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1. Poisson Process X(t, w) [w € 2, 0=t < ] is a temporally and
spatially homogeneous Markoff Process [Stationary increments (in the strict
sense)] satisfying X(0,w) = 0 and X (¢, w) = integer greater than or equal to
zero for every o € () (o denotes the probability parameter)

PrX(, o) — X(¢,w) = il = PMEZEIT gty M
for ¢ > ¢, where 7 is a non-negative integer and A\ is a positive constant.
2. Definition of L..().
Ly(@) = tmsr(@) — (o)
where tw(w) = Min [T, X(T, o) = m],
ta(w) exists almost certainly by the right continuity property of the Poisson

Process. Further ¢, (o) is measurable. Thus Z,(w) is a non-negative random
variable.

3. A known Theorem. L, L,,...., Ly, .... are mutually independent
random variables, with a common distribution function F(x), where

_(1—e™ if x=0
P = {0 otherwise,
Further E(Ln) =1/
V(Ln) = 132, m=0,1,.....

This theorem was suggested by P.Lévy [1] and a rigorous proof was given
by T.Nishida [2].

4. Summary. From the sequence L, L,.... we form a new sequence
Y1, Y2, -... where y, is the mean of the first # elements, ¥, is the mean of
the next » elements and so on in the Z-sequence.

We define #, = Max (9,%,....Ym) and I, = Min (31,9,, ....9») We have
investigated the asymptotic behaviour of #, and [,,. Takeyuki Hida [3] has
defined

M, = Max (Lo,Ll, von .Ln_1>

and Z __L0+L1+....4-Ln—1

n = M" .
Using some of his results, we have obtained the asymptotic behaviour of
M, and Z,. We have also investigated the asymptotic properties of
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ll+t2+ ----+tm
m‘l

)

which we have shown converges in probability to QIX’

Ly+Li+ ....4+Loy
p” .

It follows immediately from the theorem in [3] that the characteristic
function of L is

5. Distribution of the arithmetic mean y =

= "%

Hence the characteristic function of y is
-
H=(1— ’_)
t=(1- 1
Hence the frequency function p(x) of y is
()"

EI‘(n) x* 1 g=™ if x>0

D(x) =
=0 if x<0.

6. Definition and distribution of #,. Let us consider the sequence of
independent random variables L,, L;, L,,..... we now form a new
sequence as follows

_ Lo+ Li+ .. Luy

1 )

n
y2= Ln+ .....+LG_1,
n
So Y, Ya,eeinn. form a sequence of independent and indentically dis-
tributed random variables.
Let Un = Max (¥, Y2 ceunnn.. , Ym),
we now obtain the distribution function of #,,
Privn, < x]=Prin <% <% ...., Yn<4]
= Pr[y: < x]-Pr[y: < x]....Pr[¥m < %]
(n0)" ’ n—1 g—nAY m”
= | ly i
[T J 7 J
=[1——1—f m%rwmqm 6.1)
2°T(n) .
2n\x

where x= 0.

7. Wenow prove the following result which will be used in the next section.
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1 f flet gt zet (0> 0). .1)
T'(n) J
To show this it is enough, we prave

-
| 1 en gr>1.
T'(n) ;f ¢ =

Put + — 0 = w. Then

1 ; n—1 p@—t) —= Ml_ fm n-l p—wW
wI‘(n)zf i1 -0 gt P<”)o (w + -1 e v dw

= L f w1l e~ dw (@ being positive)
0

Hence the result (7. 1).
8. THEOREM 1. If 0 < a <1, Then

Pr[Lim Inf "¥m gl] -1 ®.1)
mse o lOgm
PROOF.
Pr(t, < x) < (1 — e ™)™ if x =0 from (7.1).
So Pr(u,,.< a_logﬂ>< (1— *1‘>m
nA m® /.
Therefore

- alogm < __ﬁl_)’”
mZﬂPr[um< o ]<2(1 )

m=1

The series on the right side is convergent if 0 < a2 < 1. Soif 0 < <1

- L 7N
Let S = (w, Un < alogm >
nA
Let A be the set of points in infinitely many S,’s. By Borel-Cantelli Lemma
Pr(A) = 0.
Therefore Pr(A°) = 1, where A° is the complement of A
ie. Pr (Li,,[g,,l,nf S;)=1

ie Pr [Lim Inf 7> %n_ > 1} =1
: m>e o logm -
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9. Definition and distribution of f,. We define

