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Introduction. In a general Finsler space S.S. Chern [2] defined an
infinite number of Euclidean connections which include the connection defined
by E. Cartan and others as a particular cases. The purpose of this note is to
discuss in a modern view-point Euclidean connections in a Finsler manifold
and to give a geometrical interpretation to the connections defined by S.S.
Chern. Throughout the whole discussion the following conventions are adopted:
By differentiability We understand always that of class C°°, and differential
forms of degree 1 of class C°° are all called as 1-forms. Given a 1-form
over a manifold M by ω, we denote the restriction of it at a point x of M
by ωx. We denote ωx by ω, too for brevity if it is not ambiguous from the
context. For vector field and so on this convention is also applied.

Let us assume that Latin indices b, c, d, h, i, j , k, I run from 1 to n
and Greek indices α, β, y, 8 from 1 to n — 1.

The auther wishes to express here his sincere gratitude to Prof. S.
Sasaki for his kind assistance during the preparation of the manuscript.

1. Preliminaries. Let M be an w-dimensional connected differentiable
manifold. Let T(M) be the tangent bundle over M so that each point of the
bundle space T is represented by a pair (x, y) of a point x € M and a
tangent vector y at x. Let p be the canonical projection T —• M. For a coor-
dinate neighbourhood V of M we can endow to each point (x, y) of p~ι{V) with
coordinates oί, yi where oά are the coordinates of #andy are the components
of y there. Such coordinates are called canonical local coordinates, briefly C-
coordinates, in T (induced from V). In T we denote by T° the open submani-
fold T — N where N is the set of all zero-vectors of M. If (x1} yθ and (x2, y i)
are two points of T° such that xλ = x2 and yλ = \y2 for λ > 0, we shall say
that these two points are equivalent. We denote the quotient space of T° by
the equivalence relation by Q and its point, say a coset containing (x, y),
by {x, Xy). Q is also regarded as the bundle space of the tangent sphere
bundle Q{M) over M and let q be the canonical projection Q-+M of the
bundle. Given a coordinate neighbourhood V of M, each point (x, Xy) of
q~ι(y) can be endowed as its coodinates with x*, Xy*, where xi, y are the
C-coordinates of (x, y) induced from V and λ y mean homogeneous coordina-
tes up to positive number. Such coordinates are also called C-coordinates in
Q. Next, let us attach at every point (x, Xy) of Q the tangent vector space
Mx of M at x € M and denote the attached space by M(x, Xy). (Note that
the space M(x, Xy) is not related to the tangent space of Q at (x. Xy).) Let
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P(x, Xy) be the set of all ^-frames in M(x, Xy) and put P = \Jix

Letp be the mapping P-+Q which maps all eleneats of P(x, Xy) to (x,Xy).
A point z <Ξ P can be thereby represented by (x Xy, Xu , X») where
(Xi Xy) = p(z) and (Xu ....,Xn) is an n-ίrame in M (x, Xy). Moreover, given

a coordinate neighborhood V of M, we can endow each point (x, Xy, Xi, . . . . ,
X») of (qp)-\V) with coordinates a*, λy, Xϊ, ....,JζJ where **, Xy* are the
C-coordinates of (x, Xy) induced from V and X) are the components of a
vactor Xj in V. Such coordinates are also called C-coordinates in P. P is also
regarded as the bundle space of a principal fibre bundle with base space Q,
standard fibre GL(n) and canonical projection p. We denote this bundle
by PKQ). In the spaces T, Q and P we admit their C-coordinate systems
as allowable ones and we shall treat then as differentiate manifolds.

Next, let us suppose that M has a Finsler metric, that is a continuous
function L{x, y) defined on T, which satisfies the following conditions:

1) L(xr ty) == \t\L{x,y) for any real number t.
2) L% y) is differentiate and positive on T°.

