ON THE REALIZATION OF THE STIEPEL-WHITNEY CHARACTERISTIC CLASSES BY SUBMANIFOLDS

BY

HARUO SUZUKI*

(Received March 1, 1958)

TABLE OF CONTENTS

INTRODUCTION

Chapter

I. REALIZATION OF THE STIEFEL-WHITNEY CLASSES BY INDUCED SCHUBERT MANIFOLDS

- 1. Preliminaries
- 2. Subvarieties Corresponding to *Wi*
- 3. Examples
- 4. A Sufficient Condition

II. REALIZATION OF THE STIEFEL-WHITNEY CLASSES BY THE CONSTRUCTION OF MAPPINGS

- 5. **A** Necessary Condition
- 6. On The Spaces $K(Z_2, 2; Z, 4; \mathbf{k}^5)$ and $M(O(2))$
- 7. W_2 in V_6

III. SPECIAL MANIFOLDS

- 8. Totally Realizable Manifolds
- 9. Complete Intersections of Hypersurfaces

REFERENCES

Introduction

We know several results on the realization of cohomology classes by submanifolds in a compact differentiable manifold [2,3]. A fundamental theorem by R. Thorn [3] shows that the realizability of cohomology classes can be

^{*} The material of this work was submitted in partial fulfillment of the requirement for the degree of Doctor of Philosophy in the University of Chicago, 1957 and it was supported in part by the National Science Foundation under Grant 3462 of the United States.

reduced to existence of a mapping with certain properties (see section 1).

It is quite natural to ask whether the Stiefel-Whitney classes are realizable by submanifolds. There are two ways to attack this problem. The first one is to Use *Schubert varieties* in a Grassmann manifold. It gives rather general information about the problem in vector bundles. The second one is to find directly a map satisfying the requirements of Thom's fundamental theorem. It can be applied to the Stiefel-Whitney classes of any vector bundles and it depends on the study of a homotopy type of a cell complex $M(O(k))$. Thus we can use this method successfully for low dimensional classes.

In Chapter I, we define *induced Schubert subvarieties* and obtain a series of necessary conditions for realizability of the Stiefel-Whitney classes of vector bundles over a compact differentiable manifold, calculating the coho mology class of a singular locus. If the dimension of the manifold is equal to the codimension of the singular locus, then a sufficient condition for the classes to be realizable is stated as follows: The cohomology class of the singular locus with respect to integer coefficients vanishes.

In Chapter II, we discuss the realization of the Stiefel-Whitney classes of vector bundles over a compact differentiable manifold, using the canonical isomorphism from cohomology group of base space onto that of total space and the Steenrod Square operations. We compute the second k-invariant of $M(O(2))$ and obtain a rather strong sufficient condition in order that W_2 of a vector bundle over V_6 is realizable by a submanifold. In particular, any $\bar W_2$ of a vector bundle of an orientable manifold V_6 is realizable.

In the last Chapter, we consider complete intersections of non-singular hypersurfaces, in which any W_i is realizable by a submanifold.

The author wishes to express his gratitude to Professors S. S. Chern and R. Thom for their interests and instructions while engaged in this work. He also wishes to thank Professor E. Spanier for his valuable suggestions and discussions.

CHAPTER I

REALIZATION OF THE STIEFEL-WHITNEY CLASSES BY INDUCED SUBMANIFOLDS

1. Preliminaries.

Let \mathfrak{S}^n be an *n*-vector bundle over a finite cell complex with any closed subgroup *G* of the orthogonal group $O(n)$ as its structural group. It is induced from an *N*-universal bundle $A_{G,n}$ over a classifying space $B_{G,n}$, for instance, a Grassmann manifold $G_{n,N}$ for a sufficiently large integer N (see Steenrod [1]). Suppose $S_{G,n}$ be an associated $(n-1)$ -sphere bundle to $A_{G,n}$. Combining $S_{G,\pi}$ and $A_{G,n}$, one can make an associated closed *n*-cell bundle $A_{G,n}$ where $S_{G,n}$ is the boundary. Shrinking $S_{G,n}$ into a point, we get a *cell complex* $M(G, n)$ corresponding to the subgroup G of $O(n)$.

Since $B_{\mathcal{G},n}$ is a differentiable manifold, it has a simplicial subdivision. We can assume that the diameter of each simplex is so small that it is contained in a coordinate neighborhood. Let b be an n -cell of fiber in the fiber bundle $\overline{A}_{G,n}$. We take all cells of the form $\sigma \times b$ for any simplex σ in $B_{G,n}$. They give a cellular subdivision of $\overline{A}_{G,n}$ up to its boundary $S_{G,n}$. Define a cochain isomorphism $\varphi_{G,n}$ of $C^{i}(B_{G,n}; Z_2)$ onto $C^{n+i}(\overline{A}_{G,n}, S_{G,n}; Z_2)$ by the formula,

$$
\varphi_{G,n}(c)(\sigma\times b)=c(\sigma)
$$

for any cochain $c \in C^{i}(B_{G,n}; Z_2)$ and for $i \ge 0$. This induces the *canonical* isomorphism $\varphi_{G,n}^*$: $H^i(B_{G,n}; Z_2) \approx H^{n+i}(A_{G,n}, \overline{B}_{G,n}; Z_2)$. Let $1_{G,n}$ be the unit class of $H^*(B_{G,n}; Z_2)$. $H^n(M(G, n); Z_2)$ is generated by $\varphi_{G,n}^*(1_{G,n}) = U_{G,n}$ which is called the *fundamental class of M(G, n).*

If $G = O(n)$, then we denote $A_{G,n}$, $B_{G,n}$ and $M(G, n)$ by $A_{O(n)}$, $B_{O(n)}$ and $M(O(n))$ respectively.

Let K be a topological space and let u be an element of $H^n(X; Z_2)$. We say that u is *realizable* for $G \subset O(n)$, if there is a mapping $f: K \rightarrow M(G,n)$ such that $u = f^* U_{G,n}$. Suppose F_r is a submanifold of dimension r in a compact differentiable manifold M of dimension $m \geq r$ and of class C^* . Let *i* be the imbedding $F_r \subset M$. If an element z of $H_r(M; Z_2)$ is the image of the fundamental class of *F^r ,* then we say that *z* is *realized by the submanifold Fr.*

FUNDANENTAL THEOREM (THOM). *A cohomology class u of* $Hⁿ(M; Z₂)$ is realizable for the group $G \subset O(n)$ if and only if the dual homo*logy class z of u is realized by a submanifold F^r of dimension r and the fiber bundle of normal vectors on F^r in M has the group G as its structural group* (see [2]).

A sum of two realizable classes is not necessarily realizable. *Their cupproduct,* however, *is realizable* (see [2,3]). All the above statements are valid for integer coefficients if *M* is orientable.

It is well known that the Grassmann manifold has a cellular subdivision by the *Schubert varieties,* where *variety* means a set defined by a system of algebraic equations, which may have singular locus. The Stiefel-Whitney class W_j of dimension j is defined as a cohomology class with coefficients in Z_2 , determined by the Schubert class $\{0, \ldots, 0, 1, \ldots, 1\}.$

$$
(0, \ldots, 0, \underbrace{1, \ldots, 1}_{j}).
$$

It coincides with the class of obstruction cocycle of a field of $(n-j+1)$ frames over the *j*-skeleton of $G_{n,N}$. We can see that any 1-dimensional cohomology class in a manifold is realizable. Hence W_1 is necessarily realizable.

Now we mention the following important relation due to Thom [4], between W_j of the *N*-universal bundle over $B_{G,n}$ and the Steenrod square operation *Sqj*

$$
Sq^{i}U_{G,n}=W_{j}U_{G,n}
$$

94 H. SUZUKI

$$
= \varphi_{G,n}^* W_j \text{ for } 0 \leq j \leq n. \tag{1.1}
$$

Let f be a mapping of a finite cell complex L into $B_{\mathcal{G},n}$ which induces an nvector bundle \mathfrak{S}^n over L. The Stiefel-Whitney class $W_j(\mathfrak{S}^n)$ is given by

$$
f^*W_i = W_i(\mathfrak{S}^n)
$$

Let φ_{ξ}^{*} be the canonical isomorphism of \mathfrak{S}^{*} defined in the same way as $\varphi_{\xi,n}^{*}$. Suppose B_n be an associated $(n-1)$ -sphere bundle to \mathfrak{S}^n , which can be regarded as the boundary of an associated *n*-cell bundle \mathfrak{S}^n . $\varphi^*_{\mathfrak{S}^n}$ is the isomorphism of $H^i(L; Z_2)$ onto $H^{n+i}(\mathfrak{S}^n, B_n; Z_2)$. Putting $f^*U_{G,n} = U_{\mathfrak{S}^n}$ $W_n(\mathbb{S}^n)$, (1.1) leads immediately to the relation,

$$
Sq^{j}U\tilde{\epsilon}^{n} = W_{j}(\tilde{\epsilon}^{n}) U\tilde{\epsilon}^{n}
$$

= $\varphi_{\tilde{\epsilon}}^{*n}W_{j}(\tilde{\epsilon}^{n}),$ (1.2)

i

for $0 \leq j \leq n$.

Suppose F_r be a subvariety of a compact differentiable manifold M_{n+r} with a singular subvariety F_{r_1} of dimension $r_1 < r, F_{r_2}$ denotes a singular subvariety in F_{r_1} of dimension $r_2 < r_1$ and so on. The sequence $F_{r_1} \supset F_{r_2} \supset$ ends by F_{r_i} after finite repetitions. The transversality theorem¹ says *that for any differentiable mapping f of a compact differentiable manifold Vⁿ to Mn+r, there exists a mapping which is homotopic and arbitrarily near to f and also transversally regular with respect to* $F_r \supset F_{r_1} \supset F_{r_2} \supset \ldots \supset F_{r_i}$ (see Thom [5,17]).

