 0 and P,(P(4))
= 0, therefore W; is realizable in P(4) and is not in PC(2) (see sec. 4).
(2) Theorem 3.1 shows that the method of the induced Schubert manifold is
negative for the cases (ii), (iii) of cobordism types mod 2 of dimension 6.
For any differentiable map V;— R;(5-dimensional Euclidean space), the
critical variety has at least one singular point, if V; belongs to classes (ii),
(iii).

4. A Sufficient Condition.

Let V. and M,., be compact differentiable manifolds of dimensions # and
7 + r respectively. Suppose F, be a compact subvariety® in My., which may
have some singularities. Let f be a differentiable mapping of V., into Mpus,.
Using the transversality theorem and the assumption about dimensions of
manifolds, we can take a mapping of Vi into M,., which is sufficiently near
and homotopic to f, satisfying following conditions :

(1) It is a transversally regular mapping with respect to F, and its
singularities, that means, in particular :

(2) Its image intersects F, in regular points.

(3) The inverse image of F, is a set of isolated points.

Without loss of generality, we assume that f is such a mapping as far as
the induced homomorphism of homology groups is concerned.

Using the above property (2), we construct tubular sets N,, with respect to
singular loci F,, for 1 <k =: which do not contain at all the image points
of f. Ny, is defined as the set of all points of normal geodesics of F;, of length
pr. which we call the diameter of N;,. Let N,, be a tubular set of F;, by means
of normal geodesics of length p,, putting 7 = 7. Define a tubular neighborhood

4) See footrote 2 of section 2.
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N(F,) of F, as a union of all N,, (=0, ....,7). We denote its boundary by
T(F.). We can take p,, such that p,, is sufficiently small to p,..,. It makes
the cellular subdivision of N(F,) simple, namely the cellular subdivision
stated in section 1 can be applied for N(F,) successively from lowest dimension.
We can construct a neighborhood deformation retraction of 7(F;) in M(F,) by an
induction in %, using a deformation along normal geodesics in a neighborhood
of T(F,). Put A = Mu., — N(F,). Obviously A is a neighborhood deformation
rectract in Mu.,. Using a triangular subdivision of Ma,.,, wWe can construct
a cellular subdivision of M., compatible with that of N(F,).

We consider the problem to compress f into A in the sense of Spanier-
‘Whitehead (see [8]). F, denotes also the chain determined by the subvariety
F, and D denotes the homomorphism of chain groups to cochain groups by
taking intersection numbers in integer coefficients.

LEMMA 4.1. If we have f*DF, = 0 with respect to integer coefficients, then
we get [¥Vie F, =0, where o means an intersection of chains.

Proor. It follows from the condition of our lemma that
DF, nf*Vn :f*(f*QFr ﬂ Vn)
:f *(O ﬂ Vn)

namely
Fro f*Vn = DFr ﬂf*Vn
= 0.

The main theorem in this section is the following :

THEOREM 4.1. Suppose M., be simply connected and F, be a compact
subvariety. Let [ be a mapping of Vi into Musr. If we have f*DF, = 0 with
respect to integer coefficients, then f is compressible into A.

Proor. Let M; be the i-skeleton of May.,. The theory of compression
by Spanier and Whitehead [8] tells us the following: Suppose A U M;_, is
simply connected, =2 and dim(M; — A) = 7. Let f; be a mapping of V, into
(A U M;, A). Let j; be the inclusion map (A U M;, A) c(AUM;, A U M._,).
Then we get the following diagram,

I rr
(AU M:;, A U Mi_)—7(A U M;, A) — w(Va).
The first obstruction to compressing f; into A |J M;-, is defined by
2(f) = ZiA U M;, A; 7(Va)). 4.1)
If z:;(/;) = 0, then f; is compressible into A | M;_,.