Let V be any coordinate neighbourhood of M. In p~ι(V) Π T° with the
C-co3rdίnate syste.n (x^y*) we put

1

Then (7o = gij(x,y) are homogeneous functions of degree 0 with respect to
y and hence are also regarded as functions in q~\V). It is well known that
all of them determine on M a covariant tensor field of degree 2 which is
called the fundamental tensor field of M. If the matrix (gtJ) is positive definite
everywhere, we say that the Finsler metric is positive definite. We shall
impose this condition upon our Finsler metric from now on. On the other
hand, since we treat L(x, y) as the length of the vector y the lengths of curves
(of class D1) are naturally defined, and by geodesies we mean the curves which
satisfy Euler's differential equations, as is well-known.

REMARK 1. In a connected differeitiable manifold, if the second counta-
bility axiom holds it always admits a positive definite non-Riemannian Finsler
metric, and the converse is also true (see Appendix).

As M has a positive definite Fiαsler metric we can moreover construct
a subbundle of P(Q) as follows .- Let V be any coordinate neighbourhood of M
with coordinate system (tf) and (x, Xy) be any point of q~\V). In the tan-
gent vector space Mx at x 6 V we define a scalar product of every two
vectors d/dxj, ojdxc by gjh(x, Xy), and suppose that such Mx is attached at
(x, Xy). He.ice it results that the vector spaces attached on Q are Euclidean.
At any point (x, Xy) € Q, the unit vector y/L(x, y) considered as one of
M (x, Xy) is called the supporting vector of M(x, Xy) and let P° be the set of
all orthonormal frames (Xu ,Xn) in all M(x, Xy) such that their n-tii
vectors Xn consist of supporting vectors. Thei it follows that P° has sub-
bundle structure of P^Qi We denote the bundle by P°ίQ) and the canonical
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projection P°->Q by p°( = p\P°). We denote, in general, any point (#, Xy, Xly

..,., Xn) of P° and its C-coordinates by {x, Xy, ux, — , un) and xf, \y, u\,

. . . ., uι

w using u instead of X.
Now take a point z = (x, Xy, uu — , un) of P° and let oά, xy, wj,

«*, be its C-coordinates. Then it is clear that

Moreover let Z be any tangent vector of P° at z. If we project Z by qp°,
we get a tangent vector qp\Z) of Λf at x and we denote by ω*(Z) its com-
ponents with respect to the frame («<) of Λfa,, i. e. the frame (ut) of M(ΛΓ, Xy)
regarded as that of Mx (such a note is omitted from now on). Then it is easily
verified that ω* are expressed by 1-forms ωί = v) dx1 on P° in terms of C-
coordinates where we have put υ{u\ = SI. Note that v" ^

LEMMA 1. 1) There exists only one set of 1-forms ω{ and diffemntiable
functions H\5 (H*j = Hfn = flj = 0) on P° which satisfy dω* = ω ΆωJ βwJ ω,? +
ωj=flgωj. 2) 1-forms ω', ωg(α </β), ω^ are linearly independent. (See[l])

PROOF. Let.λ«/3, μβ

ay be unknown functions on P° such that λαj8 = Xβcύ,
μξy = ̂ . Under a C-coordinate system (Λ*,λy, «* ...., fî ) if we put

(tij, U*

(l l)

»• = -»ϊ, ω^ = 0,

where Z = Hx,y), then we can find only one set of λαj8, μgγ which satisfy

( t 2) Jω* = ωf Λ<4 ω{ + ω} = fl* ω»

Moreover it is easily seen that ω? and ^ which satify the relation (1.2) do
not exist except those of (1.1). Next 2) is proved from the facts that the
matrix (d2L/dy13yk) is of rank n — 1 and 1-forms vξ duk

a (a < β) are linearly
independent.