2. Subvarieties Corresponding to W_i .

Suppose *Vⁿ* be a compact differentiable manifold of dimension *n,* and suppose \mathbb{C}^m be an *m*-vector bundle over V_n . Then we have a mapping f of V_n into a Grassmann manifold $G_{m,N}$ such that the induced bundle is \mathbb{G}^m .

W_i in $G_{m,N}$ is realized by the Schubert variety $[N-1, N-1, \ldots, N-1]$

 N, \ldots, N = F_1 . By the transversality theorem, there exists a differentiable mapping f_1 which is homotopic to f and transversally regular with respect to singular subvarieties of $[N-1, \ldots, N-1, N, \ldots, N]$. Therefore $W_i(\mathbb{G}^m)$ is realized by the subvariety²⁾ $f_1^{-1}(F_i)$, which we call an *induced Schubert variety*. It has a singular subvariety S_1 which is a realization of $f^*\{0, \ldots, 0, 2, \ldots, 2\}$ $i+1$

 S_1^* and S_1 has a singular subvariety $\{S_1\}^2$ which corresponds to $f^*\{0\}$..., 0, 3, ..., 3} = $[\{S_1\}^2]^*$ and so on.³⁾ Thus we can say that S_1^* is the $i+2$

first obstruction to the realization of $W_i(\mathfrak{G}^m)$ by an induced Schubert variety. $[{S_1}^2]^*$ is the second one. Hence we get the idea of higher obstructions.

¹⁾ When *F^r* has no singularity, the transversality theorem is given in f2, Theorem 1.6]. Its proof in general case is found in [5, Chap. II, Theorem 1] and [17].

²⁾ We use the term of subvariety for a subset defined by a system of algebraic equations, which may have singularities, and also its inverse image by a differeatiahle map.

³⁾ See [5, Chap. I].

If S* vanishes'then the Schubert variety becomes an actual manifold. This idea is the main tool of this section and section 4.

According to Chern's paper [6J, we have several relations for multipli cation of the Schubert classes. For the sake of brevity, we denote $\{0, \ldots, \}$ 0, a_k, \ldots, a_n by $\{a_k, \ldots, a_n\}$. We have $\{0\} = 1$. Put $\{a\} = 0$ if $a < 0$. Then the following formula holds:

$$
\{a_k, \ldots, a_n\} \{b\} = \sum \{a_k + b_k, \ldots, a_n + b_n\} \tag{2.1}
$$

where the sum extends over all partitions of *b* satisfying the conditions that $a_j + b_j \le a_{j+1}$, $\sum_{j=k} b_j = b$. We have also the relation,

$$
\{a_1, \ldots, a_n\} = \begin{vmatrix} \{a_1\}, & \{a_1-1\}, \ldots, & \{a_1-n+1\} \\ \{a_2+1\}, & \{a_2\} & \ldots \\ \ldots & \ldots & \ldots \\ \{a_1+n-1\} & \ldots & \{a_n\} \end{vmatrix} .
$$
 (2.2)

Put $\{j\} = \overline{W}_j$. Then (2.1) leads to

$$
\sum_{0 \le j \le k} W_j \overline{W}_{k-j} = 0 \qquad \qquad 1 \le k \le n. \tag{2.3}
$$

(2.3) shows that \overline{W}_j can be solved in W_j . Using (2.2), it can be seen that any Schubert classes are polynomials in W_i , since we have

$$
\overline{W}_1 = W_1 \n\overline{W}_2 = W_1^2 + W_2 \n\overline{W}_3 = W_1^3 + W_3 \nW_4 = W_1^4 + W_2 W_1^2 + W_2^2 + W_4 \n\overline{W}_5 = W_1^5 + W_2^2 W_1 + W_3 W_1^2 + W_5,
$$
\n(2.4)

and so on.

Now we shall consider the realization of W_i by the induced Schubert variety without singularity which gives a method to solve realizability of W_2 . The first obstruction is the class $\{0, \ldots, 0, 2, 2, 2\}$. Using $(2, 2)$, we obtain that

$$
\{0, \ldots, 0, 2, 2, 2\} = \begin{vmatrix} \{2\} & \{1\} & \{0\} \\ \{3\} & \{2\} & \{1\} \\ \{4\} & \{3\} & \{2\} \end{vmatrix} . \tag{2.5}
$$

Substitute $(2, 4)$ in $(2, 5)$, we get the relation,

$$
\{0, \ldots, 0, 2, 2, 2\} = W_2 W_4 + W_2^2.
$$

If an induced Schubert variety is a subnanifold, then its singularity vanishes. Hence we get the result:

THEOREM 2.1. If $W_2(\mathfrak{S}^m)$ is realizable by the induced Schubert submanifold, *then we have*

$$
\mathbf{W}_2(\mathfrak{E}^m) \mathbf{W}_4(\mathfrak{E}^n) = (\mathbf{W}_3(\mathfrak{E}^m))^2. \tag{2.6}
$$

In the same way, the first obstruction of realization of $W_3(\mathbb{G}^m) = f^* \{0,$ $..., 0,1,1,1$ by the Schubert manifold is given by the following formula

$$
\{0,\ldots,0,2,2,2,2\}=P_8
$$

which is the Pontrjagin class of dimension 8 and is a cohomology class with integer coefficients. Using (2.2) we have

$$
P_8 = \begin{vmatrix} \{2\} & \{1\} & 1 & 0 \\ \{3\} & \{2\} & \{1\} & 1 \\ \{4\} & \{3\} & \{2\} & \{1\} \\ \{5\} & \{4\} & \{3\} & \{2\} \end{vmatrix} . \tag{2.7}
$$

Substituting (2.4) in (2.7) , we obtain

$$
P_8 = W_3 W_5 + W_4^2, \hspace{1cm} \text{mod } 2.
$$

Thus, in order that $W_3(\mathbb{C}^m)$ is realizable by the induced Schubert submanifold, it is necessary that

$$
W_3(\mathfrak{S}^m) W_5(\mathfrak{S}^m) = (W_4(\mathfrak{S}^m))^2. \tag{2.8}
$$

This result can be generalized for any Stiefel-Whitney class W_{2j+1} (\mathfrak{F}^m) of odd dimension.

THEOREM 2.2. If $W_{2j+1}(\mathbb{G}^m)$ is realizable by the induced Schubert sub*manifold, then we have*

$$
P_{4(j+1)}(\mathbb{G}^m) = 0 \qquad \qquad (integer \; coefficients) \tag{2.9}
$$

and

$$
W_{2(j+1)-1}(\mathbb{G}^m) W_{2(j+1)+1} (\mathbb{G}^m) = (W_{4(j+1)}(\mathbb{G}^m))^2 \quad mod \ 2.
$$

PROOF. By definition we have $\{0, \ldots, 0, 2, \ldots, 2\} = P_{4(j+1)}$ and $P_{4(j+1)}$ (\mathcal{F}^n) = $f^*P_{4(j+1)}$ which vanishes. Thus the first part of Theorem follows immediately.

Let 1 be a canonical mapping of the real Grassmann manifold $G_{m,N}$ into the complex Grassmann manifold $C_{m,N}$ and let C_{2k} be the Chern class of dimension *2k.*

W. T. Wu [7] proves that

$$
1^*C_{2k} = (W_k)^2 \quad \text{mod } 2
$$

and

$$
1^*C_{2k} = (-1)^{k/2} P_{2k} + (1/2) \delta U_{2k-1}
$$

where
$$
k = 2(j + 1)
$$
 and $U_{4j+3} = \sum_{i=0}^{2j+1} W_i W_{4j-i+3}$. It follows that
\n
$$
(1/2)\delta U_{2k-1} = (1/2)\delta \left(\sum_{i=0}^{2j+1} W_i W_{4j-i+3}\right) \qquad (2.10)
$$
\n
$$
= (1/2)\delta (W_{4j+3} + W_1 W_{4j+2} + \dots + W_{2j+1} W_{2j+1}).
$$

We have the relations (Wu [9]),

$$
Sq1 Wi = W1 Wi + {i + 1 \choose 1} Wi+1,
$$

\n
$$
Sq1 Wi,j+3 = W1 Wi,j+3,
$$

\n
$$
Sq1 (W1 Wi,j+2) = W1 Wi,j+3,
$$

\n
$$
Sq1 (W2 Wi,j+1) = W3 Wi,j+1,
$$

\n
$$
Sq1 (W3 Wi,j) = W3 Wi,j+1,
$$

Substituting these formulae into (2.10), we obtain

$$
(1/2)\delta U_{2k-1} = W_{2j+1} W_{2j+3} \quad \text{mod } 2,
$$

which leads to the second part of our theorem.

Theorem 2.2 might be generalized for W_{2k} , but we have no general formula to compute it. If $n < 6$, then the both sides of (2.6) vanish. Hence it holds necessarily. Similarly (2.9) holds necessarily if $n < 4(k + 1)$.

3. Examples.

THEOREM 3.1. *The relation*

 $P(i)$ denotes an *i*-dimensional real projective space. The *cobordism group* 9ΐ6 *mod 2* of real compact manifolds of dimension 6 admits as generators (see Thom $[2]$),

\n- (i)
$$
P(6)
$$
,
\n- (ii) $P(4) \times P(2)$,
\n- (iii) $P(2) \times P(2) \times P(2)$.
\n
\n3.1. The relation

$$
W_3^2 + W_2 W_4 = 0 \quad \mod 2 \tag{3.1}
$$

holds for manifolds of type (i), *and not for manifolds of types* (ii), (iii).