We have 7#(Vs) = 0 for » < { < n + r. Hence we get z:(f;) = 0 for such 7.
Therefore f can be compressed successively into A |J My. z.(fs) is a critical
obstruction. On the other side, we can find a deformation d; (0 <¢ <1) of
AU Mu_, in My, leaving T(F,) fixed in such a way that the image of d;
does not intersect at all with F,. Therefore if f, is compressed into A U
Ma,_;, dfa—y which is homotopic to f is the required compression. We want
to show 2za(fu) = 0 under the assumption f*DF, = 0.
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We know 7*(Vy) ~ H*V.) (the Hopf's mapping theorem). Excising the
interior Af of A from (My,.,, A) because of the neighborhood retraction of A
in M,.,, we get the following result,

Zn(A U Mn, A; W"(Vn)) = Zn(Mn+r, A H H"(Vn))

= ZuN(F;), T(Fy); H*(V»))

PN(Fr

~ ZFy; L& H Vy)

= Hy(Fr; L® HYV»)

= L& H"(Va),
where L is a local system corresponding to the orientation of the normal
bundle over F,. All groups of L are isomorphic to Z. From (4.1) we have

2n(fa) =1 win

=X (Unr,p) € H(Va)

= X DF,)

= QUn,
where v, is the fundamental cocycle of V, and a is an integer. It follows
that

S¥(DF,) (Vi) = DFE(f«Va)

= If«(Va), F)

= a’
where I( ) denotes an intersection number. Lemma 4.1 shows that a = 0.
Hence we get za(f,) = 0.

Since My, is simply connected, so is M,-, if » =3, because a homotopy
of a closed curve into a constant mapping can be compressed into M,_,. By
the same reason, A\ M,_, is simply connected, if » =3. Moreover we can
assume that in the cellular subdivision of N(F,), any 1-cell is in T(F).
Hence, A U Mn-, is still simply connected if z = 2. Thus the conditions of
the Spanier-Whitehead’s theorem about compression are satisfied. Namely,
J« is compressed into A | Mn-, for n = 2.

Proof of our theorem is given except for » = 1. In this case, however,

any closed path is deformed intc a point outside of F,. Thus the the rem is
completely proved.

THEOREM 4.2. Le! f be a differentiable mapping of V of dimension < n
into a simply connected manifold Muy.,, and let Fs be a subvariety i1 My,
which has the singular locus F,. If f[*DF, =0, then f*DFs is realizci by a
non-singular submanifold induced from F; by f.

Proor. If the dimension of V is less than #, our theorem is obvious.
It is sufficient to consider the case where the dimensicn of V is exactly equal
to n. From theorem 4.1 and the property (1) in the beginning of this sectin,
there is a differentiable mapping which is homotopic tof, transversally regular
with respect to Fs and has no image points in F,. The inverse image by this
mapping is the required manifold.
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COROLLARY 4.1. If-n < 2( + 1) then Wi(€™) can be realized by an induced
Schubert submanifold. >
Proor. Put Muy= Gny, DF;=(0,...., 0,1,....,1) and DF, = (0, ....,
0,2,....,2), where ( ) means a Schubert cochain. 7*DF, is of dimension
i+ 1
2( + 1). Hence it is obviously 0. From theorem 4.2, we get the result.
COROLLARY 4.2. Wi(G"™(Vyi+vy)) 2s realized by an induced Schubert submani-
fold, if (0, ....0,2,....,2) =0 in integer coefficients.

COROLLARY 4.3. Waai(G™(Vi+1y) is realized by an induced Schubert
submaifold, if Piw.p (C™(Viwsen)) = 0 in integer coefficients.

CHAPTER II

REALIZATION OF THE STIEFEL-WHITNEY CLASSES BY
THE CONSTRUCTION OF MAPPINGS

5. A Necessary Condition.
Let € be an m-vector bundle over a compact differentiable manifold V.
We denote by W:(€) the i-th Stiefel-Whitney characteristic class.

THEOREM 5.1. If Wi(€) is realizable by a submanifold in V., then the
class (Wai+1(€))? belongs to the ideal generated by W.,:(€).

Proor. From the result stated in section 1, we can see that there is a
mapping f of V, into M(O(27)) such that

Uy = Wa(€), (5.1)
where U,; deaotes the fundamental class of M(0O{2i)). It also follows that
Sq'U,; = ¢1§,2L W.. (5.2)

Using (5.1), we get
PEWA(C) = /@l W
= f* Sq' Us:
= Sq' f*U.;
= Sq 'Wau(€).
Taking square in the sense of cup-product, we obtain
(S(IIWzi(@»z =f*(<p2,2iW1)2
=/*(Us W7)
=/*(Ux) fH(Ux(W))?

5) 'If singularities of an induced Schubert variety vanish, we call it an indu-ed
Schubert manifold.
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= Wzi((g)f*(g’é,ztwi)z

, = ng(@)qf(';(Wl(CS()‘)“‘ (5.3)

Using Wu’s formula [9], we get
(SgWu(E) = (Wi(€) Wui(€)) 4 (Wai1(€))? (5.4)

(5.3) and (5.4) prove our theorem.