Let a = <αj) be any element of O(n) satisfying a% = < = 0 and put fi/βj
= δ ,̂ .jfiet' Ra be a right translation on P° by «. Tnen we can easily verify

(1.3) J!*.ω« = δfcω
fc, ω* = R^kωK

We shall now denote the matrix (ω{) by ω, and by R*a-ω we mean the matrix

LEMMA 2. /?* ω = α"1 ωύr.
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PROOF. From (1.3) and Lemma 1,

(1. 5) d(Rt ω{) = R* dω{ = R^ {ωh Λ ω$ = (R* ωΛ) Λ (Λ* <4).

If we compare (1.4) with (1. 5), for certain functions p{k (p\k = ps

tel) on P° we

obtain

Using (1.3), the last equation can be written as

(1.6) iζ.α)ί = ^ ) X + / ) ^ .

On the other hand, from Lemma 1,

Substituting (1. 6) into this,

(1.7) &K«* + Pli ^ f t + ̂ X + /)J;

- Si.* HI dί <ή αj(*r ω^ β* + fa bhω*).

Now, when we put

(1. 8) Aijh = S.,* H^dl^a'l pit K - p'u % - fi %,

(1.7) is rewritten as

ί>lωidl + biωi^j = Xa,jcHica]acjatb-ωldί ^ AiJfίω\

This implies

ω{ + ωj = Hfj ωn

k

By applying Lemma 1,

Am = 0.

Therefore, if we put

(1. 8) is rewritten as

(1-9)

Now, using Z?£, = 0, we get / ^ = — p]k from (1.9), and hence pn

nk = 0. So,

putting k = « in (1.9) we get />£ = 0, and from (1.9), pfk = 0. By applying

this in (1.6) our assertion is proved.

From Lemma 1, the 1-forms ω*, ωβ

a(a < β), ωn

Λ are linearly independent

and the number is equal to the dimension of P°. Therefore, corresponding

to the set of the 1-forms, the dual base i. e. a set of vector fields which we

call their dual vector fields, does exist and we denote it by (E(, E%, El).

The vectors Ei, E%,E5 at a point span evidently the tangent vector space of

P° and an w-dimensional tangent vector subspace spanned by E* only is said

to be a natural subspace.

LEMMA 3. For the vectors E1, E%a < β), El at a point z = (x, \y, uτ , un)
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of P°, 1) qp° (Ef) = u\ 2) vectors p°(E£) at a point (x, Xy) e Q are linearly

independent and are tangent to the fibre of Q(M) over x, 3) vectors E% are

tangent to the fibre of P°(Q) over (x, Xy).

PROOF. AS the j-th component of a vector qp\Eι) with respect to a
frame («<) of Mx is ω}(Eι) = BH, 1) holds good. Next, from ω\Ei) = 0, En

a is
expressed by the following type :

(i.
S β1 t = 1

where σs and T* mean essential parameters of the standard fibres Oίw — 1)
and S"-1 of P°(Q) and Q[M) respectively. So, using ω%(E*) = δ ^ we see easily

that 2) is true. Moreover, as it follows that Eβ

a are of the type 2 aS'd/dσ

s,

3) is also clear.

LEMMA 4. GVvβrt <z vertical vector Y of P°(Q) at z € P°, an element of the
Lie algebra of the standard fibre GL(n) of P{Q) generated by Y has a matrix
ω(Y), as its components with respect to the natural frame of the Lie algebra.

PROOF. Let {of, λy', ι*J, , < ) b e a C-coordinate system at z. It is

clear that ω%(Y) = v\du\{Y) and ω%Y) = 0. Now, since duι

n(Y) = dty/LXY)

= 0, we have 2 ^ 4 ( 7 ) = 0. And !;?dι#i(Y) = — »* Jw?(y) = —uld{^Ll'dyi){Y)

= 0. So ω(F) = (ω{(Y)) = (v{dul{Y)). This fact suffices to show our assertion.