PROOF. We denote by $W_i(i), \ldots$, the *j*-th Stiefel-Whitney classes of manifolds of types (i), It is well known that the total Stiefel-Whitney Class of $P(i)$ is given by

$$
W(P(i))=(1+h)^{i+1}
$$

where *h* is the generator of the cohomology ring $H^*(P(i); Z_2)$.

In the case (i), we have

$$
W_2(i) = {7 \choose 2} h^2 = h^2,
$$

\n
$$
W_3(i) = {7 \choose 3} h^3 = h^3,
$$

\n
$$
W_4(i) = {7 \choose 4} h^4 = h^4.
$$

Therefore it follows that

$$
(W_3(i))^2 = h^6 = h^2h^4
$$

= $W_2(i)W_4(i)$.

In the case (ii), we denote by h_1 and h_2 the generators of cohomology

ring $H^*(P(4); Z_2)$ and $H^*(P(2); Z_2)$ respectively. We have the total Stiefel-Whitney classes,

$$
W(P(4)) = 1 + h_1 + h_14,
$$

$$
W(P(2)) = 1 + h_2 + h_22.
$$

It follows that

$$
W_2(ii) = h_2^2 + h_1 h_2,
$$

\n
$$
W_3(ii) = h_1 h_2^2,
$$

\n
$$
W_4(ii) = h_1^4.
$$

Thus we get

$$
(W_3(ii))^2 = h_1^2 h_2^4,
$$

\n
$$
W_2(ii)W_4(ii) = (h_2^2 + h_1 h_2)h_1^4
$$

\n
$$
= h_1^4 h_2^2 + h_1^5 h_2.
$$

Therefore we have

 $(W_3'\\i>i)^2 = W_2(ii) W_4(ii).$

In the case (iii), let h_1 , h_2 and h_3 be generators of cohomology rings of first, second and third factors in $P(2) \times P(2) \times P(2)$. We have the total Stiefel-Whitney classes

$$
W(P(2)) = 1 + h_i + h_i^2.
$$

Thus it follows that

$$
\begin{array}{l} W_2(\text{iii})=\;\sum\limits_{1}^{3}{{{{h_i}^2} + \sum\limits_{i \ne j}{{{h_i}{h_j}}}}},\\ W_3(\text{iii})=\;\sum\limits_{i \ne j}{{{h_i}^2}{h_j} + {{h_1}{h_2}{h_3}}},\\ W_4(\text{iii})=\;\sum\limits_{i \ne j}{{{h_i}^2}{h_j^2} + \sum\limits_{(i,j,k)}{{h_i^2}{h_j}{h_k}}}. \end{array}
$$

Thus we get

$$
(W_3(iii))^2 = \sum_{i \neq j} h_i^4 h_j^2 + h_1^2 h_2^2 h_3^2
$$

= $h_1^2 h_2^2 h_3^2$,

$$
W_2(iii) W_4(iii) = 6h_1^2 h_2^2 h_3^2 = 0.
$$

Hence, we obtain the result,

$(W_3(iii))^2 = W_2(iii) W_4(iii)$.

Any other manifold else belongs to the trivial type, for which the theorem always holds.

The *cobordism group* \mathfrak{N}^8 *mod* 2 of real compact manifolds of dimension 8 admits as generators,

(i) $P(8)$,

- (ii) $P(6) \times P(2)$,
- (iii) $P(4) \times P(4)$.
- (iv) $P(4) \times P(2) \times P(2)$,
- (v) $P(2) \times P(2) \times P(2) \times P(2)$.

The first class of singularity of W_3 is the Pontrjagin class $P_3 = 0$, since Pontriagin classes are multiplicative and since they are trivial in any real projective space. Thus any cobordism class of real compact manifold of dimension 8 contains a manifold in which the first class of singularity in an induced Schubert variety of W_3 vanishes. By the same argument any cobordism class of dimension $4(k + 1)$ contains a manifold in which the first class of singularity in an induced Schubert variety of W_{2k+1} vanishes. (On the contrary, we don't have a corresdonding result for the Stiefel-Whitney class W_{2k} as it is easily seen in Theorem 3.1.)

REMARK. (1) Equivalence in the sense of cobordism does not conserve the realizability by the induced Schubert submanifold of cohomology classes. For example, a complex projective plane $PC(2)$ and $P(4)$ belong to the same cobordism type mod 2 because every corresponding Stiefel-Whitney numbers of both manifolds are equal. We have, however, $P_4(PC(2)) \neq 0$ and $P_4(P(4))$ $= 0$, therefore W_3 is realizable in $P(4)$ and is not in $PC(2)$ (see sec. 4). (2) Theorem 3.1 shows that the method of the induced Schubert manifold is negative for the cases (ii), (iii) of cobordism types mod 2 of dimension 6. For any differentiable map $V_6 \rightarrow R_5$ (5-dimensional Euclidean space), the critical variety has at least one singular point, if V_i belongs to classes (ii), (iii).

4. A Sufficient Condition.

Let V_n and M_{n+r} be compact differentiable manifolds of dimensions *n* and $n + r$ respectively. Suppose F_r be a compact subvariety⁴⁾ in M_{n+r} which may have some singularities. Let f be a differentiable mapping of V_n into M_{n+r} . Using the transversality theorem and the assumption about dimensions of manifolds, we can take a mapping of V_n into M_{n+r} which is sufficiently near and homotopic to f , satisfying following conditions:

(1) It is a transversally regular mapping with respect to F_r and its singularities, that means, in particular:

- (2) Its image intersects F_r in regular points.
- (3) The inverse image of F_r is a set of isolated points.

Without loss of generality, we assume that f is such a mapping as far as the induced homomorphism of homology groups is concerned.

Using the above property (2), we construct *tubular sets* N_{r_k} with respect to singular loci F_{r_k} for $1 \leq k \leq i$ which do not contain at all the image points of f. N_{r_k} is defined as the set of all points of normal geodesics of F_{r_k} of length ρ_{r_k} which we call the *diameter* of N_{r_k} . Let N_{r_0} be a tubular set of F_{r_0} by means of normal geodesics of length ρ_{r_0} putting $r = r_0$. Define a *tubular neighborhood*

⁴⁾ See footnote 2 of section 2.

 $N(F_r)$ of F_r as a union of all N_{r_k} ($k = 0, \ldots, i$). We denote its boundary by *T(Fr).* We can take ρ_{r_k} such that ρ_{r_k} is sufficiently small to $\rho_{r_{k+1}}$. It makes the cellular subdivision of *N{F^r)* simple, namely the cellular subdivision stated in section 1 can be applied for *N{F^r)* successively from lowest dimension. We can construct a neighborhood deformation retraction of $T(F_r)$ in $N(F_r)$ by an induction in *k,* using a deformation along normal geodesies in a neighborhood of $T(F_r)$. Put $A = M_{n+r} - N(F_r)$. Obviously A is a neighborhood deformation rectract in *Mn+^r .* Using a triangular subdivision of *Mn+r,* we can construct a cellular subdivision of M_{n+r} compatible with that of $N(F_r)$.

We consider the problem to compress f into A in the sense of Spanier-Whitehead (see [8]). F_r denotes also the chain determined by the subvariety *Fr* and *D* denotes the homomorphism of chain groups to cochain groups by taking intersection numbers in integer coefficients.

LEMMA 4.1. If we have $f^*DF_r = 0$ with respect to integer coefficients, then *we get f** V_n $F_r = 0$, *where* \circ *means an intersection of chains.*

PROOF. It follows from the condition of our lemma that

$$
DF_r \cap f_* V_n = f_*(f^* D F_r \cap V_n)
$$

= $f_*(0 \cap V_n)$
= 0.

namely

 $F_r \circ f_* V_n = DF_r \cap f_* V_n$ $= 0$.

The main theorem in this section is the following:

THEOREM 4.1. *Suppose Mn+r be simply connected and F^r be a compact subvariety. Let f be a mapping of* V_n *into* M_{n+r} *. If we have* $f^*DF_r = 0$ *with respect to integer coefficients, then f is compressible into A.*

PROOF. Let M_i be the *i*-skeleton of M_{n+r} . The theory of compression by Spanier and Whitehead [8] tells us the following: Suppose $A \cup M_{i-1}$ is simply connected, $i \ge 2$ and $\dim(M_i - A) = i$. Let f_i be a mapping of V_n into $(A \cup M_i, A)$. Let j_i be the inclusion map $(A \cup M_i, A) \subset (A \cup M_i, A \cup M_{i-1})$. Then we get the following diagram,

$$
\pi^i(A\,\cup\,M_i,\,A\,\cup\,M_{i-1})\rightarrow \pi^i(A\,\cup\,M_i,\,A)\rightarrow \pi^i(V_n).
$$

The first obstruction to compressing f_i into $A \cup M_{i-1}$ is defined by

$$
z_i(f_i) = f_i^* j_i^* \in Z_i(A \cup M_i, \ A; \ \pi^i(V_n)). \tag{4.1}
$$

If $z_i(f_i) = 0$, then f_i is compressible into $A \cup M_{i-1}$.

