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N.H.Kuiper and K. Yano [2] determined all tensors of some Kkinds
interesting in differential geometry, which are invariant under the proper
orthogonal group of the n-dimensional vector space or under the group of
proper orthogonal transformations fixing a unit vector. The present author
[1] has recently studied tensors invariant under the real representation of
unitary group. The purpose of this paper is to determine all tensors of the
same types as they studied which are invariant under the real representation
of symplectic group Sp(n).

In §1 we make preliminary considerations on the real representation of
symplectic group. In §2 we state the main theorem and prove it in §§ 2, 3, 4.
In §5 we give some applications of our main theorem to the theory of affinely
connected manifolds with almost complex, quaternion or Hermitian structure,
which has recently been developed by M. Obata [3].

1. Let V be a 4n-dimensional real vector space and let there be given in
V a metric tensor g:,, and tensors ¢;* and {;® such that
PPt = —8it, Yt = —8;h, bt = —YrhehiF
¢Lagan + ¢1La,0ai =0 and '\lf‘iagak + ‘\I’hﬂgai =0.
The group composed of all linear transformations of V leaving invariant the
tensors g¢i», ¢:* and ¥ will be seen to be the real representation of symplectic
gsroup Sp(n). We call the group the symplectic group of V and its element a
symplectic transformation of V for brevity. We define the tensors «:", ¢:y, Yin
and «:, by
Kt = ¢kh1pik, ¢ih = QSiagah; 1["!3]). = ‘\l’iagan, Kin = KiGan.
It is easily seen that
Kt = —8i", Vil = — Pk = i,
kpF = —Piri® = Pt Kin + wne = 0.
We denote the linear transformations corresponding to ¢:*, ¥;* and «;*
by 7, J and K respectively. Since we have
b:"Pugra = gin, YV 00 = Gin and K6, Gva = Gin,
I,J] and K are orthogonal transformations. Let us suppose that a set of
vectors {xi, It, Jx, K%, %3, I, J%s, K%, .. .., %, IXm, J%n, Kxn, ¥} is ortho-
normal. Then so is theset {x,, Ix;, Jxi, Kxi, .. .., Xm, Lon, J%n, K, v, Iy, I,

1) Numbers in brackets refer to the bibliography at the end of the paper.
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Ky}. In fact, Iy, Jy and Ky are unit vectors and we have
giaY' Dy = priyy* = 0,
gy = Yyt = 0,
giay' ™" = ry'y* =0,
IsrPVVTY = — 05 P ki VY = —GuaniVY = — kiyy* = 0,
IsrPu V'Y = g Vi YY = gnad¥i Yy = Yyt =0,
I ¥ VY = — g VSV DY = — gy = — iyt = 0,
Jar XyPrV) = i’ Dol xg "W = — gucpa’x7y" = 0,
JvaPi" XL D" = gipxlyt = 0,
IV X3Pyt = gij¢v‘i¢x"‘l’a3x:¢n’yh = — ginka' %}Y"* = 0,
g,,/casxg¢,,,"y" = gi1¢,;’¢s‘fc3x2¢n”3/ b= gi/[‘P‘a‘x:’;y" =0,
and similarly
giunxi W =0, gudeixd ¥y =0, guVuixl¥ay® = 0, ginrdxl¥raiy* = 0,
gunXiedy =0, gl =0, g, ¥sixley® =0, gune’xiedy* =0

(x=1,2,....,m).
It follows that for any unit vector e there exists an orthonormal base {e,,
.., en Jer,...., Jen, Ie\, ...., Iea, Ke,,...., Ke} of V such that ¢, = e.
Let {el,...., €n, ]el,...., ]en, Iel,..... Iey, Kel,...., Ken}‘ be an

orthonormal base of V and o be a symplectic transformation of V. If we
have ges = fu?’, then oJes = Joes = Jfa, oley, = Ioes = If s, oKey = Koes =