The condition of theorem 5.1 is necessarily satisfied if # < 2(; + 1). For
n < 2(i + 1), itis obvious that Wyu+n(€) = 0. For n = 2( + 1), the Poincaré-
Veblen’s duality shows the decomposition. The simplest example is the case
of Wi(€). If Wi(E) is realizable by a submanifold in V,, then we have
(W5(€))2 = W€} X}, which holds necessarily if #» < 6.

THEOREM 5.2. If Wa.us(®) is realizable by a submanifold, then
(Wi(G) Wi ..(8))2 belongs to the ideal generated by Was (€) if iis even and
(Sq* Wyi+1(€))? belongs to the ideal if i is odd.

Proor. From the same argument as (5.3), it follows that

(qu(miﬂ(@))z = Wzi+1(@)¢:§ (W'(@))z (5.5)

Using Wu’s formula, we obtain

S Wots(®) = Wi®)Waroi®) + {7 T} WG War )

24 .
+ {2’} Wi (G). (5.6)
If 7 = 2k, then we have

{25;1} =1 mod 2,

() {40 moa>
Substituting these values in (5.6), we get
Sq2 Wi s1(€) = Wo(€) Wit (€) + Wi(E) Wi 1(€).
From (5. 5) it follows that

(W](@) W2i+2(@))2 = (W2"+1((‘§))~
If £ =2k + 1, then we have

{2;‘} _ {2(2k2+ 1')}, =1 mod 2

hence, we obtain
Sq* Wi +1(€) = W @)W 11(6) + Wi(€) Wit €) + Wairs(€)
= Wo€) Wi +1(€) + Sq*Wai +»(€).
From (5.5) it follows that
(Sq! Waiso(€))2 =0 (Wai41(€)).
ReMARK. (1) Theoremes 5.1 and 5.2 hold not only for the Stiefel-Whitney
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classes but also for any classes which satisfy the squaring formula by Wu:

STW. = ;}{"_’;”_I}W,-,Wm.

(2) For large 7, Theoren 5.1 takes a little more detailed form; if W,:(€)
is realizable, then it follows that
(W;ai-n-lc((‘g))z = (W2i+1(@))r
for 1=k<2/—-1.
We will give an example of a tangent bundle with a non-realizable class

W.. This is the tangent bundle of the manifold P = P(2) x P(4) x P(5). Itis
easily seen that

W(P2) =14+ h,+ h?

W(P4)) =1+ h: + bt

W(P(5) =1 + hs* + hst.
Then the Stiefel-Whitney classes of the above product manifold are given by

WAP) = h* + hs? + hih.,

Wi(P) = hs*hi + hi*h, + hs*hs,
consequently

(W3(P))? = hsth? + hi*hs? + hsth,?

= hyth? + hsth2
On the other side, any classes of HYP; Z.,) are sums of the following

elements;

hqzh'zz, hlzhzh.:, h12h327

bt Rahihs, hihohst, Rk,

hit, RiBhs, hlhs?, hhs?, Bt
H*(P; Z,) is a free commutative ring over Z, generated by h,, &, and h; with
relations k. = h® = hs® = 0. Possible forms of the right side in the equation,

(W3'P)2 = Wi(P) {X} mod 2 (5.7
are sums of the following elements;

U1 = hi*ha*hs?,

u; = h*h.hs?,

u3 = hi*hst,

v, = hi*h.t + hh3hs?,

v: = hi*RShs + hihaths?,

v3 = R*hhs® + hihthst,

vy = hi*hohs® + hihsb,

w; = h?ht 4+ hoths?,

w, = hy*hlhs + hihyths + Bk

’
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ws = h?ha*hs + hihPhs® + h2hst,
wy = hxzh’ihs3 + h1h22h33 + h;hss,

W5 = hxzkil + hlhzh34.
It is easily shown that

hithst = wys + v +

namely
hih* =0 mod (u,, u, us, vy, v, U3 vy,
wy, Wi wi, Wi w;) =M
and
hhst = ws + wy + v1 + bkt
= ws + w + vy + wy + hath?
namely

hzzhs4 = hxzhz" = h24h32.
Since h.,*hs? appears only in w,, it does not belong to M. Consequently, (5.7)

has no solution, that is to say, (Ws(P))*=+0 (W.(P)), which implies that
W.(P) can not be realized by a submanifold.