We have $\pi^{i}(V_n) = 0$ for $n < i \leq n + r$. Hence we get $z_i(f_i) = 0$ for such *i*. Therefore f can be compressed successively into $A \cup M_n$. $z_n(f_n)$ is a critical obstruction. On the other side, we can find a deformation d_i ($0 \le t \le 1$) of $A \cup M_{n-1}$ in M_{n+r} leaving $T(F_r)$ fixed in such a way that the image of d does not intersect at all with F_r . Therefore if f_n is compressed into A U M_{n-1} , d_1f_{n-1} which is homotopic to f is the required compression. We want to show $z_n(f_n) = 0$ under the assumption $f^*DF_r = 0$.

We know $\pi^n(V_n) \approx H^n(V_n)$ (the Hopf's mapping theorem). Excising the interior *A** of *A* from *(Mn+^r , A)* because of the neighborhood retraction of *A* in *Mn+r,* we get the following result,

$$
Z_n(A \cup M_n, A; \pi^n(V_n)) = Z_n(M_{n+r}, A; H^n(V_n))
$$

\n
$$
= Z_n(N(F_r), T(F_r); H^n(V_n))
$$

\n
$$
\varphi_{N(F_r)}
$$

\n
$$
\approx Z_0(F_r; L \otimes H^n(V_n))
$$

\n
$$
= H_0(F_r; L \otimes H^n(V_n))
$$

\n
$$
= L \otimes H^n(V_n),
$$

where *L* is a local system corresponding to the orientation of the normal bundle over *F^r .* All groups of *L* are isomorphic to *Z.* From (4.1) we have

$$
z_n(f_n) = f_n^* j_n^*
$$

= $f^*(U_{N(F_p)}) \in H^n(V_n)$
= $f^*(DF_r)$
= av_n ,

where v_n is the fundamental cocycle of V_n and a is an integer. It follows that

$$
f^*(DF_r) (V_n) = DF_r(f_*V_n)
$$

= $I(f_*(V_n), F_r)$
= a ,

where $I()$ denotes an intersection number. Lemma 4.1 shows that $a = 0$. Hence we get $z_n(f_n) = 0$.

Since M_{n+r} is simply connected, so is M_{n-1} if $n \geq 3$, because a homotopy of a closed curve into a constant mapping can be compressed into M_{n-1} . By the same reason, $A\bigcup M_{n-1}$ is simply connected, if $n \ge 3$. Moreover we can assume that in the cellular subdivision of $N(F_r)$, any 1-cell is in $T(F_r)$. Hence, $A \cup M_{n-1}$ is still simply connected if $n = 2$. Thus the conditions of the Spanier-Whitehead's theorem about compression are satisfied. Namely, *f_n* is compressed into $A \cup M_{n-1}$ for $n \ge 2$.

Proof of our theorem is given except for $n = 1$. In this case, however, any closed path is deformed into a point outside of *F^r .* Thus the the rem is completely proved.

THEOREM 4.2. Let f be a differentiable mapping of V of dimension $\leq n$ *into a simply connected manifold* M_{n+r} *, and let* F_s *be a subvariety i i* M_{n+r} which has the singular locus F_r . If $f^*DF_r = 0$, then f^*DF_s is realized by a *non-singular submanifold induced from F^s by* /.

PROOF. If the dimension of *V* is less than *n,* our theorem is obvious. It is sufficient to consider the case where the dimension of *V* is exactly equal to *n.* From theorem 4.1 and the property (1) in the beginning of this section, there is a differentiable mapping which is homotopic to f , transversally regular with respect to F_s and has no image points in F_r . The inverse image by this mapping is the required manifold.

COROLLARY 4.1. If $n < 2(i + 1)$ then $W_i(\mathfrak{F}^n)$ can be realized by an induced *Schubert submanifold.5)*

PROOF. Put $M_{mN} = G_{m,N}$, $DF_s = (0, \ldots, 0, 1, \ldots, 1)$ and $DF_r = (0, \ldots,$ *i*

0,2,,2), where () means a Schubert cochain. *f*DF^r* is of dimension $i+1$.

 $2(i + 1)$. Hence it is obviously 0. From theorem 4.2, we get the result.

COROLLARY 4.2. $W_i(\mathbb{G}^m(V_{2(i+1)}))$ is realized by an induced Schubert submani*fold, if* $f*(0, \ldots, 0, 2, \ldots, 2) = 0$ *in integer coefficients.*

COROLLARY 4.3. $W_{2k+1}(\mathfrak{F}^m(V_{4(k+1)}))$ is realized by an induced Schubert **submaifold, if** $P_{4(k+1)}$ ($(\mathbb{G}^m(V_{4(k+1)})) = 0$ in integer coefficients.

CHAPTER II

REALIZATION OF THE STIEFEL-WHITNEY CLASSES BY THE CONSTRUCTION OF MAPPINGS

5. A Necessary Condition.

Let \mathfrak{G} be an *m*-vector bundle over a compact differentiable manifold V_n . We denote by $W_i(\mathfrak{G})$ the *i*-th Stiefel-Whitney characteristic class.

THEOREM 5.1. If $W_i(\mathfrak{G})$ is realizable by a submanifold in V_n , then the *class* $(W_{2i+1}(\mathfrak{G}))^2$ *belongs to the ideal generated by* $W_{2i}(\mathfrak{G})$.

PROOF. From the result stated in section 1, we can see that there is a mapping f of V_n into $M(O(2i))$ such that

$$
f^*U_{2i} = W_{2i}(\mathfrak{S}), \tag{5.1}
$$

where U_{2i} denotes the fundamental class of $M(O(2i))$. It also follows that $Sq^1U_{2i} = \varphi_{G2i}^* W_1.$ (5.2)

Using (5.1), we get

$$
\varphi_{\mathfrak{G}}^* W_1(\mathfrak{G}) = f^* \varphi_{G, 2i}^* W_1
$$

= $f^* S q^1 U_{2i}$
= $S q^1 f^* U_{2i}$
= $S q^1 W_{2i}(\mathfrak{G}).$

Taking square in the sense of cup-product, we obtain

$$
(Sq1W2i(\mathfrak{C}))2 = f*(\varphi*G,2iW1)2
$$

= f^{*}(U_{2i}²W₁²)
= f^{*}(U_{2i}) f^{*}(U_{2i}(W₁))²

⁵⁾ If singularities of an induced Schubert variety vanish, we call it an *induced Schubert manifold.*

=
$$
W_{2i}(\mathfrak{G})f^*(\varphi_{G,2i}^*W_1)^2
$$

= $W_{2i}(\mathfrak{G})\varphi_{\mathfrak{G}}^*(W_1(\mathfrak{G}))^2$. (5.3)

Using Wu's formula [9], we get

$$
(Sq1W2i(\mathfrak{F}))2 = (W1(\mathfrak{F}) W2i(\mathfrak{F}))2 + (W2i+1(\mathfrak{F}))2
$$
 (5.4)

 $(5. 3)$ and $(5. 4)$ prove our theorem.

The condition of theorem 5.1 is necessarily satisfied if $n \leq 2(i + 1)$. For $n < 2(i + 1)$, it is obvious that $W_{2(i+1)}(\mathfrak{G}) = 0$. For $n = 2(i + 1)$, the Poincaré-Veblen's duality shows the decomposition. The simplest example is the case of $W_3(\mathfrak{G})$. If $W_2(\mathfrak{G})$ is realizable by a submanifold in V_n , then we have $y^2 = W_2(\mathfrak{E})\{X\}$, which holds necessarily if $n \leq 6$.

THEOREM 5.2. If $W_{2i+1}(\mathfrak{G})$ is realizable by a submanifold, then $_2(\mathbb{G}))^2$ belongs to the ideal generated by $W_{2i+1}(\mathbb{G})$ if i is even and $(Sq^1 W_{2^i+1}(\mathfrak{C}))^2$ belongs to the ideal if i is odd.

PROOF. From the same argument as (5.3), it follows that
\n
$$
(Sq^2(W_{2i+1}(\mathbb{G}))^2 = W_{2i+1}(\mathbb{G})\varphi_{\mathbb{G}}^*(W_2(\mathbb{G}))^2.
$$
\n(5.5)

Using Wu's formula, we obtain

$$
Sq^{2} W_{2i+1}(\mathfrak{E}) = W_{2}(\mathfrak{E}) W_{2i+1}(\mathfrak{E}) + \begin{Bmatrix} 2i-1 \\ 1 \end{Bmatrix} W_{1}(\mathfrak{E}) W_{2i+2}(\mathfrak{E}) + \begin{Bmatrix} 2i \\ 2 \end{Bmatrix} W_{2i+3}(\mathfrak{E}). \tag{5.6}
$$

and the

If $i = 2k$, then we have

$$
\begin{cases} 2i-1 \\ 1 \end{cases} = 1 \mod 2,
$$

$$
\begin{cases} 2i \\ 2 \end{cases} = \begin{cases} 4k \\ 2 \end{cases} = 0 \mod 2.
$$

Substituting these values in *(5.6),* we get

$$
Sq^2 W_{2i+1}(\mathfrak{E}) = W_2(\mathfrak{E}) W_{2i+1}(\mathfrak{E}) + W_1(\mathfrak{E}) W_{2i+2}(\mathfrak{E}).
$$

From (5. 5) it follows that

$$
(W_1(\mathfrak{E}) \ W_{2i+2}(\mathfrak{E}))^2 = 0 \quad \ \ (W_{2i+1}(\mathfrak{E})).
$$

If $i = 2k + 1$, then we have

$$
{2i \brace 2} = {2(2k+1) \brace 2} = 1 \quad \mod 2,
$$

hence, we obtain

$$
Sq^2 W_{2i+1}(\mathfrak{E}) = W_2(\mathfrak{E}) W_{2i+1}(\mathfrak{E}) + W_1(\mathfrak{E}) W_{2i+2}(\mathfrak{E}) + W_{2i+3}(\mathfrak{E})
$$

= $W_2(\mathfrak{E}) W_{2i+1}(\mathfrak{E}) + Sq^1 W_{2i+2}(\mathfrak{E}).$

From (5.5) it follows that

$$
(Sq^1 W_{2i+2}(\mathfrak{S}))^2 = 0 \qquad (W_{2i+1}(\mathfrak{S})).
$$

REMARK. (1) Theoremes 5.1 and 5.2 hold not only for the Stiefel-Whitney

H.SUZUKI

classes but also for any classes which satisfy the squaring formula by Wu:

$$
Sq^{t}W_{t} = \sum_{t} \left\{ \frac{i-r+t-1}{t} \right\} W_{r-t} W_{i+t}.
$$

(2) For large *i*, Theore n 5.1 takes a little more detailed form; if $W_{2i}(\mathfrak{G})$ is realizable, then it follows that

$$
(W_{2i+k}(\mathfrak{S}))^2=0 \qquad (W_{2i+1}(\mathfrak{S})),
$$

for $1 \leq k \leq 2i-1$.