Kf.. Therefore o transforms any orthonormal base {e,,...., es, Je,....,
Jen, Iey, .. .., Ie., Key, ...., Key) into an orthonormal base {fi..... . Ja, JA,
eeo, M, I, ..., Ifa, Kfi, .. .., Kfa}. Conversely, the linear transformation
of V which transforms an orthonormal base{e,...., es, Jei,...., Jes, Iey, ....,
Ie., Ke,, ...., Ke,} into an orthonormal base {fi,...., fa. Jf, ....Jfs,
Ifi,...., Ifa, KA, ...., Kfa} is a symplectic transformation of V. We see
immediately that the components of tensors gi,, ¢:*. V¥:* «:* with respect to
an orthonormal base {e;,...., e, Jei,...., Jen, Ie\, ...., Ien, Ke,, ...., Ken)

are the elements in A-th row and i-th column of the following four matrices
respectively

0 —E. 0 O 0 0 0 —E,
(Eym) (O — Ezn) E, O 0 0 0 0 E. 0
ns E'_'n 0 ' 0 O O En 0 - En O O
0 0 —E. 0/ \E. 0 0 0/

where E,», E,. and E, are unit matrices of degrees 4n», 2n, and » respec-
tively. This shows that the symplectic group of V is the real representation
of symplectic group Sp(n).

2) Throughout the paper Greek indices «,8, ...... run over the range 1,2, ...... n
and Latin indices 4,4,7,...... over the range 1,2,...---4n.
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The subspace spanned by a set of vectors {x, Jx, Ix, Kx} is called the
Q-section determined by the vector x and is denoted by Q(x).

2. We now state the following

THEOREM 1. Let the tensors vi, hj;, Ti" and Ryu* = — Ru™ be invariant
under the symplectic group of V (dimV = 4n). Then
d1.a) v =0,
(1.b) Ry = kg + Bibsi + BV + Rakcys,
(1.c) Ts»=0 for any n,

(1.d Rijih = (¢18» + copa® + cs¥ra® + Cixa) (8950 — 8%gk4)
+ (Cs8a" + s + cr¥rat + Cowa®) (8PP — 8 ui)
+ (o8 + CrpPa® + c¥ah + Crara®) (82 s — 8 Yri)
+ (€138d" + C1aPa + C15¥a 4 Crana®) (Silresi — O rui)
+ (€178:" + €18 + Cig¥i" + Caprei i
+ (8™ + Cartpi® + CogWrih + CasreiWris;
+ (€20:" + CsPi® + Cat¥ri® + Casiei e Jor n£1,
where k’s and c’s are constants.
If moreover R} =0, then we have in (1.d)
d.€) 25+ €17 =2c5 + €13 = 207 + €19 = 205 + €39 = 209 + €31 = 2¢19 + Cyy
= 211 + Ca3 = 212 + Cay = 2013 + €25 = 2044 + €5 = 2¢15 + Co1 = 2015 + €45 = 0.
If Rip’9ia + Risi®gar = 0, then we have in (1.d)
(L)  €;—C5 = €3—Cy = €,—C13 = €1 — €19 = Cs — Cyy
= €1y — €15 = €17 = Cyy = €5 = 0.
If R./i$:* — Riji’ba" =0, then we have in (1.d)
(1g c—CG=C+c=Cc—C=C+C=C—C4=Cyp+C3=Cy—0Cp
=€yt €15 = €19 = €0 == Cy3 = Cyy = Cy7 = €3 = 0.
If RiuV¥:® — ReyV¥a =0, then we have in (1.d)
(Lh) ci—en=c+tcep=c+c=0¢—Co=C+C;5=0C—Cg=0—C
= Cg+ €14 = €18 = Cy9 = Cyz = Caq = Cp = Cag = 0.
Proor. (1.a) No non-zero vector is invariant under the symplectic group
of V.
(1.b) If hy is invariant under a group of linear transformations, then so
are the symmetric part % and the anti-symmetric part Ay of hy;. We
study two cases.

In case hy is symmetric, we consider a constant .k; such that, for one
particular unit vector e,

h;i eé e& = ky.