6. On the Spaces K(Z,,2; Z, 4; k%) and M(O(2)).
Now we shall consider the condition of Theorem 5.1 for W,. Our theorem
can be stated as follows; if WyQ) is realizable then

(W3(€))* = (WE)),
that is to say, we can find a cohomology class {X} mod 2 of dimension 4,
satisfying

(Ws(€))? = W,€) {X} mod 2. (6.1)

Suppose the base space of € is a manifold of dimension 6. It is known

that K(Z,,2) and M(O(2)) are of same 4 type. Let f be the canonical mapping
of M(O(2)) to K(Z,,2). When we extend the homotopy inverse f of f from 4-
skeleton to 5-skeleton, obstruction is given by the Eilenberg-MacLane in-
variant which is an element of H*Z,, 2; 7,(M(O2)))). Let ¢ be the fundamen-
tal cocycle of K(Z, 2). The invariant generates the kernel of the homo-
morphism f* of H¥Z,,2; Z) to H5(M(O(2)); Z). Here we notice that =, (M(O(2)))
=Z. H¥Z,2; Z) is a cyclic group of order 4 generated by (1/4)8p(:) where p
is the Pontrjagin square and HP(M(O(2)); Z) is a cyclic group of order 2.

The kernel of /* is generated by (1/2)8p(¢) which is exactly the invariant (see
Thom [2] and Eilenberg-Mac Lane [10]).

We construct a mapping % of Vs to K(Z,, 2) such that
h*y = WyE). ©

6) Let « be a 2-cell of K(Z,,2) which gives the fundamental cycle. Define 2| (V)1
as a constant mapping. Extend % over (Vg): in such a way that each 2-simplex ¢ of

Vs goes to u in a degree which is equal to Wi(()(e2) mod 2. Since we have sW,(§) =
0, & can be extended over (Vg)3, namely over V.



106 H. SUZUKI

Since K(Z,, 2) = PC(c) has a simplicial subdivision, -we can assume that 7
is simplicial. According to Eilenberg-Mac Lane’s paper [10], the obstruction
to extend the mapping f 7% of the 4-skeleton (Vi), of V; to M (O{2)) over the
5-skeleton (Vg); is given by

1*((1/2)8p(e)) = (1/2)8p(f*e)

= (1/2)8p(W2). (6.2)

From Wu’s paper [11], we have

P(Wy) = (Py)s + OWi*W.) mod 4,
where (P,), is the Pontrjagin class P, reduced mod 4 and @, is a natural
homomorphism of Z, to Z, defined by the exact sequence,

é.
0 Zs— Zs— Zy = 0.
Let p,, w, and w, be representative cocycles of P,, W, and W. respectively.
It follows that C
1/2)p(W>) = (1/2(8(ps + 2(w *w»))
= {8(7/{)12“}2)}
=0. (6.3)
We denote by K = K(Z,,2; Z,4; k%) a space with my(K)~Z,, w(K)~Z,
7wi(K)=0 for {+2 4 and with the Eilenberg-Mac Lane invariant k° In
particular, killing homotopy groups of dimension i =5, we can get the cell
complex K(Z.,2; Z,4; k5(M(0O{2)))), which is regarded as the second step of
the Postnikov system of M(O(2)).
Now suppose k? = k3(M(O(2))) = (1/2)0p(¢). Because of (6.3), we obtain.
the following diagram of mappings;
.

—_—

0
(Ve)s —K %é M(0O(2)), (6.4)
g

where the notation means that spaces of both sides are of same 5 type.

B
LEMMA 6.1 The following relation holds :
HYK; Z,) ~ H¥Z,, 2; Z,) HNZ,4; Z,). (6.5)
Proor. According to the theory of Eilenberg-Mac Lane complexes,
HX(Z. 2;Z,)and H*Z,5; Z,) are generated by cohomology operations of their
fundamental cocycles ¢ and » respectively (see [13, Exp. 16]). We have the
exact cohomology sequence of (K, K\ Z,4)) with coefficient group Z,:
7* 7* S*
— H(K,K(Z,4); Z,)—> H (K ; Z,)—~ HZ,45 Z,) ~H'*(K,K(Z,4); Z.)—. (6,6)
Let p* be the homomorphism of H*(Z,,2:Z,) to H*(K, K(Z,4); Z,) induced by
the projection p: (K, K(Z, 4)) — (K(Z,, 2),0). From the definition of k-invariant,