We will give an example of a tangent bundle with a non-realizable class W_2 . This is the tangent bundle of the manifold $P = P(2) \times P(4) \times P(5)$. It is easily seen that

$$
W(P(2)) = 1 + h1 + h12,
$$

\n
$$
W(P(4)) = 1 + h2 + h24,
$$

\n
$$
W(P(5)) = 1 + h32 + h34.
$$

Then the Stiefel-Whitney classes of the above product manifold are given by

$$
W_2(P) = h_1^2 + h_3^2 + h_1h_2,
$$

\n
$$
W_3(P) = h_3^2h_1 + h_1^2h_2 + h_3^2h_2,
$$

consequently

$$
(W_3(P))^2 = h_3^4h_1^2 + h_1^4h_2^2 + h_3^4h_2^2
$$

= $h_3^4h_1^2 + h_3^4h_2^2$.

On the other side, any classes of $H^4(P; Z_2)$ are sums of the following elements ,

$$
h_1^2h_2^2
$$
, $h_1^2h_2h_3$, $h_1^2h_3^2$,
\n $h_1h_2^3$, $h_1h_2^2h_3$, $h_1h_2h_3^2$, $h_1h_3^3$,
\n h_2^4 , $h_2^3h_3$, $h_2^2h_3^2$, $h_2h_3^2$, h_3^4 .

 $H^*(P; Z_2)$ is a free commutative ring over Z_2 generated by h_1, h_2 and h_3 with relations $h_1^3 = h_2^5 = h_3^6 = 0$. Possible forms of the right side in the equation,

 $(W_3(P))^2 = W_2(P) \{X\} \mod 2$ (5.7)

are sums of the following elements

$$
u_1 = h_1^2 h_2^2 h_3^3,
$$

\n
$$
u_2 = h_1^2 h_2 h_3^3,
$$

\n
$$
u_3 = h_1^2 h_2^4,
$$

\n
$$
v_1 = h_1^2 h_2^4 + h_1 h_2^3 h_3^2,
$$

\n
$$
v_2 = h_1^2 h_2^3 h_3 + h_1 h_2^2 h_3^3,
$$

\n
$$
v_3 = h_1^2 h_2^2 h_3^2 + h_1 h_2^2 h_3^4,
$$

\n
$$
v_4 = h_1^2 h_2 h_3^3 + h_1 h_3^5,
$$

\n
$$
w_1 = h_1^2 h_2^4 + h_2^4 h_3^2,
$$

\n
$$
w_2 = h_1^2 h_2^3 h_3 + h_1 h_2^4 h_3 + h_2^3 h_3^3,
$$

104

$$
w_3 = h_1^2 h_2^2 h_3^2 + h_1 h_2^3 h_3^2 + h_2^2 h_3^4,
$$

\n
$$
w_4 = h_1^2 h_2 h_3^3 + h_1 h_2^2 h_3^3 + h_1 h_3^5,
$$

\n
$$
w_5 = h_1^2 h_3^4 + h_1 h_2 h_3^4.
$$

It is easily shown that

$$
h_1^2h_3^4=w_5+v_3+u_1,
$$

namely

$$
h_1^2h_3^4 \equiv 0 \mod (u_1, u_2, u_3, v_1, v_2, v_3, v_4, \nw_1, w_2, w_3, w_4, w_5) = M
$$

and

$$
h_2^2h_3^4 = w_3 + u_1 + v_1 + h_1^2h_2^4
$$

= $w_3 + u_1 + v_1 + w_1 + h_2^4h_3^2$,

namely

$$
h_2^2h_3^4\equiv h_1^2h_2^4\equiv h_2^4h_3^2.
$$

Since h_2 ^{$\cdot h_3$ ² appears only in w_1 , it does not belong to *M*. Consequently, (5.7)} has no solution, that is to say, $(W_3(P))^2 \neq 0$ $(W_2(P))$, which implies that $W₃(P)$ can not be realized by a submanifold.

6. On the Spaces $K(Z_2, 2; Z, 4; \mathbf{k}^5)$ and $M(O(2))$.

Now we shall consider the condition of Theorem 5.1 for W_3 . Our theorem can be stated as follows; if $W_2(\mathfrak{G})$ is realizable then

$$
(W_3(\mathfrak{E}))^2=0 \qquad (W_2(\mathfrak{E})),
$$

that is to say, we can find a cohomology class $\{X\}$ mod 2 of dimension 4, satisfying

$$
(W_3(\mathfrak{S}))^2 = W_2(\mathfrak{S}) \{X\} \mod 2. \tag{6.1}
$$

Suppose the base space of \mathfrak{G} is a manifold of dimension 6. It is known that $K(Z_2, 2)$ and $M(O(2))$ are of same 4 type. Let f be the canonical mapping of $M(O(2))$ to $K(Z_2, 2)$. When we extend the homotopy inverse \overline{f} of f from 4skeleton to 5-skeleton, obstruction is given by the Eilenberg-MacLane in variant which is an element of $H^3(Z_2, 2; \pi_4(M(O(2))))$. Let ι be the fundament tal cocycle of $K(Z_2, 2)$. The invariant generates the kernel of the homogle morphism f^* of $H^5(Z_2, 2; Z)$ to $H^5(M(O(2))$; Z). Here we notice that $\pi_4(M(O(2)))$ $=$ *Z. H*⁵(*Z*₂, 2; *Z*) is a cyclic group of order 4 generated by (1/4)Sp(*ι*) where p is the Pontrjagin square and $H^s(M(O(2))$; Z) is a cyclic group of order 2. The kernel of f^* is generated by $(1/2)\delta p(\iota)$ which is exactly the invariant (see Thom [2] and Eilenberg-Mac Lane [10]).

We construct a mapping *h* of V_6 to $K(Z_2, 2)$ such that

$$
h^* \iota = W_2(\mathfrak{E}).
$$
⁶

⁶⁾ Let *u* be a 2-cell of $K(Z_2, Z)$ which gives the fundamental cycle. Define $h|(V_6)$ as a constant mapping. Extend *h* over (V_6) ₂ in such a way that each 2-simplex σ_2 of V_6 goes to *u* in a degree which is equal to $W_2(\mathfrak{G})(\sigma_2)$ mod 2. Since we have $\delta W_2(\mathfrak{G}) =$ 0, h can be extended over $(V_6)_3$, namely over V_6 .

Since $K(Z_2, 2) = PC(\infty)$ has a simplicial subdivision, we can assume that h is simplicial. According to Eilenberg-Mac Lane's paper [10], the obstruction to extend the mapping $\bar{f}h$ of the 4-skeleton $(V_6)_4$ of V_6 to $M(O(2))$ over the 5-skeleton $(V_6)_5$ is given by

$$
f^*((1/2)\delta \mathbf{p}(t)) = (1/2)\delta \mathbf{p}(f^*t)
$$

= $(1/2)\delta \mathbf{p}(W_2).$ (6.2)

From Wu's paper [11], we have

$$
\mathbf{p}(W_2)=(P_4)_4+~\theta_2(W_1{}^2W_2)\qquad \quad \ \ \mathrm{mod}~~4,
$$

where $(P_4)_4$ is the Pontrjagin class P_4 reduced mod 4 and θ_2 is a natural homomorphism of Z_2 to Z_4 defined by the exact sequence,

$$
0 \to Z_2 \xrightarrow{\theta_2} Z_4 \to Z_2 \to 0.
$$

Let p_4 , w_1 and w_2 be representative cocycles of P_4 , W_1 and W_2 respectively. It follows that

$$
(1/2)\delta \mathbf{p}(W_2) = (1/2(\delta(p_4 + 2(w_1^2 w_2)))
$$

= {\delta(w_1^2 w_2)}
= 0. (6.3)

We denote by $K = K(Z_2, 2; Z, 4; \mathbf{k}^5)$ a space with $\pi_2(K) \simeq Z_2$, $\pi_4(K) \simeq Z$, $\pi_i(K) = 0$ for $i = 2, 4$ and with the Eilenberg-Mac Lane invariant k⁵. In particular, killing homotopy groups of dimension $i \geq 5$, we can get the cell complex $K(Z_{\mathfrak{m}},2; Z,4; \mathbf{k}^5(M(O\langle 2 \rangle))),$ which is regarded as the second step of the Postnikov system of *M(O{2)).*