The tensor hj — kg is invariant under the symplectic group of V. For any
unit vector e there exists a symplectic transformation of V sending e, to e.
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Therefore
(hy — kog 5)e'e* = (B — kogi)eje; = 0.
This implies

hjf. = kogﬁ.
We next consider the case in which %; is anti-symmetric. We denote
huwvt by h(w,v). Let {ey,...., en, Jo, ...., Jen, I\, ...., Ien Ke, ....Key}

be an orthonormal base of V. We denote Jes by e.,, les by e., and Ke, by ea,.
We say that «, a, (=7 + «a), a.(=2n+ a)and a; ( = 3n + «) belong to the
same class. The numbers from 1 to 4z separate into # classes. If the class
of 7 is different from that of 7, then there exists a symplectic transformation
sending e; to e; and e; to e;. Hence we have h(e;, e:) = h(e:, e;). Since hy is
anti-symmetric, h(e;, e:;) = 0 if the class of 7 differs from that of j.
We shall show that
h(ea, Cuy) = h(eus, Cuy) = hlea,eur), M(ew,€u,) = h(ea,, €uy)
= h(ea, €ur,), hiea, eaa) = h(emg, €y;) = ke, Cury).

The equalities of the type h(e;, e:) = h(ey, ei) are obtained by applying those
symplectic transformations which send e; to ey and e; to ;. We denote by
o, the symplectic transformation sending ey to €w,, €a; t0 — €ay, €a, t0 — es
and e,, to €s;, by o. the symplectic transformation sending es to ex,, €., to
— €y, €u, tO €qy, and es, to — es,, and by o3 ( = o10:) the symplectic transfor-
mation sending e, to — €u;, €x; t0 — €u,, €x, 10 €y, and e, to e,. By applying
o, we get hles, €a,) = hlew,, ex,) and h(ex, ew;) = hles,, es,). By applying o, we
get hies, €a,) = h(ea,, Cus).

If we set tji = hji bt hiea, ewg)d)jt — h(ew, ewl)"l"ﬁ - h.(e,,, Ean)l\‘:ﬁ, then the
tensor £;; is anti-symmetric and invariant under the symplectic group of V.
We see immediately #(e, €s.) = t(€u, €a;) = t(€u, €x,) =0. Hence ¢; = 0,i. e.
there exist three constants %;, k., k3 such that

Ry = ki + B + Esse

Since the tensor %; is the sum of its symmetric part and antisymmetric
part, (1.b) is proved.

(1.c) Let Ty" be invariant under the symplectic group of V. Since the
linear transformation — §;* is a symplectic transformation of V, we have

Tyt = — 87 (= 8:8) (= 8" Ty = — Ty,

and hence
Tjih = O
3. To prove (1.d) we prove two lemmas, and this section is devoted to
the proof of the lemmas. Let Ri;" = — Ru:* be invariant under the symplectic

group of V. The tensor Ry;"* is determined by the bilinear mapping
(ftcj]vi) — Rkji"]ch 7){,
shortly
(,0) = R(f,v)
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of pairs of a bivector and a vector, onto vectors.

We take again an orthonormal base {e;,...., e, Jei, ...., Jen, Iey, ....,
Ien, Ke,, ...., Kes} and consider in the proof of lemmas and (1. d) components
of tensors with respect to this base.

LeMMA 1. The component Ry;" vanishes uniess h,i,j, k belong to the same
class or two of them belong to a class and others do to another one.

Proor.” We distinguish two cases A and B.

Case A. j and % are in the same class.

Subcase 1. i, j and % are in the same class. The vector R(e: A e;, e;) =
Ri;ji"e, is the sum of two orthogonal component vectors in the @Q-section Q(e;)
determined by e; and in its orthogonal complement. The vector R(e: A e;, e;:)
remains fixed for that symplectic transformation which leaves every vector
in Q(e;) fixed and multiplies every vector in the orthogonal complement of
Q(e;) by — 1. The component vector of R(e:Ae;, e:) in Q(e;) remains fixed for
the symplectic transformation, while the component vector of R(e: Ae;, e;) in
the orthogonal complement of @(e;) reverses its direction. Thereiore the vector
R(e:N\ey, e;) coincides with its component vector in Qe:), i.e. R.' =0 unless
the class of 7 is that of 7.