ON THE REALIZATION OF THE STIEFEL-WHITNEY CLASSES 107

we have p*k> = —&*». By our assumption, we get k® = 1/2)8p(e) = 2(1/4)dp(e)
=0 mod 2. Hence we have 8*» = 0. Because of the exactness of (6.6), there

is a class v € HYK ; Z,) such that 7* » = ». Since the inclusion map ¢ com-
mutes with any cohomology operations, 7* is a homomorphism onto. (6.6)
causes the following exact sequence;

j* Z*

0 H(K,K(Z,4); Z,) > H(K; Z;) > H(Z,4; Z,)—~0. (6.7)
Consequently, 7* is onto, that is to say, the fiber K(Z 4) is totally non-
homologous to zero with respect to Z, It is obvious that H¥(Z., 2; Z.,) is of
finite dimension over Z, for all 1 = 0.

Define a homomorphism g* of H*(Z, 4; Z,) into H*(K; Z.) in such a way
that ¢*» = » which induces the homomorphism whole over H*(Z, 4; Z.), taking

corresponding cohomology operations of » and » respectively. Obviously we
have 7*¢* = 1. Hence our lemma is a direct consequence of Chap. III, Prop.
8 by Serre [13].

LEMMA 6.2. There is v of Lemma 6.1 such that the second K-invariant
of M(O(2)) is given by
KS(M(O2))) = (Sg«)* +¢v  mod 2, (6.8)
where | = p*., :
PrOOF. . is a generator of H%K; Z,). In the diagram (6.4), we have
g*e = Uyen.
It is"known that H{M(O?2)); Z.) = Z{UZy), Usw(W1)?). From Lemma 6.1, we
have HYK; Z,) = Z,(s)*, v). Since g* is an isomorphism of H'K;Z,) to

Hi(M (0(2)); Z,) for all i <4, including cup-products, there is a unique »
satisfying the relation,

9V = @ Wit = Use(Wh)"
Obviously we have
g*(Sq%e )* = (Sq'Uy )"
It is known that k® generates the kernel of ¢g* i e., {k°’} = ¢g*~1(0). We can
see from Lemma 6.1 that HS(K; Z,) = Zy((0)?, (Sg'c )?, v, Sg*v). It follows that
g0 ) = (W) =0,
g*(Sqt ¢ P = Ul Wiz %0,
7C V) = Uy W2,
¥ (Sq*v) = Sg*(Uogz W:*)
= Ugy Wi + Uppy Wit
* 0.

Therefore only possible generator of g*~1(0) is given by
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(Sgle )t + ¢ w.

We denote again by K the mapping cylinder of ¢ in (6.4). K contains
M(O(2)) which is denoted simply by M, here. M is closed in K. From the
-exact cohomology sequence, it follows that

H(K,M; Z,) =0 for r <6, H(K,M; Z,) = Z.,
H(K,M; Z,) =0 for r <6 and any odd prime p.
Using the duality with respect to Z, and Z,, we have
H(K,M; Z,) =0 for »r <6, H(K, M; Z,) = Z,,
H(K,M; Z,) =0 for » <6 and any odd prime p».
From the universal coefficient formula, we get
H(K,M; Z)=0 for r < 6, H(K,M; Z) = Z..
Because of the relative Hurewicz theorem, we obtain
(K, M) = Z,,
hence
w(M) = Z,.
Thus (6. 8) is exactly the second invariant of M(O(2)).

Define in the singular complex S(K) the following relation of equivalence
(p): Two simplices ¢}, and ¢}, (g =4) in S(K) are equivalent by p if and only
if the mappings f; and f, of the standard g¢-simplex A? in K coincide up to
the 3-skeleton of A% It is then well known (definition of the Postnikov system)
that the quotient complex S(K)/p can be identified (up to homotopy) to
S(K(Z., 2)).

Let w be a 4-dimensional cochain in S(K) with values in Z, with the
following property : If two 4-simplices o and o}, are p-equivalent, then

w(ot) — wlaty) = dif,,f) € m(K) 6.9)

It is obvious that such cochains do exist. Take arbitrarily the value of w on
some representative of any p-class, and compute the value of w on any other
simplex of the class according to (6.9). Consider now the 5-skeleton P? of the
“base” K(Z,,2). We can extend the map of P5 to K already given on the 3-
skeleton to the 4-skeleton (because of 73(K) = 0). Let f; be such an extension.
‘The extension of f; to the 5-skeleton gives rise to an obstruction cocycle «ay,
€ C(K(Z.,2): Z). This cocycle depends on the extension f;. But I claim that
the cocycle,
Az — Sl *(w)l

does not depend on the particular extension f;. In fact, if we replace f; by
an other extension f,, we have

an — ag = 8d(f,1>)-
hence, according to (6.9)
an — [fi*(w)] = an — [f*w)], (6.10)
€hT cohomology class of this cocycle does not depend on the particular choice
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of the cochain w : Suppose we replace the cochain w by another cochain w
satisfying also

wiot) — wlot) = dif,fy).

