ON EUCLIDEAN CONNECTIONS IN A FINSLER MANIFOLD
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Introduction. In a general Finsler space S.S. Chern [2] defined an
infinite number of Euclidean connections which include the connection defined
by E.Cartan and others as a particular cases. The purpose of this note is to
discuss in a modern view-point Euclidean connections in a Finsler manifold
and to give a geosmetrical interpretation to the connections defined by S.S.
Chern. Throughout the whole discussion the following conventions are adopted :
By differentiability we understand always that of class C=, and differential
forms of degres 1 of class C> are all called as 1-forms. Given a 1-form
over a manifold M by », we denote the restriction of it at a point x of M
by w,. We denote w, by w, too for brevity if it is not ambiguous from the
context. For vector field and so on this convention is also applied.

Let us assume that Latin indices b, ¢, d, B, i, 7, &, I run from 1 to »n
and Greek indices «, B, vy, 8 from 1 to n — 1.

The auther wishes to express here his sincere gratitude to Prof. S.
Sasaki for his kind assistance during the preparation of the manuscript.

1. Preliminaries. Let M be an n-dimensional connected differentiable
manifold. Let T(M) be the tangent bundle over M so that each point of the
bundle space T is represented by a pair (x, ) of a point x€ M and a
tangent vector ¥ at x. Let p be the canonical projection T"— M. For a coor-
dinate neighbourhood V of M we can eadow to each point (x, ¥) of p~%V) with
coordinates ¢, y* where af are the coordinates of x and »* are the components
of y there. Such coordinates are called canonical local coordinates, briefly C-
coordinates, in T (induced from V). In T we denote by T° the open submani-
fold T — N where N is the set of all zero-vectors of M. If (x;, 3) and (%, ¥2)
are two points of 7° such that x, = x, and y;, = Ay, for A >0, we shall say
that these two points are equivalent. We denote the quotient space of T° by
the equivalence relation by @ and its point, say a coset containing (¥, ),
by (x, Ay). @ is also regarded as the bundle space of the tangent sphere
bundle Q(M) over M and let ¢ be the canonical projection @ - M of the
bundle. Given a coordinate neighbourhood V of M, each point (x, Ay) of
¢ (V) can be endowed as its coodinates with &%, Ay*, where &f, »* are the
C-coordinates of (x, ») induced from V and A3»* mean homogeneous coordina-
tes up to positive number. Such coordinates are also called C-coordinates in
@. Next, let us attach at every point (x, Ay) of @ the tangent vector space
M, of M at x € M and denote the attached space by M(x, Ay). (Note that
the space M(x, Ay) is not related to the tangent space of @ at (x. Ay).) Let
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P(x, A y) be the set of all n-frames in M(x, Ay) and put P = U(z‘meQP(x, Ay).
Let p be the mapping P— @ which maps all eleneats of P(x, Ay) to (x,Ay).
A point z € P can be thereby represented by (x Ay, Xi,...... , Xn) where
(x, Ay)=p(z) and (X, ....,Xn) is an n-frame in M (x, A y). Moreover, given
a coordinate neighborhood V of M, we can eadow each point (x, A%, X3, .. ..,
X.) of (gp)~W(V) with coordinates &', A3, X, ...., X! where »’, Ay* are the
C-coordinates of (x, Ay) induced from V and X, are the components of a
vactor X;in V. Such coordinates are also called C-coordinates in P. P is also
regarded as the bundle space of a principal fibre bundle with base space @,
standard fibre GZL(n) and canonical projection p. We denote this bundle
by PQ). In the spaces T, @ and P we admit their C-coordinate systems
as allowable ones and we shall treat then as differentiable manifolds.

Next, let us suppose that M has a Finsler metric, that is a continuous
function L(x, ») defined on 7", which satisfies the following conditions:

1) Lix, ty)= |t|L(x,y) for aay real number £.