Subcase 2. The class of 7 is different from that of j. The vector R(e:A
¢;,e;) remains fixed for the symplectic transformation of V leaving fixed every
vector in Q(e;) and Q(e;) and multiplying every vector orthogonal to both
Q(e;) and Q(e;)) by — 1. It follows from this that R;”* = 0 if the class of &
is neither that of 7 nor that of 7. The symplectic transformation of V mul-
tiplying every vector in Q(e;) by — 1 and leaving fixed every vector ortho-
gonal to Q.e;) leaves the vector R(e;Ae, e;) fixed. Therefore R;;* =0 if the
class of 7 is that of 7.

Case B. j and % are in different classes.

Subcase 1. The class of ¢ is either that of j or that of . The vector
R(e;Aej, e;) remains fixed for that symplectic transformation which leaves
fixed every vector in Q(e;) and @ e;) and multiplies every vector orthogonal
to both Qe;) and Qe;) by — 1. It follows irom this that Ry;* = 0 if the
class of % is neither that of j nor that of 2. We may assume without loss
of generality that the class of 7 is that of 7 The symplectic transformation
of V multiplying every vector in @(e;) by — 1 and leaving fixed every vector
orthogonal to Q{e;) leaves the vector Rle;Aei, e;) fised. Therefore R.;* = 0 if
the class of 7 is that of i.

Subcase 2. The class of ¢ is neither that of 7 nor that of 2 The vector
R(esN\ej,e;) remains fixed for that symplectic transformation which leaves
fixed every vector in Qe;) and multiplies every vector orthogonal to Q(e;) by

— 1. Hence R:;" = 0 unless the class of % is that of 7. The vector R(esAe;,
e;) remains fixed for that symplectic transformation which multiplies every
vector in Q(e;) and Q(e;) by — 1 and leaves fixed every vector orthogonal
to both Q(e;) and Q(e;). Therefore Ri;" = 0 if the class of h is that of . This
completes the proof of lemma 1.
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LEMMA 2. Le! the dimension of V be. greater than 4. Then the tensor
Rey is zero if the following 28 components vanish :

R’ (= Rprara®), Reaa® (= Rparats), Rpad®( = Rprarab), Reaa( = Rerwarp),
Reoa’( = Rpraars?), Rpaa®( = Rprarars8), Rpaas®( = Rerarares;), Reaas®( = Rerarasfs),
Rﬁwwlﬂ( = Rpra’ar B) Rgooi®( = Rprara 1'32) Rﬁamﬁ'( = Rg'a'a 151) Reua,f?( = Rgrora 153)
Rpmaﬂ( = Rﬁ’w’a’aﬁ ), Rﬁdaas'( = Rﬁ'w'a”‘ﬂz);Rﬂwwaﬂ'( = RB’w’w’sﬂ1); Rﬂwaﬁs( = Rﬂ’w’w’sss),
Rwazﬁﬁ( = Ru’u's,ﬂ’ﬂl); wazﬁﬂg( = Ra’w’gﬁ’ﬁé), Rawz,spl( = Rd'u'gﬁ’p;), R,mmgﬁ’( = Ra'a’gﬁ’ﬂé),
Ruaipf( = Rurarsp®’), Raaip?( = Ra'ayp'8y), RaaigP( = RuajpB)), Ruais®( = Rararpr8y),
meﬁﬁ( = Rw’a’gs’p,), Rawa,aﬂz( = Ra’w’gﬂ’ﬂé)y Rcmaﬁﬂl( = Rct’m’ap'ﬁ;), Raugsﬂ'< = Ra’m’sﬂ’ﬁ;;),
where different letters in the indices of components of the temsor belong to
different classes.

Proor. By the assumption and lemma 1 the vectors R(egAe, ex), R(eg A\
€s,6x,), R(esN\es, ex,), RlegNew, eus), R(esNew,, e3), RlexNea,, €g) and Ries N\
€aq,2p) are zero. We denote by o« the symplectic transformation fixing
every vector orthogonal to Q’e,) and sending e. to €u,, €u; tO0 — €ag, €s, tO
—es and ey, to ey,. Let us denote by o the symplectic transformation
fixing every vector orthogonal to Q{e.) and sending e, to €s,, €s, to — eu,
€q, 10 €4, and ey, t0 — es, and by oe( = gie024) the symplectic transform-
ation fixing every vector orthogonal to Qle.) and sending e, to — e.;, €«
to — ey, €4, to es, and e., to es. ApDlying oiw, o4, 34, o8, 28 O o33
to the vectors indicated above, we see that the vector R(e:Ae; e:) is zero
if 7, 7 and k are in two classes.