Then the difference w — w takes the same value of any couple of 4-simplexes.
o}, and of, which are p-equivalent, hence w —w is a 4-dimensional cochain

% in the base space K(Z.,2). And we get

(af, —fl*SW) bl (afl *—fl* 81/7) = du.
It is readily seen that the cohomology class of ay, —f;*8w is nothing but the-
Eilenberg-Mac Lane invariant, as defined in [14], with the use of a minimal
complex. Using such a minimal complex, and taking the lifting f; for which
w =0, we get into the original definition of the Eilenberg-Mac Lane invariant.
k5 as an obstruction.

oy, —fi*(0w) = k is a representative cocycle of the invariant k®. Let us
compute its image p*k in S(K). On any 5-dimensional simplex ¢° in S(K), we:
have < p*k, 0% > = < k, pi(0®) > = < ay —f*(dw), p«(c®) > for any lifting 1.
But if we take the lifting f already given by ¢° in S(K), we have ay{c®) =
0, hence p*k = — dw.

The cochain w plays the role of a tramnsgression cochain (it is obvious
that w restricted to the fiber of P gives the fundamental cocycle). It should
be observed that the Eilenberg-Mac Lane invariant k and the image by
transgression of the fundamental cocycle are of opposite signs.

The relation p*k = — dw leads
w=(1/2)6p(¢)=0 mod 2. (6.11)
Obviously, w is a cocycle mod 2. We denote by {w} the cohomology class:
mod 2 determined by w. There are two possibilities in the value of g*{w}:
(A) Uoey W2 or (B) Uoy Wit + Uosw®. In the case (A), we have » = {w}. In
the case (B), we replace {w} by {w} = {w} + (¢)2, namely » = {w}.” In both
cases, therefore, we can find a cocyle w mod 2 satisfying (6.9) and » = {w}.
LEMMA 6.3. One can choose a mapping g, of (Vis)s to K instead of g, in-
(6.4), satisfying the following conditions ;
g:4(¢) = WyE), (6.12)
9:*(w) = X for given X € ZXVs; Z). (6.13)
Proor. Suppose gi*w = Xy = X. ¢1|(Vs)s is 2 mapping induced by a map-
ping fi, namely g, =fih. g*w is a cocycle, since g, is defined over (V5)s.

we can find a mapping f; of the 4-skeleton of K(Z,,2) to K in such a way-
that its induced mapping g, = f.h of (V) to K satisfies the following condi--

7) Since fi and f; coincide on the 3-skeleton of K(Z,, 2), the added term (1) does

not affect at all the formulae (6.9), (6.10) and (6.11). The cocycle (¢)? is zero on any-
4-dimensional spherical cyc'e.
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tions,
711 (Ve)s = 921 (Vo)s,
d(g1,92) = Xo — X.
(6.9) leads the relation,
gr*w — g *w = BN *w —f*w)
= h*d(f 1,f-.'>
= d(f1h.f:h)
= d(g1, 9»)
=Xy — X,
namely
g w = Xp + (X — Xo)
= X.
Taking coboundary, the obstruction cocycle to extend g, over (Vi); is given
by
Z(g.) = 8(g2*w)
= 06X
=0,
with respect to integer coefficients. Hence ¢, can be extented over (V).
Since g, is not changed on (V;);, the relation (6.12) holds for g, as for g;.
From the construction of g,, we have g.,*w = X which is the second relation.
7. W.,in V.
THEOREM 7.1. If there is an integral class {X} € H Vs; Z) such that
(SaW(€))2 = Wy(€) {X} mod 2 7.1)
where the right side of (7.1) is the cup-product by the natural pairing
Z;QZ—~Z,
then W.C€) is realizable by a submanifold in V.