2) L'x, y; is differentiable and positive on 7%.
Let V be any coordinate neighbourhood of M. In p~Y(V) N T° with the
C-codrdinate systen (x',5%) we put

1 9:L%x, )
9B = 5 oy

Thaen g:; = gi;(x,y) are homogeneous functions of degree 0 with respect to
‘y* and hence are also regarded as functions in ¢-(V). It is well known that
all of them determine on M a covariant tensor field of degree 2 which is
called the fundamental tensor field of M. If the matrix (g:;) is positive definite
everywhere, we say that the Finsler metric is positive definite. We shall
impose this condition upon our Finsler metric from now on. On the other
hand, since we treat Z(x, ») as the length of the vector y the lengths of curves
(of class D!) are naturally defined, and by geodesics we mean the curves which
satisfy Euler's differential equations, as is well-known.

REMARK 1. In a connected differeatiable manifold, if the second counta-
bility axiom holds it always aimits a positive definite non-Riemannian Finsler
metric, and the converse is also true (see Appendix).

As M has a positive defiaite Fiansler metric we can moreover construct
a subbundle of P(Q) as follows: Let V be any coordinate neighbourhosod of M
with coordinate system (x%) and (¥, Ay) be any point of ¢ %(V). In the tan-
gent vector space M, at x< V we define a scalar product of every two
vectors 9/0x, 5/2x® by gw(x, Ay), and suppose that such M, is attached at
(x, Ay). Heace it results that the vector spaces attached on @ are Euclidean.
At any point (x, Ay) € @, the unit vector y/L(x, ¥) considered as one of
M (x, A y) is called the supporting vector of M(x,1y)and let P° be the set of
all orthonormal frames (X, ....,X») in all M(x, A») such that their #n-th
vectors Xn» consist of supporting vectors. Thex it follows that P° has sub-
bundle structure of PQ). We denote the bundle by P%Q) and the canonical
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projection P? — @ by p% = p|P°). We denote, in general, any point (x, \y, X,

., Xu) of P° and its C-coordinates by (%, Ay, #%;, ...., #s) and », Ay, ui,
.., #., using # instead of X.
Now take a point z= (%, Ay, %, ...., #x) of P° and let &, Ay, !, ....

u,i,' be its C-coordinates. Then it is clear that

u, = ' |L(x, ), gi;wiu} = Sap, giusyy =0.

Moreover let Z be any tangent vector of P° at z. If we project Z by gp°,
we get a tangent vector gp%(Z) of M at x and we denote by w?(Z) its com-
ponents with respect to the frame (#;) of M., i.e." the frame (u;) of M(x,\y)
regarded as that of M, (such a note is omitted from now on). Then it is easily
verified that o' are expressed by 1-forms o' = v} d¥' on P° in terms of C-
coordinates where we have put v{ %, = §]. Note that o7 = oL/

LEMMA 1. 1) There exists only one set of lforms w! and differentiable
functions H (Ht = H, = Hyj = 0) on P° which satisfy do' = o' Ao} and o] +
wh= Hjwp 2) 1forms o, of(a < B), w; are linearly independent. (See[1])

PRrOOF. Let Aug, pf, be unknown functions on P’ such that Aeg = Mg,

#iy = pb,. Under a C-coordinate system («, My, %  ...., u]) if we put
ol = v8du}t — (ué uk 53%,{ + Mg)m” + pgy®?,
ol = —uk a_jfial;k ay + % u{,( gff - 33‘18%;’_ y")(o"
1.1) + aluds 5%%; o 1+ Nagoo?,
wy = —wy, w; =0,

oG
HYy = L8 wlius,

o
where L = L(x,y), then we can find only one set of Ass, uf, which satisfy
1.2) do' = o' \o. o]+ o) = Ho}.