From now on, we shall treat the Euclidean vector spaces attached on Q
as Euclidean spaces. Let / be a differentiate transformation of Q onto itself
defined by the mapping ((x, Xy) -> (x, — Xy)) where — Xy means λ( — y). Then,
/ induces for every point (x, Xy) € Q the mapping M(x, \y)-+ M(x, — Xy) whose
mutually corresponding points are of the same point of Mx. We denote the
mapping by / too. / induces moreover a differentiate transformation of P°,
that is a mapping ({x, Xy, u1} ,w»-i,un)-> (ΛΓ, — Xy, uh , un-i, — un))of
Ra P° onto itself. It is also denoted by /.

LEMMA 5. The natural subspace field is invariant by the right translation
and the differentiable transformation I on P°.

PROOF. We denote the natural subspace at z € P° by Nz and put 5~= Ra z.
If X € Nz, ω(X) = 0. Therefore, (#* ω) (X) = 0 by virtue of Lemma 2.
Hence, ω{Ra*X) = 0. So we have Ra Nz = NΪ. Next, from (1.1) we can easily
show

(1.11) 7* ω2 = <*i and 7*.ωj; = - © ; .

We put z' = Zε. Then (/* ω)(X) = 0 by ω(X) = 0. Hence, ω'J-X) = 0. This
shows I'NZ = NZ'.

2. Euclidean connections. Let C be an isometric mapping between two
infinitesimally neighbouring Euclidean spaces attached on Q, for which the
following conditons are satisfied:
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1) For a coordinate neighbourhood V of M and for each point u = (x,

λy) € <r W , if a frame (βt) in M(u) ( = M(x, λ^) and u also denotes the
origin of (et)) is the natural frame at x (its coordinates are x?) <Ξ F, we can find
1-forms ω{ in q~ι{V) such that C is determined by du = dxιeι and cfe = ω/^.

2) C is invariant by /, that is C = 7C7.
Such a mapping C is called an Euclidean connection in M. Moreover, an
Euclidean connection in M, by which supporting vectors in Euclidean spaces
attached at points on the same fibre of Q(M), are never mutually parallelly
mapped, is said to be regular. When an Euclidean connection1 is given in
M and we express it in terms of orthonormal frames (ut) in M(u), u = (x, \y)
€ Q, we can find 1- forms 7r£ on P° such that the connection is determined by

(A) rfw = 77"%, J^t = fr[u5 (7Γ* = ω').

A matrix ΊΓ = (7rJ) is called its connection form on P°, and by a horizontal
subspace (in P°) at z ^ P° we mean a tangent vector subspace consisting of
all vectors X at z which satisfy τr(X) = 0. The 1-forms τr[ are characterized
by the following conditions:

a) For any vertical vector Y of P0(Q), τr(Y) = ω(Y) (cf. Lemma 4), b) π{

+ 7Γ} = 0, C) /?* 7Γ = β-1 TΓtf, d) 7* * 7Γ2 = 7Γ£, / * • < = -TΓ^

THEOREM 1. A necessary and sufficient conditions that a mapping (A)
determines an Euclidean connection is that ΊΓ{ be expressed by the type

(B) W = » ί + 7 ί X + 7kω*.

where y(k, 7 i are differentiate functions on P° which satisfy the following
conditions:

1) 7 f - 0, 7 f + γ? = -fl& βwJ 7ίfc + 7jfc - 0.
2) In a neighbourhood with C-coordinate system (#*,xy, u[t .. .., tή) ofP°

there exist functions Gbca and Hυca of x1, Xyί only, which satisfy

7 f = Gbca u\ u) u% and yj

i1c = Hbcύ u\ u] u'l

3) For a point z € P° : ^{I z) - - 7 Γ W , 72y(/ «) = τ2γ(«)
one of i, j , k, is n, y{k(I z)'•= 7?^), γ{fc(7 2) = -7^(2) ;
ίίi o of i, j , k are n, y{k(I z) = 7{k(z).