Now suppose $\mathbf{k}^5 = \mathbf{k}^5(M(O(2))) = (1/2)\delta \mathbf{p}(\iota)$. Because of (6.3), we obtain. the following diagram of mappings

$$
(V_6)_5 \xrightarrow{\qquad g_1} K \cong M(O(2)),
$$
\n
$$
(6.4)
$$

where the notation \approx means that spaces of both sides are of same 5 type. 5

LEMMA 6.1 The following relation holds:

$$
H^*(K; Z_2) \approx H^*(Z_2, 2; Z_2) \otimes H^*(Z, 4; Z_2).
$$
 (6.5)

PROOF. According to the theory of Eilenberg-Mac Lane complexes, $H^*(Z_2, 2; Z_2)$ and $H^*(Z, 5; Z_2)$ are generated by cohomology operations of their fundamental cocycles *ι* and *v* respectively (see [13, Exp. 16]). We have the exact cohomology sequence of $(K,K(Z,4))$ with coefficient group $Z_{\scriptscriptstyle 2}$:

 i^* i^* δ^* \rightarrow *H*^{\cdot}(*K*, *K*(*Z*, 4); Z₂) \rightarrow *H*^{\cdot}(*K*; Z₂) \rightarrow *H*^{\cdot}^{\cdot}(*K*, *K*(*Z*, 4); Z₂) \rightarrow . (6,6) Let p^* be the homomorphism of $H^*(Z_2, 2:Z_2)$ to $H^*(K, K(Z, 4); Z_2)$ induced by the projection $p: (K, K(Z, 4)) \rightarrow (K(Z_2, 2), 0)$. From the definition of **k**-invariant,

we have $p^*{\bf k}^5 = -\delta^*\nu$. By our assumption, we get ${\bf k}^5 = (1/2)\delta{\bf p}(\iota) = 2(1/4)\delta{\bf p}(\iota)$ $= 0$ mod 2. Hence we have $\delta^* \nu = 0$. Because of the exactness of (6.6), there is a class $\overline{\nu} \in H^{1}(K; Z_{2})$ such that $i^{*} \overline{\nu} = \nu$. Since the inclusion map *i* com mutes with any cohomology operations, i^* is a homomorphism onto. (6.6) causes the following exact sequence

$$
0 \to H^{i}(K, K(Z, 4); Z_2) \to H^{i}(K; Z_2) \to H^{i}(Z, 4; Z_2) \to 0.
$$
 (6.7)

Consequently, i^* is onto, that is to say, the fiber $K(Z, 4)$ is *totally nonhomologous to zero with respect to* Z_2 *. It is obvious that* $H^i(Z_2, 2; Z_2)$ *is of* finite dimension over Z_2 for all $i \ge 0$.

Define a homomorphism q^* of $H^*(Z,4; Z_2)$ into $H^*(K; Z_2)$ in such a way that $q^* \nu = \nu$ which induces the homomorphism whole over $H^*(Z, 4; Z_2)$, taking corresponding cohomology operations of ν and ν respectively. Obviously we have $i^*q^* = 1$. Hence our lemma is a direct consequence of Chap. III, Prop. 8 by Serre [13].

LEMMA 6. 2. *There is v of Lemma* 6.1 *such that the second ^-invariant of* **Λf(O(2))** *is given by*

$$
\mathbf{k}^{6}(M(O(2))) = (Sq^{1} \iota)^{3} + \tilde{\iota} \ \tilde{\nu} \quad \mod 2, \tag{6.8}
$$

where $i = p^*i$.

Proof. $\overline{\iota}$ is a generator of $H^2(K; Z_2)$. In the diagram (6.4), we have $g^*\bar{t} = U_0_{(2)}$.

It is known that $H^{\iota}(M(O(2))\,;\, Z_{2}) = Z_{2}(U^{2}_{0(2)},\,\,U_{0(2)}(W_{1})^{2}).$ From Lemma 6.1, we have $H^4(K; Z_2) = Z_2(\tilde{C})^2$, \tilde{v}). Since g^* is an isomorphism of $H^4(K; Z_2)$ to $H^i(M(O(2))$; Z_2 for all $i \leq 4$, including cup-products, there is a unique \overline{i} satisfying the relation,

$$
g^* \nu = \varphi_{O(2)}^* (W_1)^2 = U_{\gamma(2)}(W_1)^2.
$$

Obviously we have

$$
g^*(Sq^{\overline{1}}_t)^2 = (Sq^1U_{o(2)})^2.
$$

It is known that \mathbf{k}^6 generates the kernel of g^* , i.e., $\{\mathbf{k}^6\} = g^{*-1}(0)$. We can see from Lemma 6.1 that $H^6(K; Z_2) = Z_2(\bar{k})^3$, $(Sq^1\bar{\iota})^2$, $\bar{\iota}\bar{\nu}$, $Sq^2\bar{\nu}$). It follows that

$$
g^*(\overline{\iota})^3 = (W_2)^3 \pm 0,
$$

\n
$$
g^*(Sq^{\overline{\iota}})^2 = U_{O(2)}^2 W_1^2 \pm 0,
$$

\n
$$
g^*(\overline{\iota} \ \overline{\nu}) = U_{O(2)}^2 W_1^2,
$$

\n
$$
g^*(Sq^2 \ \overline{\nu}) = Sq^2(U_{O(2)} W_1^2)
$$

\n
$$
= U_{O(2)}^2 W_1^2 + U_{O(2)} W_1^4.
$$

\n
$$
\pm 0.
$$

Therefore only possible generator of $g^{*-1}(0)$ is given by

$$
(Sq^{\overline{i}}\iota)^2 + \overline{\iota}\,\overline{\nu}.
$$

We denote again by K the mapping cylinder of g in (6.4). K contains $M(O(2))$ which is denoted simply by M, here. M is closed in K. From the •exact cohomology sequence, it follows that

 $H^{\mathsf{r}}(K, M; Z_{2}) = 0$ for $r < 6$, $H^{\mathsf{g}}(K, M; Z_{2}) = Z_{2}$,

 $H^{r}(K, M; Z_p) = 0$ for $r \leq 6$ and any odd prime *p*.

Using the duality with respect to Z_{λ} and Z_{ν} , we have

 $H_r(K, M; Z_2) = 0$ for $r < 6$, $H_6(K, M; Z_2) = Z_2$,

 $H_r(K, M; Z_p) = 0$ for $r \leq 6$ and any odd prime p .

From the universal coefficient formula, we get

$$
H_r(K,M; Z) = 0 \text{ for } r < 6, H_6(K,M; Z) = Z_2.
$$

Because of the relative Hurewicz theorem, we obtain

 $\pi_6(K,M) = Z_2$

hence

$$
\pi_{5}(M)=Z_{2}.
$$

Thus (6.8) is exactly the second invariant of $M(O(2))$.

Define in the singular complex $S(K)$ the following relation of equivalence *(ρ)*: Two simplices $\sigma_{f_1}^q$ and $\sigma_{f_2}^q$ ($q \ge 4$) in *S(K)* are equivalent by *ρ* if and only if the mappings f_1 and f_2 of the standard q -simplex Δ^q in K coincide up to the 3-skeleton of Δ^q . It is then well known (definition of the Postnikov system) that the quotient complex $S(K)/\rho$ can be identified (up to homotopy) to $S(K(Z_2, 2)).$

Let w be a 4-dimensional cochain in $S(K)$ with values in Z , with the following property: If two 4-simplices $\sigma_{f_1}^4$ and $\sigma_{f_2}^4$ are ρ -equivalent, then

$$
w(\sigma_{f_1}^4) - w(\sigma_{f_2}^4) = d(f_1, f_2) \in \pi_4(K)
$$
\n(6.9)

It is obvious that such cochains do exist. Take arbitrarily the value of *w* on some representative of any ρ -class, and compute the value of w on any other simplex of the class according to (6.9) . Consider now the 5-skeleton $P⁵$ of the "base" $K(Z_2, 2)$. We can extend the map of P^5 to K already given on the 3 skeleton to the 4-skeleton (because of $\pi_3(K) = 0$). Let f_1 be such an extension. The extension of f_1 to the 5-skeleton gives rise to an obstruction cocycle α_j $\in C^{5}(K(\mathbb{Z}_{2}, 2): Z)$. This cocycle depends on the extension f_1 . But I claim that the cocycle,

$$
\alpha_{f_1}-\delta[f_1^*(w)]
$$

does not depend on the particular extension f_1 . In fact, if we replace f_1 by an other extension f_2 , we have

$$
\alpha_{f_1}-\alpha_{f_2}=\delta d(f_1,f_2).
$$

hence, according to (6.9)

$$
\alpha_{f_1} - \delta[f_1^*(w)] = \alpha_{f_2} - \delta[f_2^*(w)], \qquad (6.10)
$$

cohomology class of this cocycle does not depend on the particular choice

of the cochain *w* : Suppose we replace the cochain *w* by another cochain *Ίϋ** satisfying also

$$
\overline{w}(\sigma_{f_1}^4) - \overline{w}(\sigma_{f_2}^4) = d(f_1, f_2).
$$

Then the difference $w - w$ takes the same value of any couple of 4-simplexes $\tau_{I_1}^4$ and $\sigma_{I_2}^4$ which are *ρ*-equivalent, hence $\overline{w} - w$ is a 4-dimensional cochain *u* in the base space $K(Z_2, 2)$. And we get

$$
(\alpha_{f_1}-f_1^*\delta w)-(\alpha_{f_1}-f_1^*\delta w)=\delta u.
$$

It is readily seen that the cohomology class of $\alpha_{f_1} - f_1 * \delta w$ is nothing but the Eilenberg-Mac Lane invariant, as defined in [14], with the use of a minimal complex. Using such a minimal complex, and taking the lifting f_1 for which $w = 0$, we get into the original definition of the Eilenberg-Mac Lane invariant k^5 as an obstruction.