Moreover it is easily seen that o] and Hj; which satify the relation (1.2) do
not exist except those of (1.1). Next 2) is proved from the facts that the
matrix (o?L/oy'oy*) is of rank # — 1 and 1-forms vf du’ (o < B) are linearly
independent.
Let a = {(a]) be any element of O(n) satisfying a® = a% =0 and put blai
= 8}. :Let' R« be a right translation on P° by @. Tiaen we can easily verify
1.3) R0t = bho*, o' = R¥.alo".
“We shall now denote the matrix (o)) by », and by R!-o we mean the matrix
(R* - ). ‘ 4
LEMMA 2. RY-w = a'wa.
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Proor. From (1.3) and Lemma 1,
(1.4) d(Rfo*) = bjdw* = biw' No¥ = b(Rf-ajo) Ao = (R} - o*) A bjw'aj,
(1.5) d(R*- 0') = R'- do' = R*« (0" \w}) = (RY - ") N(RY - @}).
If we compare (1.4) with (1.5), for certain functions p/, (o), = pi;) on P° we
obtain
RY- 0! = By} + ph(RY - o).
Using (1. 3), the last equation can be written as
(1.6) R« ] = blwjd: + p|bio".
On the other hand, from Lemma 1,
R:- o + RY o} = Rt Hjol.
Substituting (1. 6) into this,
1.7 blw;, @} + ph b, " + bl e} a; + pj, b, "
= Sax Hy, @) &5 al(b} w;, a; + pg, ")
Now, when we put
(1.8) Aip = Zux Hy, @, a;ai piy b, — ply by, — P B,
(1.7) is rewritten as
b w}, ! + b o}, d} = S H}, @) &} al b} o, a + Aiyo”,
This implies
o] + o} = H; o} + b} Ay 'bh.
By applying Lemma 1,
Aua = 0.
Therefore, if we put
B}, = 5. Hj, a) a}a,
(1. 8) is rewritten as
1.9) Bi; P = Pl + Pl
Now, using Bf, =0, we get p], = —p}, from (1.9), and hence pJi. =0. So,
putting 2= » in (1.9) we get pj; =0, and from (1.9), p/, =0. By applying
this in (1.6) our assertion is proved.

From Lemma 1, the 1-forms o', wf(a < B), »? are linearly independent
and the number is equal to the dimension of P?. Therefore, corresponding
to the set of the 1-forms, the dual base i.e. a set of vector fields which we
call their dual vector fields, does exist and we denote it by (Ef, E8, ETm).
The vectors E¥, E E" at a point span evidently the tangent vector space of
P and an n-dimensional tangent vector subspace spanned by Ef only is said
to be a natural subspace.

LeMMA 3. For the vectors E*, E3(a < B), E* at a point z = (%, \y. %, .... , %n)
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of P°, 1) gp® (E¥) = u?, 2) vectors p*(EL) at a point (%, Ay) € Q are linearly
independent and are tangent to the fibre of QM) over x, 3) vectors EE are
tangent to the fibre of PY(Q) over (x, AY).

ProoF. As the j-th component of a vector @gp%FE¢) with respect to a
frame (#;) of M, is o/(E*) = &%, 1) holds good. Next, from «*EZ) =0, E%is
expressed by the following type :

” n -1
9 0 _ (ﬂ:_l),_(ﬁ_—_z_))

(1.10) Eas 5" T gbt o~ (r = 3
where o* and 7* mean essential parameters of the standard fibres O(n — 1)
and S™! of PYQ) and QM) respectively. So, using wi(Ey) = 8g. We see easily
that 2) is true. Moreover, as it follows that E? are of the type 2 a:+3/3¢q",
3) is also clear.

LEMMA 4. Given a vertical vector Y of PYQ) at z € P°, an element of the
Lie algebra of the standard fibre GL(n) of P.Q) generated by Y has a matrix
o(Y), as its components with respect to the natural frame of the Lie algebra.

Proor. Let (&', M, #!, ....,ul) be a C-coordinate system at z. It is
clear that w®(Y) = vdu’(Y) and 0 (Y) = 0. Now, since dul(Y) = dy'/L)Y)
=0, we have »#dul(Y) =0. And v7dul(Y)= —uldv(Y) = —uld(oL/»')Y)
=0. So w(Y) = (0i(Y)) = (v! dui(Y)). This fact suffices to show our assertion.