Further, if and only if the Euclidean connection is regular,

PROOF. We shall first prove the necessity. By Lemma 1, 77-/ (ί < j)

can be put

As the condition a) must hold good, ΊΓ{(Y) = ω?(F) for any vertical vector

y of P°(Q). If we substitute a vector Ev

δ(7 < δ) for y we get

7£ δ«v δ^δ = δ<7 δ ίδ, i. e. Ύξ = 8 ί y δ*.
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Therefore, by using the condition b) we see that ΊT\ are expressed by the

type (B), i. e.

(2.1) 9r/= ω ' + 7 ί * ω ϊ + y\kω\

together with the relations

ryjn = 0, 7/* + 7« = -Ήfj, 7L + 7j» = 0,

which are our assertion 1). On the other hand, for z € P° let Λ?, λy , u\, .-...,

^ and Λ1, λy, w{, , ŵ  be C-co:>rdinates of z and z( = /?α 2) respectively.

Then #f== #£ <z*. Let us put

Φ = (Φί; = (?/ Λ ω3), ^
By using properties of a matrix a and i?J (see Lemma 2), we get

^ίaί) «J wj «ί βj β} (ωj ),,

(2. 2) Λ* ^ ) ϊ = fiic^) ul u\ u£ a"; a] (ω%

VύΫnU d\ = flicrtίβ) u\ u\ ul d\ a) (ω%.

Now, from Lemma 2 the condition c) is equivalent to

K<Φ + Ψ") = «-1(0 + Ψ)a.

If we substitute (2.2) into this, from Lemma 1 we get easily

Gbc,(z) = Gbc,ι(z), ffbca(z) = fliC4(2)L

This means that 2) holds true. Next we shall apply the condition d) to
(2.1), then

However, /*•&>* = ωα and /* α)w = — ωn. Using these together with (1.11) if
we simplify the above relations, we get

-* /O AI /art' -1 /ay /aγ» -* tan 'an'

These relations are expressed as 3). Souths necessity has been proved, and
the sufficiency is now clear from the above proof.

Finally if det. |δ£ — y^β\ = 0 at a point z0 € P°, we can find a vector
Z at Zo which is spanned by n — 1 vectors E% and satisfies 7r£(Z) = 0. This
contradicts with the regularity. So, de t \S% — 7*01 Φθ on P°. The converse

is clear.

By Theorem 1 it is evident that a regular Euclidean connection (A) may
exist satisfying y3

ik = 0, i. e. the connection such that 7rf are expressed as
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where γ f are differentiable functions on P° satisfying the conditions of
Theorem 1. Such a regular Euclidean connection is called a Chern's connec-

tion [2].

REMARK 2. In an Euclidean connection (A) associated with (C), when we
put γ f = ~(l/2yHfj we get a Chern's connection defined by E. Cartan [1] [2].
We shall call this connection Cartan's connection.

REMARK 3. There exists an infinite number of regular Euclidean connec-
tions, especially Chern's connections (see Appendix).

THEOREM 2. If a Chern's connection is given in M, its horizontal subspace
field in P° coincides with the natural subspace field. Conversely, an Euclidean
connection of M whose horizontal subspace field in P° coincides with the natural
subspace field is a Chern's connection.

PROOF. We denote the given Chern's connection by (A) associated with
(C). As the 1-forms π\ = ω{), ir^a < β), 7r£ on P° are linearly independent
from the regularty, their dual vector fields do exist, and we denote the ones
corresponding to iτι by V. Then we see easily V£ = E*. Accordingly the
former part is true.

In order to prove the latter part, we denote an Euclidean connection
satisfying the given condition by (A) associated with (B). However this
condition shows that ΊΓ^E*) = 0. Hence 7ffc = 0. Therefore, ΊΓ[ are expressed
by the type (C). On the other hand, if det. |S£ -1- γf\ = 0 at z0 € P°, we
may find a vector Z of the type Σ * o «« E% + Σ Λ El at z0 satisfying 7r(Z)
= 0. This contradicts evidently with the given condition. Hence

det. |δg + 72? I Φθ. So the Euclidean connection in consideration is a Chern's
con- nection. This is our assertion.