We next consider any vector R(e:Ae;, e;) such that 7, 7 and & belong to
the same class, say, that of a«. Let a’ be different from . Let us apply
to the relation R(esAej, e:) = Rusen = Rujinls + Rijiw,€ay + Riji wsCas + RicjiagCas

such symplectic transformation which sends e, to :71—5_ (s + €ar), €ar toO
1 . 1 1
Va3 (es — es’) and hence e, to 72 (x, + €ar,), €ay to (€as + €4)), €as

t0«77 (@as + €ay), €4, tO— «/ 1 (ew; — €af), €aj tO :/* (ea»2 es,) and ey, to

1 , . . 1
7? (ea; — €s7;). Then the vector R(e:Aey, e:) is transformed into 9‘/ 5

Ri(ec + ev)N(es+ ey), e: + e ) = 2\/ (Rle:Nej,e:) + Rlew Aey,eir)), while

the vector Rijie, into 7? R:;i"e, + e,-). Therefore we have% R(e: A ej,e:)

= R:u"e, Thus the vector R(e.Aej; e:;) is zero if i, j and %k belong to the
same class. This completes the proof of lemma 2.

4. On. the basis of lemmas 1 and 2 we now procéed, to the proof of
(@1.d). We define 28 tensors Ri;i® = — Ryu:* (a= 1,2, ...., 28) invariant under



INVARIANT TENSORS UNDER THE REAL REPRESENTATION 87

the symplectic group of ¥ to be those in (1. d) with coefficients c.. The com-
ponents of tensors gi,, ¢:*, V¥ w® with respect to an orthonormal base
{er,...., e, Jer,...., Jen, 1Iey, ...., Ien, Ke, ...., Kes} can be found in
section 1. We see that ae-th component in lemma 2 of the tensor Ry;” is

equal to 1 and its other components in lemma 2 are zero. If we define the
tensor Tyji* = — Tui® as follows

Try® = Rug® — Rgaaﬂ Ry — RﬁuwﬂgRlcjih —_ ... — RawasﬂaRIaﬁ",
1 2 28
then the tensor is invariant under the symplectic group of V and its 28

components in lemma 2 are zero. Lemma 2 shows that T;" = 0, i.e. there
exist 28 constants c,(a =1,...., 28) such that

Rkﬁ"‘ = cllli'gﬁh -+ Czéekﬁ" +.... + C-gsgkjih.

Hence (1.d) is proved.
(1. e) By alternation of (1.d) we obtain

3R = (2cs + ¢17) (8;-”471:: + Sih(ﬁw + 8/ bir)
+ (265 + €15) (P"Psi + PP + S Pix)
+ 2cr + ci9) (Wi'by + Vilpe; + Vb
4+ (2cs + €20) (kP + wi'Pey + wfPuw)
+ (2o + €u1) Sy + 8 Vruy + 8Vri)
+ (2c10 + €22) (DVrji + DYy + bk
+ (2c11 + €23) (‘P/c""l’ﬁ + Y + V)
+ ey + €20) (™0 + wi"Vri; + x Vi)
+ (233 + €35) (Bws + Oiwr;  + Oifkix)
+ (2014 + €) (Pitesi + Pilrry; + Pl
+ Qe + ) (Yrilweyi + Yeilww; + Viler)
+ (2656 + €p) (res + xiwr; + wfrin).
Considering the components with respect to an orthonormal base {e,, ....,
en, Jei,...., Jew, Ie,, ...., Ien, Ke,, ...., Ken}, we see that the tensors in
the parentheses are linearly independent. Therefore the condition Ryj* =0
implies 2¢; + ¢17 = 265 + €15 = 207 + €19 = 205 + €0 = 209 + €21 = 2610 + €22 = 2C13
+ Co3 = 2012 + €24 = 2015 + €25 = 2014 + €6 = 2015 + €1 = 2005 + €25 = 0.
(1.f) From the relation (1.d) we get
Rinltgia + Risi®gan = (€2 — C5) (Puigm — Psign + Pongsi — Psngni)
+ (cz — o)) Wuigm — Vsidin + Vingsi — V ngui)
+ (6, —c13) (Kniggn — K3 + Kadsi — ki)
+ (c1 — €10) YVuibn — Vsiben + Vs — Vnsbur)
+ (€5 — C1) (KD — Ksibin + Py — wnPui)
+ (€13 — C15) (kes¥ran — k¥ + wa¥se — K ¥ii)
+ 2¢1gindis + 26219y + 20k
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The condition R:j,%9:ia + Risi®dan = 0 implies ¢, — €5 = €3 — ¢y =€, — €13
= €7 — €19 = Cg — €1y = Cj3 — C15 = C19 = C; = Cy5 == 0.