From now on, we shall treat the Euclidean vector spaces attached on @
as Euclidean spaces. Let 7 be a differentiable transformation of @ onto itself
defined by the mapping ((x, \y) — (¥, — Ay)) where — Ay means A( — y). Then,
I induces for every point (x, \y) € @ the mapping M(x, A y) > M(x, — Ay) whose
mutually corresponding points are of the same point of M,. We denote the
mapping by 7 too. I induces moreover a differentiable transformation of P?,
that is a mapping (%, Ay, %1, ....,%n-1,%a) > (X, — Ny, %y, ..., Un-1, — Un))Of
R, P° onto itself. It is also denoted by 7.

LeMMA 5. The natural subspace field is invariant by the right translation
and the differentiable transformation I on P°.

Proor. We denote the natural subspace at z € P° by N, and put 2 = Rq-2.
If X&€N, oX)=0. Therefore, (R*w)(X)=0 by virtue of Lemma 2.

Hence, w(R:-X)=0. So we have Ru:N, = N;. Next, from (1.1) we can easily
show

(1.11) I*-wf = of and I*o" = —

We put 2/ = Iz. Then (I*-w)X)=0 by o(X)= 0. Hence, w//-X)=0. This
shows I'N, = N,.

2. Euclidean connections. Let C be an isometric mapping between two
infinitesimally neighbouring Euclidean spaces attached on Q, for which the
following conditons are satisfied :
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1) For a coordinate neighbourhood V of M and for each point # = (%,
A) € ¢-((V), if a frame (&) in M(x) (= M(x,Ay) and u also denotes the
origin of (e:)) is the natural frame at x (its coordinates are &*) € V, we can find
1-forms a_>{ in g~}(V) such that C is determined by du = dx’e; and de; = (;{e,.

2) C is invariant by 7, that is C= ICI.
Such a mapping C is called an Euclidean connection in M. Moreover, an
Euclidean connection in M, by which supporting vectors in Euclidean spaces
attached at points on the same fibre of Q(M), are never mutually parallelly
mapped, is said to be regular. When an Euclidean connection' is given in
M and we express it in terms of orthonormal frames (#:) in M(%), % = (%, Ay)
€ @, we can find 1- forms o) on P such that the connection is determined by

(A) du = wiu;, dui =mhu; (T = of).

A matrix 7 = (7)) is called its connection form on P°, and by a horizontal
subspace (in P°) at z € P’ we mean a tangent vector subspace consisting of
‘all vectors X at z which satisfy #(X) = 0. The 1-forms = are characterized

by the following cqnditions:
a) For any vertical vector Y of P%Q), m(Y) = »(Y) (cf. Lemma 4), b) =/
+7i=0, c) Rym=a"'ma, Q) I*- 78 =73, I*w? = —mrl.

THEOREM 1. A necessary and sufficient conditions that a mapping (A)
determines an Euclidean connection is that ! be expressed by the type
(B) = m’if + yFol + Yok,
where v, vl are differentiable functions on P° which satisfy the following
conditions :
1) "=0, ¥+ =—H and o)+ v =0.
2) In a neighbourhood with C-coordinate system (x*,\3*, ui, ....,u') of P°
there exist functions Gyq and Hyey of X, Ny only, which satisfy
v = Goea ) uju} and vy}, = Hpca 00000},
3) For a point z € P°: v (I'2) = —v3'(2), Va,(I-2) = v5,(2);
if any one of i, J, k, is n, yF(I-z)= y¥z), vi(I2) = —v.(2);
if any two of i, 5, k are n, vl (I-2) = ¥}.(2).
Further, if and only if the Euclidean connection is regular,
det. | 88 — % |( = det. | 88 + y"#|)=0.