THEOREM 3. In a regular Euclidean connection of M, a necessary and
sufficient condition for it to be a Chern's connection is that it gives rise to no
torsion when the supporting vector is parallelly displaced.

PROOF. We shall denote a Chern's connection by (A) associated with
(C). Then, for the torsion (IP) (IT = drπ* - TΓ'Λ TΓ}) we have Π* = -%" ω'Λω*.
Hence, W(ZU Z2) = 0 for any vector fields Zx, Z} which satisfy ΊΓ%{ZΎ) =
7r*(Z?) = 0, because ω^(Zτ) = ω%(Z2) = 0. This means that the condition of
Theorem 3 for the torsion holds true.

Next, we denote a regular Euclidean connection which satisfies the con-
dition for the torsion by (A) associated with (B). Now, this condition is
equivalent to W(ZU Z2) = 0 for any two vector fields Z1}ZZ which satisfy
wJίZi) = τrJ(Z2) = 0. However IT = ~yf ωj Λ *>2 - Ίι

jk ω
1 Λ ωk. By using this

the given condition implies
(2. 3) 7 f Cl y"βk - rί" C2 7j5ί - 7/fe + JL = 0,
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where {Cξ) is the inverse matrix of (δ£ + 7^). From (2.3) the following

relations follow:

(2. 4) Ίγ Cl rβn - 7T Ci %y - Ίln + ΊlΊ = 0,

Ύy" Ci y;8 - ΎΓ C2 7£7 - 7?δ + TSY = 0,

7Γ C2 7 ^ - 7Γ Cg yn

βn - ylδ + 7L = 0.

On the other hand, Cg(δ* + 7!}") = δξ and hence

(2.5) C2τΓ = «?- c ?
By substituting (2. 5) into (2. 4)x and using 1) (of Theorem 1), we get

(2.6) 7 ^ = 0.

Next, substituting (2. 5) into (2.4)3,

(2.7) ς γ ; δ = C^βV
If we simplify (2. 4)5 by 1), (2. 5) and (2. 6),

β. 8) -C?7^ δ = 7v

δn.

By (2.7) and 1), from (2. 8) y£Λ = 0. Again from (2. 8), y£δ = 0. By this and

(2.6), from (2.3) y{k = 7^. Moreover, by 1) we get 74 = 0. Therefore (B)

is rewritten as

TΓ/ = ω\ + 7ίfc ω».

That is, the Euclidean connection in consideration becomes a Chern's con-
nection. Our assertion has thereby been proved.

In M let /: x(t) (0 S ί S 1) be a curve of class C2 whose tangent vector
xf(t) is not zero. Then a curve V: (x{t), \x!(t)) on Q is called the tangent
curve of /. If an Euclidean connection is given in M, a curve on the Euc-
lidean space M(x[G), λ^(0)) obtained by developing Euclidean spaces M(x(t),
Xx'(t)) successively along V~ι is called the naturally developed curve of 7.

LEMMA 6. For any integral curve g°(s) of a vector field En the curve g(s)
= Qp°(g°{s)) in M is a geodesic whose parameter s is curve-length. Conversely,

for any geodesic g(s) (s: curve-length) there exists an integral curve g°(s) of En

such that Qp°(g°(s)) = ̂ (5).

PROOF. We shall first prove the former part. By Lemma 3 it follows
directly that tangent vectors of g(s) are unit vectors. So, s is regarded as
the curve-length of the curve g(s). If we put g'(s) = p°(g°(s))t then g'(s) is the
tangent curve of g(s). By this and Theorem 2, when Cartan's connection is
given we see easily that the naturally developed curve of g(s) is a straight
line. Therefore g(s) is a geodesic of M, i. e. the former part is true. Next,
if we use the fact that, when a point of M and there a direction are given,
a geodesic passing through the point and having the direction is completely
determined, the latter part is easily verified.