Proor. Using Lemmas 6.2 and 6.3, the obstruction class to extend the
mapping gg, of (Vs)s to M(O(2)) over the whole manifold V; is given by the
following formula,

9K (M(O2))) = g.5(Sq" ¢ )* + 92*(ev)
= (Sg'g:* ¢ }* + g:* 0 9% v
= (Sg'W(©))* + W(€) {X}
= 0.
Therefore we can construct an extension of gg, over Vs which is denoted by
H: Vi— M(OQ®)). It follows from the Lemma 6.3 that
H¥Upery = gz:gb*UO(z)

= 2%
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= Wz(@)
Thus our theorem is a direct consequence of Thom’s fundamental theorem
which is stated in section 1.

When Vj; is orientable, then the above theorem leads the following result :

THEOREM 7.2. In an orientable manifold Vi the W, class of any wvector
bundle is realizable.

Proor. In the orientable manifold -V;, using the formula of iterated
square operations (see J. Adem [5]), we have the following relation,
(SQIW.’(@))Z = Sq3(Sq1W_,(@))
= Sg*(Sq*Sq' W.(€))
= Wi(Vs)(Sg*Sq'W.(€))
=0,
as Wi(Vs) = 0 in Vs, where Wy(V;) is the W-class of the tangent bundle on
Vi(see W.T. Wu[16]). Consequently the equation (7.1)
(SgW(@))2 = (Wx(E))*
= W«€) {X}
has always a solution X = 0.

Examples of non-orientable manifolds of dimension 6. We shall show that
(7.1) holds for each generator of cobordism group mod 2 in dimension 6,
which are denoted by (i), (ii) and (iii) in section 3. It is easily seen by a direct
calculation that

(Sg'W.(1))* = 0.
Hence we can take X = 0 for manifold (i), P(6).

For the manifold (ii), P(4) x F(2), we have

Wi(ii) = hy + k.,
W.(ii) = mh: + B2,
Wi(ii) = hih.?,
(Ws(iD))* = hi*h.*
=0,
(WLGDPE(WL(i))? = b2l + ha)t
= ht*h?.
Hence we get

Il

(S*W.(iD))* = (WH(ii) X W.,(i1))* + (W(iD))*
= h14h32.
Putting X = h,* which is an integral class, we obtain (7.1).

For the manifold (iii), P(2) x P(2) x P(2), we have

3
Wiiii) = > ks,
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3
Wyiil) = 2 kit + ) ik,
1

i=j

Wiiii) = > hithy + hihahs,

i%=j

(W3(iil))! = hi*h.*hs?,

(é} hﬂ) (2 hi*h;? )

i=j

|

W) W(iid)?

B2 ho2 st
Consequently we get
(Sg*W(iii))* = (WLID)*(W(iii))* + (Wi(iii))*
= 0.
Hence we can also take X = 0.

No examples are known of a non-orientable V; in which W, is not
realizable.

CHAPTER III
SPECIAL MANIFOLDS

8. Totally Realizable Manifolds.

In the following, & denotes any commutative ring. In particular, Z and
Z, denote the ring of integers and the ring of integers modulo p as usual,
where p is a prime number. Let M be a real compact differentiable manifold.
If every homogeous class of the cohomology ring H*(M; &) is realized by a
compact submanifold which is not necessarily connected, then we say that
the manifold M is totally realizable for the coefficient ring ©.

For example, an n-sphere S* and more generally a product space of
spheres, S™x S™x ....x S™ is totally realizable for Z, but not for Z,(p > 2)
and Z. Now we consider the following manifold. Let S be a sphere of
dimension =2 and let ¢ be the symmetric transformation of S with respect
to a hyperplane which determines its equater. Then ¢ is a homeomorphism
of S onto itself changing its orientation. We denote by x a point of S and
denote by I the unit interval. In a product space S x 7, we identify a point
(x,0) with (g(x),1) and denote by Z the manifold which is thus obtained. It
is easily seen that Z is a sphere bundle over a circle S* with G = {1, ¢} as its
structural group. We denote by s and s! the fundamental classes of H*(S; Z)
and H*(S!; Z,) respectively. Let 7 be an inclusion map of S into L and let
7 be the projection of L onto S!. Then we have an isomorphism,

HXL; Z,) ~ HXS; Z) ® HXS'; Z.)

by a similar argument to Lemma 6.1, Chap. II. Non-trivial elements of
H*(L, Z,) are;
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_ 1, a*(sh), (@*)7is, 1= (*)71s Un*(s).
where [ is the findamental cocyle of Z. They dre all realizable by compact

connected manifolds: Z, S, (a fiber over x € S)), ¥ x S; (¥ is a point oa the
equator of S) and a point of L, respectively.