Proor. ‘We shall first prove the necessity. By Lemma 1, #/ (¢ < j)
can be put

mi= 3, o L+ vl el + Yho

As the condition a) must hold good, 7/(Y) = w!Y) for any vertical vector
Y of PYQ). If we substitute a vector Ei(y < d) for Y we get

2a<ﬁvl’g 8“7 838 = 857 8"8, i.e 75“; = 81'7 8”-
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Therefore, by using the condition b) we see that =/ are expressed by the
type (B), i.e.

@1 7l = ol + el + oot
together with the relations
vir=0, v+ v = —Hfj v+ V=0,

which are our assertion 1). On the other hand, for z € P° let &, Ay, 2
u) and #, Ny, %, ...., u. be C-coordinates of zand z( = R.-z) respectively.
Then u! = ula*. Let us put
Vi%2) = Guea(2)w” wlte}l, Vi(2) = Hocil2 00" uj' u,
V&) = Gue (D) wl, Vi(2) = Hoed 2} sl
¢=(ph)=""wp), ¥=)=io".
By using properties of a matrix e and R} (see Lemma 2), we get
R (p)z = 3k Gueal?) 1) 5, w4 &) @5 (0})s,
bl )t = 3k Guea(2) w, 05 @ @ (o)),
2.2) R:-)): = Hoe(2) wy ; u @ @) (@),
bW @t = Hoed2) wi, 4y, @ @ ("),
Now, from Lemma 2 the condition c) is equivalent to
R+ V) =a ¢ + Va
If we substitute (2.2) into this, from Lemma 1 we get easily
Groi(2) = Goea(2), Hooa(2) = Hiea(2)a

This means that 2) holds true. Next we shall apply the condition d) to
(2.1), then

I*(0f + vY o) + ¥EL 0F) = wf + 7¥Y o) + 75, 0,

(g + 7 @) + V5, 0 = —ep — VY 0f — Y5 0.
‘However, I*-w® = o® and I*-0" = —w". Using these together with (1.11) if

we simplify the above relations, we get

I*yy = =03, I*Yay = Yay, v =97,

IYen = ~Yanr TVay = —Yay TV = Vou
These relations are expressed as 3). So, th: necessity has been proved, . and
the sufficiency is now clear from the above proof.

Finally if det. |08 — v2f| =0 at a point 2, € P°, we can find a vector

Z at z, which is spanned by n — 1 vectors E* and satisfies 7%(Z) = 0. This
contradicts with the regularity. So, det. |88 — y*f| %0 on P?.The converse
is clear.

By Theorem 1 it is evident that a regular Euclidean connection (A) may
exist satisfying i, = 0, i.e. the connection such that =/ are expressed as
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© ! = ] + 7o,
where /* are differentiable functions on P° satisfying the conditions of

Theorem 1. Such a regular Euclidean connection is called a Chern’s connec-
tion [2].

REMARK 2. In an Euclidean connection (A) associated with (C), when we
put v/* = —(1/2).-HY; we get a Chern’s connection defined by E.Cartan [1] [2].
We shall call this connection Cartan’s connection.

REMARK 3. There exists an infinite number of regular Euclidean connec-
tions, especially Chern’s connections (see Appendix).

THEOREM 2. If a Chern’s connection is given in M, its horizontal subspace
field in P° coincides with the natural subspace field. Conversely, an Ewuclidean
connection of M whose horizontal subspace field in P° coincides with the natural
subspace field is a Chern’s connection.

Proor. We denote the given Chern’s connection by (A) associated with
(C). As the 1-forms 7'( = o), (@ < 8), =" on P° are linearly independent
from the regularty, their dual vector fields do exist, and we denote the ones
corresponding to 7' by V¢. Then we see easily V¢= Ef. Accordingly the
former part is true.