(1.g) From the relation (1.d) we obtain

Rijd"$i® — Rupi"ha” = (¢, — ¢5) (8'i; — 65'bix — P95 + b 9xs)
+ (€2 + ¢5) (P'Pi; — bibue + S"9s  — O5"gwi)
+(cz—cs) (Vb — Vi'"bir — w95 + £/9xi)
+ (et en) ('bis — kb + Vilgs — ¥s'gn)
+ (cy — €1a) (Biwi; — 85 niw — ¢iji + é/Vrei)
+ (10 + C13) (ki — lri + 8V — 8,/Vu)
+ (€1 — C16) (Wi — Vitwee — i + 1/ Vres)
+ (€12 + €15) (ri"wi; — kfrie + ‘th‘I"ji - 1[’1‘”‘#“)
— 2C10kci" Py + 2C.0W " P;

— 2ea306"ri; + 20,505
— 2Corki ki + 2C.sYri k.

Hence the condition R, u"$:® — Ryj°¢e" = 0 implies ¢; — ¢35 == ¢, + ¢5 = €3 — 3
=€+ 07 =C—Cy =C+ C13=C11 —Cig =Crza+ Ci5= C19 = C30 = Ca3 = Cyy = C
= cy5 = 0. .

(1.h) From the relation (1.d) we obtain

Rij"¥i"—R ;" = (01 —cn) (B"Viy — 8/ — Vg5 + ¥ige:)

+ (€2 + C1a) (Vs — d Vi + w95 — Kigri)
+ (65 + o) (W riy — v M+ 895 — 85 0w)
+ (€5~ ¢10) (Vriy — iy — B9+ ilgne)
+ (c5 + €15) ( — Sil'wis + Sk — WitDs + Vibus)
+ (5 — €16) ( — Plieis + Pswic + w'Ps — xiPri)
+ (67 — €13) (— Vidtxis + Vi + Si'bsi -~ 85 Pri)
+ (65 + €10) ( — wiwi; + it — PPy + PyPri)
+ 2ci5ki"Pr; — 2C509P i iy

+ 20"y — 202,90V ks

+ 2Cxrei ek — 2655 ek,

Hence the condition Ryu¥r* — Ry = 0implies c; — ¢ = €2+ €12 = €3+ 6

=€y —Co=C+ C15=0C — €15 =C; —C13 = €3+ C1q = €183 = Cy0 = Cz2 = Cag = Cg5
= Cpe = 0.

This completes the proof of all the statement of theorem 1. :

If a tensor Rij;" satisfies the conditions Rij"p:* — Risi®Pa* = 0 and Ry z”
x ¥ — Rysi™Va" = 0, then we have

RkjahICia - chﬁaICa/‘ = Rkja’l¢za"[’il b Rl: 1ia¢mh"l"a.m
= (Rkjah(ﬁza - Rkjlm¢,n,‘;¢il + (RkjaWia - Rl:jia"lram)¢mh
= 0.
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If a tensor Ri;* = —Ru:" invariant under the symplectic group of V
satisfies the conditions Ry * =0, Riju'$* — Riy’a® = 0 and Ry ,"V:® — Ry ;i®
X Yo" = 0, then theorem 1 shows that Ry;"* = 0.
If a tensor Rij* = — R,." invariant under the symplectic group of V
satisfies the conditions Ri;%gia + Residan = 0, Riu"$hi® — Riji’pa" = 0 and Ry
X ¥i® — Ryy¥%" = 0, then the tensor has the form

R = c(dx"g 5 — S8igri + Pi'psi — b iy
+ Y — U + ke — Kfek).