A real projective space P(n) of dimension #z is totally realizable for Z,,
because a non-trivial cohomology class of each dimension is realized by a
linear subspace of corresponding codimension. In a similar way, we can see

that a complex projective‘space PC(n) of complex dimension # is also totally
realizable for Z..

9. Complete Intersections of Hypersurfaces.

Let M and V be real compact differentiable manirolds of dimension # + »
and 7 respectively. Suppose V is imbedded in M by a differentiable map.
A set of all normal vectors on V in M makes a fiber bundle cver V with
an r-dimensional vector space as fiber. It is well known that this fiber
bundle is isomorphic to an open tubular neighborhcod N(V) of V which consists
of all normal geodesics with sufficiently small distance fron V. We shall
call a submanifold of codimension 1 in M a non-singular hypersurface in some
generalized sense of that of the projective space. We consider 7 non-singular
hypersurfaces H,. H......, H, in M which are in general position, that is
to say, each point x of A, N H.(\ .... | H, in M has a neighborhood U in
which local coordinates x,,...., X..» with x as its center are defined and
U (| H; is given by xu.: = 0. Suppose V. is such an intersection and we call
it a complete tntersection ® of non-singular hypersuriaces H,, H., ...., H,.

THEOREM 9.1. The Stiefel-Whitney characleristic classes of normal bundles
over a complete intersection Vi of non-singular hypersurfaces in M are all
realizable by submanifolds.

Proor. The normal bundle decomposes into 7 real line bundles, each
of which. is induced by the corresponding hypersurface Hi(1=i=<7). Its

characteristic class &: is the restriction of the cohomology class %; which is

dual to the homolcgy class of H;. The total Stiefel-Whitney class of the
normal bundle N is given by thelfollowing formula,

w = [Ma+ ]
= ﬂ: (1 + hi),

1

Wi(N) = ( 2 h;,....h},‘)rn
1yeenip

8) This definition is esseniially due to F. Hirzebruch, Proc. Int. Congress of Math..
(Amsterdam) Vol. III(1954), pp.457-473.
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= > iyl 9.1)
i1yee g
Let D be the duality operator of Poincaré-Veblen. We have
D(hi) = hi N Va
= DH; \ Va
= H; o V. 9.2)

Therefore each 7#; is realizable by submanifold in V,. We have already
known in section 1 that a product of realizable classes is also realizable. On

the other side 2 Bi,....hi is a class in the totally realizable manifold
i1y ,ik

M. Hence, it is realized by a submanifold Hy; in M. By the same way as

9.2), We(N)= X (hiy. ... hi)v, is realizable in V.

(i1ye oonTge)
Consider the restriction of the tangent bundle of M over the submanifold
Va. Since Wi(M) are all realizable in M, it the follows that the Stiefel-
Whitney classes (W:(M))r, are realizable for 0<:=<n, The restriction of
the tangent bundle of M over V, is a Whitney sum of the tangent bundle
of V, and the normal bundle over V, in M. Thus, using the Whitney duality,
we get the following relation,

Sai8=iWa(N)Wp(Vy) = Wi(M)v,, 9.3)
for0=a=sr, 0ZB<nand0=<i<n-+7r

LEmMMA 9.1. Let V be a submanifold in a totally realizable manifold M.
If one of two fiber bundles, the normal bundle or the tangent bundle over V.,
has Stiefel-Whitney classes which are all restrictions of some classes in M, then
so does the other.

Proor. Characteristic classes of one fiber bundle in (9.3) can be solved
with respect to those of the other. Suppose W«(N) are all restrictions of

classes W, in M. Then Wx(V,) are all polynomials in Wa(N) and Wi(M)v,,.
Since W. and Wi(M) can be realized by submanifolds in the totally realizable
manifold M, polynomials in them are also realizable in M. On the other
side, polynomials of Wg(V.) in Wa(N) and W«(N)v, are restrictions of cor-

responding polynomials in W, and W;(M). Hence Wpg(V,) are also realizable.

THEOREM 9.2. A complete intersection V. of non-singular hypersurfaces in
a totally realizable M for Z. has the tangent bundle whose Stiefel-Whitney
classes are all realizable.

Proor. It is seen in the proof of theorem 9.1 that W.(V) are all

restrictions of classes in M. Our theorem is a direct consequence of lemma
9.1
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