In order to prove the latter part, we denote an Euclidean connection
satisfying the given condition by (A) associated with (B). However this
condition shows that =/ E*) = 0. Hence /, = 0. Therefore, =/ are expressed
by the type (C). On the other hand, if det. |88 4+ v"| =0 at z, € P’, we
may find a vector Z of the type Su<gal Ef + 3ubs EX at 2z, satisfying o(Z)
= 0. This contradicts evidently with the given condition. Hence
det. [88 + ™| 0. So the Euclidean connection in consideration is a Chern’s
con- nection. This is our assertion.

THEOREM 3. In a regular Euclidean connection of M, a necessary and
sufficient condition for it to be a Chern’s connection is that it gives rise to no
torsion when the supporting vector is parallelly displaced.

Proor. We shall denote a Chern’s connection by (A) associated with
(C). Then, for the torsion (IT?) (II* = dn* — 7' A 7i) we have IT* = —* o’ Aew?.
Hence, I1¥(Z,, Z,) =0 for any vector fields Z,, Z, which satisfy #%Z)) =
7%Z,) = 0, because w?(Z;) = 0¥Z;) =0. This means that the condition of
Theorem 3 for the torsion holds true.

~ Next, we denote a regular Euclidean connection which satisfies the con-
dition for the torsion by (A) associated with (B). Now, this condition is
equivalent to II¥Z;, Z,) =0 for any two vector fields Z,, Z, which satisfy
w4(Z) = w%Z,) = 0. However II' = —y* o’ A 0} — %', @’ A @*. By using this
the given condition implies

2.3) VG — Y Chivp — vh + v =0,
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where (C2) is the inverse matrix of (83 + ¥2f). From (2.3) the following
relations follow :

(2.4) Y Co YV — Vi Co Yoy — Yam + Yy = 0,
Yy CaYias — V3 CLvEy — Vis + 5y, =0,
Y CoYss — M Co Vo — Yis + V= 0.
On the other hand, C5(8% + v3*) = 85 and hence

(2.5) Ciynr =8 — .
By substituting (2.5) into (2.4), and using 1) (of Theorem 1), we get
2.6) v, = 0.
Next, substituting (2.5) into (2. 4),,
2.7 G 7 = C3 %y
If we simplify (2.4); by 1), (2.5) and (2.6),
(2.8) — CvEs = Vine

By (2.7) and 1), from (2.8) v}, = 0. Again from (2.8), 3, = 0. By this and
(2.6), from (2.3) v} = vl,. Moreover, by 1) we get ¥/, = 0. Therefore (B)
is rewritten as

7 = o]+ vl .
That is, the Euclidean connection in consideration becomes a Chern’s con-
nection. Our assertion has thereby been proved.

In M let I: ot) 0 =¢=<1) be a curve of class C* whose tangent vector
%'(t) is not zero. Then a curve I':(x(), Ax'(#)) on @ is called the tangent
curve of [. If an Euclidean connection is given in M, a curve on the Euc-
lidean space M(x0), Ax'(0)) obtained by developing Euclidean spaces M(x(t),
A¥'(t)) successively along //-! is called the naturally developed curve of 1.

LEMMA 6. For any integral curve g°(s) of a vector field E™ the curve g(s)
= gp*(g%(s)) in M is a geodesic whose parameter s is curve-length. Conversely,
for.any geodesic y(s) (s:curve-length) there exists an integral curve ¢°(s) of E™
such that qp®g°(s)) = g(s).

Proor. We shall first prove the former part. By Lemma 3 it follows
directly that tangent vectors of g¢(s) are unit vectors. So, s is regarded as
the curve-length of the curve g(s). If we put g’(s) = p°(9°(s)), then g’(s) is the
tangent curve of g(s). By this and Theorem 2, when Cartan’s connection is
given we see easily that the naturally developed curve of g(s) is a straight
line. Therefore g(s) is a geodesic of M, i.e. the former part is true. Next,
if we use the fact that, when a point of M and there a direction are given,
a geodesic passing through the point and having the direction is completely
determined, the latter part is easily verified.