5. THEOREM 2. Let M be a 4n-dimensional manifold for n + 1 admitting
a quaternion structure (P, V") and an almost Hermitian metric gi, with
respect to both ¢ and ¥ [3]. Let T be a (p,¥)-connection in M [3). If the
manifold M admits a group of affine transformations and the isotropy group
in the tangent space at any point conlains the symplectic group, then the
connection is locally flat.

Proor. The value of the torsion tensor field at any point is invariant
under the linear isotropy group at the point which contains the symplectic
group. It follows from theorem 1 (1.c) that the torsion tensor is zero. Since

" is a (¢,V)-connection without torsion, the curvature tensor field Ry;"
satisfies the relations Ryji* = 0, Riju¢:i® — Ris'Ps* = 0 and Ry o'V — Rkﬁ""l"ah
= 0. The value of the curvature tensor field at any point is invariant under
the symplectic group. Therefore the curvature tensor is zero.

THEOREM 3. Let M be a connected 4n-dimensional mani fold for n =1
admitting a quaternion Structure ($:2,V:®) and an almost Hermitian metric
gin With respect to both ;% and 2. Let G be a (2n* + 5n)-dimensional effective
group of automorphisms of M. Then the group G is transitive and the Levi-
Civita's connection is the only linear connection invariant under the group G.
The connection is a (P, ¥)-connection and locally flat.

Proor. The linear group of isotropy at any point coincides with the
symplectic group of the tangent space at the point. By the same arguments
as in the proof of Theorem I in [4] we can conclude that the group G is
transitive. Let I, and 'I'}, be two linear connections in M invariant under
the group G. The tensor T;"=I", —'I"}, is invariant under the group G.
From (1.c) we have T;"*= 0. Consequently the Levi-Civita’s connection is
the only connection invariant under the group. The covariant derivatives of
¢:* and Y¥ri* are invariant under the group. It follows from (1.c) and theorem
2 that the connection is a (¢, ¥)-connection and locally flat.

THEOREM 4. Let M be a 4n-dimensional manifold for n % 1 admitting a
quaternion structure (¢:", ¥ri") and an almost Hermitian melric g:, with respect
to both ¢* and V. Let T be a metric (¢, ¥)-connection [3]. We assume that
the homogeneous holonomy group of M at a point of M is the symplectic group.
If the curvature tensor field has null covariant derivatives, then it has the
form

Rkﬁh = C(Sk’“gj,; - 51"91::‘ + ¢kh¢ji '—'¢_1h¢ki + "l"kh"l"ji "‘I"j""ﬁ'kj + IC,;"KJ: _"fhlcki)
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with an absolute constant c.

Proor. Since the curvature tensor field has null covariant derivatives,
the value of the tensor field at any point is invariant under the homogeneous
holonomy group at the point which is the symplectic group. Since I'}; is a
metric (¢, ¥)-connection, the curvature tensor field satisfies the relations
Rip®gia + Risi®an = 0, Ris"Pi®—Risi®ba* = 0 and Ry —Ri;*¥a" = 0. There-
fore the tensor field has the form

Ry " = c(8x"g 5 —05gxi + Pr"Psi —PPui + Vb —r M + w5 — M ers)
with a scalar ¢. The tensor field in the parentheses is parallel. Hence the
scalar ¢ is an absolute constant.

By analogous arguments we have the following [1]

THEOREM 5. Let M be a 2n-dimensional almost Hermitian manifold for
n+1 and TI'}, be a metric ¢-connection. We assume that the homogeneous
holonomy group of M at a point of M is the real representation of unitary
group. 1If the curvature tensor field has null covariant derivative, then it has
the form

Ry = c(8xtg ;i — 89k + Pr'by — bjlbri) + ' Pi'cpr;
with absolute constants ¢ and c'. If moreover the torsion tensor field has null
covariant derivative, then the connection is the Levi-Civita's one and the
manifold is a Kahlerian manifold of constant holomorphic curvature.
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