THEOREM 4. In a regular Euclidean connection (A) associated with (B),
a necessary and sufficient condition that the naturally developed curves of
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all geodesies be straight lines is that y%n = 0 (cf. Proof of Remark 3, Appen-

dix).

PROOF. At first, by the regularity the 1-forms 7τ*( = ω?;), τr^(α < β), TΓJ
are linearly independent on P°. Hence their dual vector fields do exist, and
we denote the one corresponding to iτn by Vn. In the vector field Vn, let h°
be any of its integral curves, and put h' = p°(h°)t h = q'Ji'). From ωι(V") =
Bin we see that the curve hf is the tangent curve of h, and the naturally
developed curve of h is a straight line.

Assume now that the naturally developed curves of geodesies are of
straight lines. From this and the regularity, we can easily see that the
curve h is a geodesic. So, by Lemma 6 there exists an integral curve of the
field En, which is mapped onto h! by p°. Hence we can find a vertical vector
field Y of P°(Q) which satisfies Vn = Y + En at each point of P°. However
irnjyn) = 0. So, from Lemma 3 we get ψΛn. = 0. The necessity has thereby
been proved, and the sufficiency is now clear.

COROLLARY. In any Chern's connection, the naturally developed curves
of all geodesies are straight lines.

(This is also verified from Lemma 6 and Theorem 2.)

In P(Q), let z be a point of P° and let st, λy', Xv ...., Xn be C-coordi-

nates of z. In such a C-coordinate system, if we vary the coordinates λy
only, leaving Λ̂ , Xv , Xι

n fixed, a submanifold of P is obtained. We

denote it by S(z). If we project a vector En

a at z on the tangent space of S(z)

(with respect to the fibre), we obtain a vector of the type ^i~1δpd/dτt('pub

as~0 in. (1.10)). • We denote this by F%. Moreover we denote by Lf* the
vertical vector fields of P(Q) generated from the vectors L{ which form the
natural frame in the Lie algebra of the standard fibre GL(n). Next, given a
Chern's connection in! M, the horizontal subspaces on P and so on are
defined as defined in p°<

THEOREM 5. Given in M a Chern's connection (A) associated with (C),then
its horizontal subspace in P at a point z € P° is spanned by the natural subspace
and n — \ linearly independent vectors F% — Σ ί j 7'ί"£f* a t z-

Proof. When we consider on P the given Chern's connection, we assume
that it is expressed by

Now let (Λ*, \y\ X'l . . . . , X^) and (Λ*, \y\ u\, .....u$ be the C-coordinate
systems in P and P° respectively induced from a coordinate neighbourhood
of M. Then we have following relations :

^ = Y}dx',

where we have put Yl X)-h). When we consider the restriction of the 1 forms
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0<, θl on P° we shall denote them by θί0, (9/°. Then,

<9f = ^ΛC* - vldu\ + τr{~vldXf + 7**©"(mod ω«).

However, as the 1-forms ωV #ί°>ωα are linearly independent, their dual vector
fields in P defined on P° do exist We denote them by Kι, Kf, Kl respe-
ctively. These vectors at z 6 P° span the tangent space of P and at the point
we have the following relations:

(2.9) # * = £ ' , JEf> = £/*, Jf£ = ̂  - Σ« j 7/β £f.

This is easily verified by

= δfcί, W ) = (*i««5 - KdK + wiXS1) = 0, *>«(£<) = 0,

7ίP ωjXFJ - Σί, j 7fα ̂ * ) = 7? - 7? = 0,

The relation (2.9) shows us that Theorem 5 is true.