THEOREM 4. In a regular Euclidean connection (A) associated with (B),
a necessary' and sufficient condition that the naturally developed curves of
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all geodesics be straight lines is that <", = 0 (cf. Proof of Remark 3, Appen-
dix).

PrOOF. At first, by the regularity the 1-forms 7i( = of), 7w3(a < ), L
are linearly independent on P°. Hence their dual vector fields do exist, and
we denote the one corresponding to 7 by V" In the vector field V*, let h°
be any of its integral curves, and put &’ = p°%°), h = qk'). From o (V") =
3" we see that the curve 7’ is the tangent curve of 2, and the naturally
developed curve of % is a straight line. o

Assume now that the naturally developed curves of geodesics are of
straight lines. From this and the regularity, we can easily see that the
curve h is a geodesic. So, by Lemma 6 there exists an integral curve of the
field E*, which is mapped onto %’ by p’. Hencé we can find a vertical vector
field Y of F%Q) which satisfies V* = Y + E™ at each point of P°. However
7"(V") = 0. So, from Lemma 3 we get 7, = 0. The necessity has thereby
been proved, and the sufficiency is now clear.

COROLLARY. In any Chern’s connection, the naturally developed curves
of all geodesics are straight lines. -
(This is also verified from Lemma 6 and Theorem 2.)

In P(@), let zbea point of P’ and let &, A%, X, ...., X, be C-coordi-
nates of z. In such a C-coordinate system, if we vary the coordinates Ay’
only,leaving &', X, ...., X fixed, a submanifold of P is obtained. We
denote it by_ S(z). If we project a vector E" at z on the tangent space of S(z)
(with respect to the fibre), we obtain a vector of the type E'LIbt-a/a-r‘(put‘

as=0 in (1.10)). - We denote this by F. Moreover we denote by L* the"
vertical vector fields of P(Q) generated from the vectors L] which form the
natural frame in the Lie algebra of the standard fibre GL(n). Next, given a
Chern’s connection ini M, the horizontal subspaces on P and so on are
defined as defined in F?.

THEOREM 5. Given in M a Chern’sconnection (A) associated with (C), then
its horizontal subspace in P at a point z € P is spanned by the natural subspace
and n— 1 linearly independent vectors F* — 3 yv'* Li* at z.

Proof. . When we consider on P the given Chern’s connection, we assume
that it is expressed by - :

du = 0°X;, dX;=0!X,
Now let («, Ay, Xi, ....,X) and (!, N, uj,.... u}) be the C-coordinate
systems in P and PP respectively induced from a coordinate neighbourhood
of M. Then we have following relations :
0 = Yjdx,
0! = Y]dXj — Y| du; v} X, + Y{ujm} v, X},
where we have put Y] X%=6]. When we consider the restriction of the 1-forms
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6%, 9!, on P’ we shall denote them by 6, 6°. Then,
0" = 7t = ',
0P = vl dX? — vl du’ + wi=v]dX} + vI* 0 mod o?).
However,as the 1-forms ', 6!, } are linearly independent, their dual vector
fields in P defined on P° do exist We denote them by K!, K, K@ respe-
ctively. These vectors at z € F° span the tangent space of P and at the point
we have the following relations :
2.9) K =E, K'=Lk* K!=F!—73;;v*L¥*
This is easily verified by
oY (EY) = 8%, ONE') = (v dXy — v}, duyy + m)E) = 0, wy(E*) = 0,
WML = 0, ONLPY) = v}, AXULY) = 8 &Y, WYL =0,
@ (Fr — 3 ;9 L*) = 0, OFz — 3, ;* L%
= (0,dX; + YE WP(Fy — Si ;v L) = v — v =0,
w}(F2 — 3 ;1" L*) = 8.
The relation (2.9) shows us that Theorem 5 is true.

ReMARK 4. Given in M a Chern’s connection, the horizontal subspace field
on P is invariant by any right translation R,(¢ € GL(n)) and by a differen-
tiable transformation J((x, Ay, X1, ..., Xa)—>(*, — M, X3, ...., X)), and
the canonical projection p maps the horizontal subspace at a point z € P
isomorphically onto the tangent vector space of @ at p(z).