 $\alpha_{r_1} - f_1^*(\delta w) = k$ is a representative cocycle of the invariant **k**⁵. Let us compute its image p^*k in *S(K)*. On any 5-dimensional simplex σ^5 in *S(K)*, we have $\langle p^*k, \sigma^5 \rangle = \langle k, p_*(\sigma^5) \rangle = \langle \alpha_f - f^*(\delta w), p_*(\sigma^5) \rangle$ for any lifting f. But if we take the lifting f already given by σ^5 in *S(K)*, we have $\alpha f(\sigma^5) =$ 0, hence $p^*k = -\delta w$.

The cochain w plays the role of a *transgression cochain* (it is obvious that *w* restricted to the fiber of *P* gives the fundamental cocycle). It should be observed that the Eilenberg-Mac Lane invariant k and the image by transgression of the fundamental cocycle are of opposite signs.

The relation $p^*k = -\delta w$ leads

$$
w = (1/2)\delta p(\tilde{\iota}) = 0 \quad \text{mod } 2. \tag{6.11}
$$

Obviously, w is a cocycle mod 2. We denote by $\{w\}$ the cohomology class mod 2 determined by w. There are two possibilities in the value of $g^*(w)$: (A) $U_{O(2)}W_1^2$ or (B) $U_{O(2)}W_1^2 + U_{O(2)}^2$. In the case (A), we have $v = \{w\}$. In the case (B), we replace $\{w\}$ by $\{\overline{w}\} = \{w\} + \overline{(v)}^2$, namely $\overline{v} = \{w\}$.⁷⁾ In both cases, therefore, we can find a cocyle w mod 2 satisfying (6.9) and $\overline{v} = \{w\}$.

LEMMA 6.3. One can choose a mapping g_2 of $(V_3)_5$ to K instead of g_1 in (6.4), *satisfying the following conditions*

$$
g_2^*(\overline{\iota}) = W_2(\mathfrak{S}), \tag{6.12}
$$

$$
g_2^*(w) = X \text{ for given } X \in Z^4(V_6; Z). \tag{6.13}
$$

PROOF. Suppose $g_1^*w = X_0 \neq X$. $g_1 | (V_6)_4$ is a mapping induced by a map ping f_1 , namely $g_1 = f_1h$. $g_1 * w$ is a cocycle, since g_1 is defined over $(V_6)_5$. we can find a mapping f_2 of the 4-skeleton of $K(Z_2, 2)$ to K in such a way that its induced mapping $g_2 = f_2 h$ of $(V_6)_4$ to K satisfies the following condi-

⁷⁾ Since f_1 and f_2 coincide on the 3-skeleton of $K(Z_2, Z)$, the added term $(\bar{i})^2$ does not affect at all the formulae (6.9), (6.10) and (6.11). The cocycle $(\bar{i})^2$ is zero on any 4-dimensional spherical cycle.

tions,

$$
g_1|(V_6)_3 = g_2|(V_6)_3,
$$

$$
d(g_1, g_2) = X_0 - X.
$$

(6.9) leads the relation,

$$
g_1^*w - g_2^*w = h^*(f_1^*w - f_2^*w)
$$

= $h^*d(f_1, f_2)$
= $d(f_1h, f_2h)$
= $d(g_1, g_2)$
= $X_0 - X$,

namely

$$
g_2^*w = X_0 + (X - X_0)
$$

$$
= X.
$$

Taking coboundary, the obstruction cocycle to extend g_2 over $(V_6)_5$ is given by

$$
Z(g_2) = \delta(g_2 * w)
$$

= δX
= 0,

with respect to integer coefficients. Hence g_2 can be extented over $(V_6)_5$. Since g_2 is not changed on $(V_6)_3$, the relation (6.12) holds for g_2 as for g_1 . From the construction of g_2 , we have $g_2^*w = X$ which is the second relation.

7. W_2 in V_6 .

THEOREM 7.1. If there is an integral class
$$
\{X\} \in H^4(V_6; Z)
$$
 such that
\n $(Sq^1W_2(\mathfrak{E}))^2 = W_2(\mathfrak{E}) \{X\}$ mod 2 (7.1)
\nwhere the right side of (7.1) is the cup-product by the natural pairing
\n $Z_2 \otimes Z \rightarrow Z_2$,

then $W_2(\mathfrak{G})$ *is realizable by a submanifold in* V_6 *.*

PROOF. Using Lemmas 6.2 and 6.3, the obstruction class to extend the mapping gg_2 of $(V_6)_5$ to $M(O(2))$ over the whole manifold V_6 is given by the following formula,

$$
g_2^* \mathbf{k}^6(M(O(2))) = g_2^*(Sq^1 \overline{\iota})^2 + g_2^*(\overline{\iota} \overline{\nu})
$$

= $(Sq^1 g_2^* \overline{\iota})^2 + g_2^* \overline{\iota} g_2^* \overline{\nu}$
= $(Sq^1 W_2(\mathfrak{S}))^2 + W_2(\mathfrak{S}) \{X\}$
= 0.

Therefore we can construct an extension of gg_2 over V_6 which is denoted by *H:* $V_6 \rightarrow M(O(2))$. It follows from the Lemma 6.3 that

$$
H^*U_{0(2)} = g_2*g^*U_{0(2)}
$$

= g_2*U

 $= W_2(\mathfrak{S}).$

Thus our theorem is a direct consequence of Thom's fundamental theorem which is stated in section 1.

When V_6 is orientable, then the above theorem leads the following result:

THEOREM 7.2. In an orientable manifold V_6 the W_2 class of any vector *bundle is realizable.*

Proof. In the orientable manifold V_6 , using the formula of iterated square operations (see J. Adem [5]), we have the following relation,

$$
(Sq1W2(\mathfrak{E}))2 = Sq3(Sq1W2(\mathfrak{E}))
$$

= Sq¹(Sq²Sq¹W₂(\mathfrak{E}))
= W₁(V₆)(Sq²Sq¹W₂(\mathfrak{E}))
= 0,

as $W_1(V_6) = 0$ in V_6 , where $W_1(V_6)$ is the W_1 -class of the tangent bundle on V_6 (see W.T. Wu[16]). Consequently the equation (7.1)

$$
\begin{aligned} (Sq^1 W_2(\mathfrak{S}))^2 &= (W_3(\mathfrak{S}))^2 \\ &= W_2(\mathfrak{S}) \setminus X \} \end{aligned}
$$

has always a solution $X = 0$.

Examples of non-orient able manifolds of dimension 6. We shall show that (7.1) holds for each generator of cobordism group mod 2 in dimension 6. which are denoted by (i) , (ii) and (iii) in section 3. It is easily seen by a direct calculation that

$$
(Sq1W2(i))2 = 0.
$$

Hence we can take $X = 0$ for manifold (i), $P(6)$. For the manifold (ii), $P(4) \times P(2)$, we have

The minimum (II),
$$
P(4) \times P(2)
$$
, we have

$$
W_1(11) = h_1 + h_2,
$$

\n
$$
W_2(11) = h_1 h_2 + h_2^2,
$$

\n
$$
W_3(11) = h_1 h_2^2,
$$

\n
$$
(W_3(11))^2 = h_1^2 h_2^4
$$

\n
$$
= 0,
$$

\n
$$
(W_1(11))^2(W_2(11))^2 = h_2^2(h_1 + h_2)^4
$$

\n
$$
= h_1^4 h_2^2.
$$

Hence we get

$$
(Sq1W2(ii))2 = (W1(ii))2(W2(ii))2 + (W3(ii))2
$$

= $h14h22$.

Putting $X = h_1^4$ which is an integral class, we obtain (7.1).

For the manifold (iii), $P(2) \times P(2) \times P(2)$, we have

$$
W_1(iii) = \sum_{1}^{3} h_i,
$$

111

H. SUZUKI

$$
W_2(iii) = \sum_{1}^{3} h_i^2 + \sum_{i \neq j} h_i h_j,
$$

\n
$$
W_3(iii) = \sum_{i \neq j} h_i^2 h_j + h_1 h_2 h_3,
$$

\n
$$
(W_3(iii))^2 = h_1^2 h_2^2 h_3^2,
$$

\n
$$
W_1(iii)^2 W_2(iii)^2 = \left(\sum_{1}^{3} h_i^2\right) \left(\sum_{i \neq j} h_i^2 h_j^2\right)
$$

\n
$$
= h_1^2 h_2^2 h_3^2.
$$

Consequently we get

$$
(Sq1W2(iii))2 = (W1(iii))2(W2(iii))2 + (W3(iii))2 = 0.
$$

Hence we can also take $X = 0$.

No examples are known of a non-orientable V_6 in which W_2 is not realizable.

CHAPTER III

SPECIAL MANIFOLDS

8. Totally Realizable Manifolds.

In the following, © denotes any commutative ring. In particular, *Z* and *Zp* denote the ring of integers and the ring of integers modulo *p* as usual, where p is a prime number. Let M be a real compact differentiable manifold. If every homogeous class of the cohomology ring $H^*(M; \mathcal{B})$ is realized by a compact submanifold which is not necessarily connected, then we say that the manifold *M* is *totally realizable* for the coefficient ring (8.