REMARK 4. Given in M a Chern's connection, the horizontal subspace field
on P i s invariant by any right translation Rg(g ^ GL{rij) and by a differen-
t iate transformation /((#, Xy, Xu -..., X*)-»-(̂ , — \y, -XΊ, — , -XΉ)), and
the canonical projection ̂ > maps the horizontal subspace at a point z ζ P
isomorphically onto the tangent vector space of Q at p(z).

APPENDIX

We shall here attempt to prove Remarks 1 and 3. Unless defined otherwise,
the previous notations will be adopted, as it is.

PROOF OF REMARK 1. Let M be an w-dimensional connected differentiable
manifold. Assume that the second contability axiom holds in M. Then M
has a positive definite diferentiable Riemannian metric. Under this metric we
denote by Lι(x, y) the length of a vector y at x € M. We can moreover find
a continuous function L2(x, y) on T which satisfies the following conditions:
1) L2(x, ty) = \t\ L2(x,y) for any real number t, 2) L2(x, y) is differentiate
and non-negative on T°, 3) the carrier is mapped by p onto a compact subset
in M. When we put

L(x, y) = jE!ίx,y) + €L%x,y)

for a positive constant 6̂ , L(x, y) is a continuous function on T which satisfies
the conditions for Finsler metric on M, that is, M has a Finsler metric.
We shall determine 8 ( > 0) such that this Finsler metric becomes positive
definite. This is possible by the above 3). Accordingly there exists a positive
definite Finsler metric in M, and for a suitable L2(x, y) it is evident that
it becomes non-Riemannian.

Next, assume that M has a positive definite (non-Riemannian) Finsler
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metric. For each point x 6 M, we denote by Q{x) a countable dense subset
in the fibre of Q(M) over x and we regard Q(x) as the set of unit vectors at
x. Let o be a fixed point of M(x) and we describe as a broken geodesic a
curve obtained by joining a finite number of geodesic-arcs (which we call
simply its arcs). Let Φ be the set of all broken geodesies starting from the
point o such that, any of their arcs has a vector of Q{x') as the tangent
vector at the initial point xf and a rational number as the length. Let Ψ be
the set of terminal points of all broken geodesies of Φ, then Ψ is evidently
countable. We shall prove that Ψ is dense in M. For x € M — Ψ, join o
and x with a broken geodesic /, and cover / by a finite number of simple
convex neighbourhoods. (By a simple convex neighbourhood we mean a
neighbourhood V such that any two points in V are joined by only one
geodesic-arc wholly contained in V.) In these neighbourhoods we denote the
union set by W. If we consider broken-geodesies of Φ contained in W, we
can find a subset of Ψ which has x as a accUmlating point. Hence, Ψ is a
countable dense subset of M. However, since M is a metric space similarly
as in Riemannian case, the second countability axiom holds in M.

PROOF OF REMARK 3. Let M be an w-dimensional connected differentiable
manifold with a positive definite Finsler metric. Let V be any coordinate
neighbourhood of M. and let (xϊ, Xy\ u[, — , u ι

n ) be the C-coordinate system
of {qp°)~ι(V) induced from V. We can find a differentiable skew-symmetric
covariant tensor field S of degree 2 on M whose carrier is compact and whose
components Sbc in V are expressed as functions in q~ι(V) satisfying Sbc(x, λy)
= Sbc(x, — λy). If we put there

then we obtain functions Γα/3 defined on P° and their carriers are compact.
Hence there exists a constant £(Φ0) such that det. |δg — εΓ"P\ =4=0 on P°.
Further we can find a differentiable covariant tensor field H of degree 3 on
M whose components Hbc% in V are expressed as functions in q'ι{V) satisfying
Hbca = — Hcba and Hbc^x, λy) = Hbca(x, — λy). Using the above 8 we shall put

Then we obtain also functions y}k and γ{k defined on P°. They satisfy all the
conditions of Theoren 1. Accordingly a regular Euclidean connection is
obtained. By the above statements we can easily understand that our assertion
is true. (Note that y%n = 0 if H is skew-symmetric with respect to all indices.)
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