APPENDIX

We shall here attempt to prove Remarks 1 and 3.: Unless defined otherwise,
the previous notations will be adopted, as it is.

Proor orF REMARK 1. Let M be an n-dimensional connected differentiable
manifold. Assume that the second contability axiom holds in M. Then M
has a positive definite diferentiable Riemannian metric. Under this metric we
denote by L(x, y) the length of a vector y at x € M. We can moreover find
a continuous function L,(x, ¥) on T which satisfies the following conditions :
1) Lyx, ty) = |t| Ly(x,y) for any real number #, 2) L.x, y) is differentiable -
and non-negative on 7%, 3) the carrier is mapped by p onto a compact subset
in M. When we put

L(x, y) = &/ Li(x, y) + ELY(x,5)
for a positive constant & L(x, ¥) is a continuous function on T° which satisfies
the conditions for Finsler metric on M, that is, M has a Finsler metric.
We shall determine & ( > 0) such that this Finsler metric becomes positive
definite. This is possible by the above 3). Accordingly there exists a positive
definite Finsler metric in M, and for a suitable L.(x, y) it is evident that
it becomes non-Riemannian.

Next, assume that M has a pcsitive definite (non-Riemannian) Finsler
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metric. For each point x € M, we denote by @(x) a countable dense subset
in the fibre of Q(M) over x and we regard Q(x) as the set of unit vectors at
x. Let o be a fixed point of M(x) and we describe as a broken geodesic a
curve obtained by joining a finite number of geodesic-arcs (which we call
simply its arcs). Let & be the set of all broken geodesics starting from the
point o such that, any of their arcs has a vector of Q') as the tangent
vector at the initial point ¥ and a rational number as the length. Let ¥ be
the set of terminal points of all broken geodesics of &, then ¥ is evidently
countable. We shall prove that ¥ is dense in M. For x&€ M — ¥, join o
and x with a broken geodesic 7, and cover !/ by a finite number of simple
convex neighbourhoods. (By a simple convex neighbourhood we mean a
neighbourhood V such that any two points in V are joined by only one
geodesic-arc wholly contained in V.) In these neighbourhoods we denote the
union set by W. If we consider broken-geodesics of & contained in W, we
can find a subset of ¥ which has x as a accumlating point. Hence, ¥ is a
countable dense subset of M. However, since M is a metric space similarly
as in Riemannian case, the second countability axiom holds in M.

Proor oF REMARK 3. Let M be an n-dimensional connected differentiable
manifold with a positive definite Finsler metric. Let V be any coordinate
neighbourhood of M. and let (¥, A%, %, ....,%.) be the C-coordinate system
of (gp°)-Y(V) induced from V. We can find a differentiable skew-symmetric
covariant tensor field S of degree 2 on M whose carrier is compact and whose
components Sy, in V are expressed as functions in ¢g~(V) satisfying S..(x, \y)
= Suc(x, —Ay). If we put there

e = 1,95

St

U Uy, Uy

then we obtain functions I'*f defined on P° and their carriers are compact.
Hence there exists a constant &(=+0) such that det. |88 — &I'*f| =0 on P°.
Further we can find a differentiable covariant tensor field H of degree 3 on
M whose components H,.; in V are expressed as functions in ¢g~!(V) satisfying
Hiyey = —Hzg and Hoeo(x, \Y) = Hpes(x, — Ay). Using the above & we shall put

¥k = (— %L%ﬁ:ﬁ” + &L aaf;f )u? w;ny, vl = Hoa %) 0 u;.

Then we obtain also functions «y/* and /. defined on P°. They satisfy all the
conditions of Theoren 1. Accordingly a regular Euclidean conhection is
obtained. By the above statements we can easily understand that our assertion
is true. (Note that y?, = 0 if H is skew-symmetric with respect to all indices. )
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