For example, an n -sphere S^n and more generally a product space of spheres, $S^{n_1} \times S^{n_2} \times \ldots \times S^{n_i}$ is totally realizable for Z_2 but not for $Z_p(p > 2)$ and Z. Now we consider the following manifold. Let S be a sphere of dimension ≥ 2 and let q be the symmetric transformation of S with respect to a hyperplane which determines its equater. Then *q* is a homeomorphism of S onto itself changing its orientation. We denote by *x* a point of S and denote by *I* the unit interval. In a product space $S \times I$, we identify a point $(x, 0)$ with $(q(x), 1)$ and denote by *L* the manifold which is thus obtained. It is easily seen that L is a sphere bundle over a circle $S¹$ with $G = \{1, q\}$ as its structural group. We denote by s and s¹ the fundamental classes of $H^*(S; Z_2)$ and $H^*(S^1; Z_2)$ respectively. Let *i* be an inclusion map of S into L and let π be the projection of L onto $S¹$. Then we have an isomorphism,

$$
H^*(L; Z_2) \approx H^*(S; Z_2) \otimes H^*(S^1; Z_2)
$$

by a similar argument to Lemma 6.1, Chap. II. Non-trivial elements of $H^*(L, Z_2)$ are

1,
$$
\pi^*(s^1)
$$
, $(i^*)^{-1}s$, $l = (i^*)^{-1}s \bigcup \pi^*(s^1)$.

where l is the findamental cocyle of L . They are all realizable by compact connected manifolds: L , S_x (a fiber over $x \in S_1$), $y \times S_1$ (y is a point on the equator of S) and a point of L , respectively.

A real projective space $P(n)$ of dimension n is totally realizable for Z_3 , because a non-trivial cohomology class of each dimension is realized by a linear subspace of corresponding codimension. In a similar way, we can see that a complex projective space $PC(n)$ of complex dimension *n* is also totally realizable for Z_2 .

9. Complete Intersections of Hypersurfaces.

Let M and V be real compact differentiable manifolds of dimension $n + r$ and *n* respectively. Suppose *V* is imbedded in *M* by a differentiable map. A set of all normal vectors on *V* in M makes a fiber bundle over *V* with an r-dimensional vector space as fiber. It is well known that this fiber bundle is isomorphic to an open tubular neighborhood *N(V)* of *V* which consists of all normal geodesies with sufficiently small distance fron *V.* We shall call a sub.nanifoJd of codimension 1 in *M* a *non-singular hypersurface* in some generalized sense of that of the projective space. We consider *r* non-singular hypersurfaces H_1 . H_2, H_r in M which are in *general position*, that is to say, each point x of $H_1 \nvert H_2 \nvert \nvert \nvert \nvert H_3 \nvert \nvert \nvert \nvert H_4$ in M has a neighborhood U in which local coordinates x_1, \ldots, x_{n+r} with x as its center are defined and $U \cap H_i$ is given by $x_{n+i} = 0$. Suppose V_n is such an intersection and we call it a *complete intersection* ⁸ of non-singular hypersurfaces H_1, H_2, \ldots, H_r

THEOREM 9.1. *The Stiefel-Whitney characteristic classes of normal bundles over a complete intersection Vn of non-singular hypersurfaces in M are alt realizable by submanifolds.*

PROOF. The normal bundle decomposes into *r* real line bundles, each of which is induced by the corresponding hypersurface $H_i(1 \le i \le r)$. Its characteristic class h_i is the restriction of the cohomology class $\overline{h_i}$ which is dual to the homolcgy class of H_i . The total Stiefel-Whitney class of the normal bundle *N* is given by the'following formula,

$$
W(N) = \left[\prod_{i=1}^{r} (1 + \overline{h}_{i})\right]_{V_{n}}
$$

=
$$
\prod_{i=1}^{r} (1 + h_{i}),
$$

$$
W_{k}(N) = \left(\sum_{i_{1},...,i_{k}} \overline{h}_{i_{1}},...,\overline{h}_{i_{k}}\right)_{V_{n}}
$$

⁸⁾ This definition is esseni ially due to F. Hirzebruch, Proc. Int. Congress of Math.. (Amsterdam) Vol. 111(1954), pp. 457-473.

114 H. SUZUKI

$$
=\sum_{i_1,\ldots,i_k}h_{i_1}\ldots h_{i_k}.\hspace{1cm} (9.1)
$$

Let *D* be the duality operator of Poincaré-Veblen. We have

$$
D(h_i) = \overline{h_i} \cap V_n
$$

= $DH_i \cap V_n$
= $H_i \circ V_n$. (9.2)

Therefore each h_i is realizable by submanifold in V_n . We have already known in section 1 that a product of realizable classes is also realizable. On

the other side $\sum_{i_1,\ldots,i_k} \overline{h}_{i_1} \ldots \overline{h}_{i_k}$ is a class in the totally realizable manifold M. Hence, it is realized by a submanifold H_k in M. By the same way as (9.2), $W_k(N) = \sum_{(i_1,\ldots,i_k)} (\bar{h_{i_1}}\ldots\bar{h_{i_k}})_{V_n}$ is realizable in V_n .

Consider the restriction of the tangent bundle of *M* over the submanifold V_n . Since $W_i(M)$ are all realizable in M , it the follows that the Stiefel Whitney classes $(W_i(M))_{\nu_n}$ are realizable for $0 \le i \le n$, The restriction of the tangent bundle of M over V_n is a Whitney sum of the tangent bundle of *Vⁿ* and the normal bundle over *Vn* in *M.* Thus, using the Whitney duality, we get the following relation,

$$
\sum_{\alpha+\beta=i} W_{\alpha}(N)W_{\beta}(V_n) = W_i(M)_{V_n}, \qquad (9.3)
$$

for $0 \le \alpha \le r$, $0 \le \beta \le n$ and $0 \le i \le n + r$.

LEMMA 9.1. *Let V be a submanifold in a totally realizable manifold M. If one of two fiber bundles, the normal bundle or the tangent bundle over* V_n *has Stiefel-Whitney classes which are all restrictions of some classes in M, then so does the other.*

PROOF. Characteristic classes of one fiber bundle in (9.3) can be solved with respect to those of the other. Suppose $W_a(N)$ are all restrictions of classes \overline{W}_α in *M*. Then $W_\beta(V_n)$ are all polynomials in $W_\alpha(N)$ and $W_i(M)_{V_n}$. Since \overline{W}_{α} and $W_i(M)$ can be realized by submanifolds in the totally realizable manifold *M,* polynomials in them are also realizable in *M.* On the other side, polynomials of $W_{\beta}(V_n)$ in $W_{\alpha}(N)$ and $W_t(N)_{V_n}$ are restrictions of cor responding polynomials in \overline{W}_α and $W_i(M)$. Hence $W_\beta(V_n)$ are also realizable.

THEOREM 9.2. A *complete intersection Vn of non-singular hypersurfaces in a totally realizable M for Z£ has the tangent bundle whose Stiefel-Whitney classes are all realizable.*

PROOF. It is seen in the proof of theorem 9.1 that $W_a(N)$ are all restrictions of classes in *M.* Our theorem is a direct consequence of lemma 9.1.

REFERENCES

- [1] N. E STEENROD, The topology of fiber bundles, Princeton Mathematical Series 14, Princeton University Press (1951).
- [2] R. THOM, Quelques propriétés globales des variétés différentiables, Comm. Math. Helv., 28 (1954), 17-86.
- [3] H.SUZUKI, On the realization of cohomology classes by submanifolds, Trans. Amer. Math. Soc. *87* (1958), 541—550.
- [4] R.THOM, Espace fibres en spheres et carres de Steenrod, Ann. Sci. Ecole Norm Sup., 69 (1952), 109-182.
- [5] R. THOM, Les singularites des applications differentiables, Ann. de L'institut Fourier, VI. (1955-1956), 43-87.
- [6] S. S. CHERN, On the multiplication in the characteristic ring of a sphere bundle, Ann. of Math., 49(1948), 362-373.
- [7] W.T.WU, On Pontrjagin classes I, Acta Math. Sinica, 3(1953), 291-315.
- [8] E.SPANIER and J. H. C WHITEHEAD, Obstructions to compression, Quarterly Journ. of Math., 6 (1955), 91-100.
- [9] W. T. WU, Les *i*-carrés dans une variété grassmanienne, C.R.Acad. Sci.Paris. 230(1950), 918-920.
- [10] S. EILENBERG and S. MAC LANE, Cohomology groups of Abelian groups and homotopy theory IV, Proc. Nat. Acad. Sci., 38 (1952), 325-329.
- [11] W. T. WU, On Pontrjagin classes III, Acta Math. Sinica, *4* (1954), 323-346. [12] H. CARTAN, Algebras d'Eilenberg-MacLane et homotopie, École Norm. Sup.
- Seminaire, 1954-1955. [13] J.P. SERRE, Homologie singulière des espaces fibrés, Applications, Ann. of
- Math., 54 (1951), 425-505.
- [14] S. EILENBERG and S. MACLANE, Relations between homology and homotopy groups of spaces II, Ann of Math., 61 (1950), 514-533.
- [15] J. ADEM, The iteration of the Steenrod squares in algebraic topology, Proc. Nat. Acad. Sci., 38 (1952), 720-726.
- [16] W.T. Wu, Class caractéristques et i -carrés d'une variété, C.R. Acad. Paris, 230(1950), 508-511.
- [17] R. THOM, Un lemme sur les applications differentiables, Bol. Soc. Mat. Mexicana (1956), 59-71.

TOHOKU UNIVERSITY, SENDAI JAPAN, THE UNIVERSITY OF CHICAGO, CHICAGO, ILL., U.S.A..