In=Min (¥, .. ..Ym)
Prila>%)=Pr(»: > 2%, ...., Y2> %,9m > X)
= Pr() > %) Pr(y. > %)....Pr(¥m > x)

— [ (mA)" w1 e-m\udu:lm

I'(n) J
o[ enaT
= [1 - Fl(n—) " Vvle~ dy Jm 9.1
0

where x =0.
10. THEOREM 2. If B> 1, then

. I
P’[L"J.’f“p 3{ nl lﬂ%ﬂ}"”
(nA)® m

< 1] =1 (10.1)

Proor. By (9.1) we get
NAT
-_— — 17 n— - m
Prlln > = [1 F(")of e dv]
Ifo<éd=<1
0
1 e I il
P(n).of ey dv = o [1+ O@)].
Assuming mAx <1, we get

m

Priln > = [1 - ("2—7‘)" a+ O(nxx)}]

Write
nAx = nAp(m), where ¢im)—0 as m— oo,
Then
Pritn > g(m)] = exp| —m 2L 11 o).
Now take
mimgml” a log m.
n!

Therefore

Prlln > ¢(m] = exp{ — alog m[1 + o(1)]}
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- 1
T peliaDd]
Soifa>1
> Prll. > ¢/m)] converges.
mwm=l
So I
Pr[le Sup - bim) = 1] =1
= 1 [algm, .]“"
Here d(m) = nx[ - n!
_ [Jz! . alogm}””
(nA\)? m
Therefore
. ln
Pr[[‘lﬁ.,s.up [ 7! alogm"lxm élil =

(m) m
Now B = al/®, since « > 1, B > 1. Hence we finally get:

IfB8>1
. I _
Pr[Llr"rbl%Soup [ n! alogm ]un = lj{ =L
(nr)® m

By putting # = 1, in Theorems (1) and (2) we get the results obtained by
Takeyuki Hida.

11. Takeyuki Hida [3] has proved the following results.
He defines

M, = Max [Ly(®), Li(®), -..., La1(w)]
. Lo(ﬂ)) + L]((D) + +L,._1(a))
and Zn = M”(w) .

He has proved
E(M,) = O(log n),

E(Zy) = o(l-o—;’—n)_

We can derive the following theorems from the above results. The fact that
M, and Z, are non-negative almost everywhere may be noted in the proofs
of the following theorems.

THEOREM 1. For any p >0
M.,
Lim —— =0|=1
Pr[ n>= 72 (log m)**? 0] !
Proor. We know that
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E(M,) = O(log n).

So
M, ~of 1
E[n (log n)'“’} =0 (n (log n)“")'
M, K
Hence [n (log n)z”’} n (log n)i+?

where K is a constant not depending upon 2.
By Tchebycheff’s inequality
M, K
el < - o
[n (log n)z-n) . ] e n (log n)l+b
for any & >0 and for all large #.
Hence

- - M, K 1
EPT [n(logn)“" Z 8] < e 2 h(iog n)L+r”
For any p >0, the series on the right side is convergent.
Therefore

oo

3 o > €<
By applying Borel-Cantelli Le nma

M" —_— —
Pr[%ﬁw n(log m)+? O} =1L

THEOREM 2. For any p >0,

Z,
P =0|=1
PrlLim o =)

Proor. We know that

"
EZ)=0(1or
Z, K
S n___ S : S
0 E[ 7 (log ) } < 2 (log 7 -

where K does not depend upon n.
By Tchebycheff’s inequality

Z, K
Pyl — % I - S
[ n? (log n)? z 8} < En(log n)tt?
for any & >0 and for all large . ‘
Therefore for any p >0

©o “ Zn
Epr[ n (logny’ ~ 8] <o

Hence by Borel-Cantelli Lemma

65
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. Zn _
Pr[flz‘_:in ni(logn)? 0] =1
19. Asymptotic Behaviour of Al h@)d ...l
We define
tm(w) = Min (T, X(T,w) = m).
Hence from the definition
We define
Lm(m) = tm+](w) - t'm(w)-
Hence tm(&)) = Lo + Ll + ........ + Lm—l-
Therefore
ittt ot tm=mlo+(m—1) L+ ...+ Ly,
Hence
t1+t2+ ........ +Im :mLo+(m—1)L1+ ........ +Lm;1
m? m?
THEOREM. bt b _I;nz e o 213 converge in probability to Zl—x

ProoOF. Let ¢n(t) denote the characteristic function of

Hence
¢m(t) = ¢(t1+u.+tm)/m“(t)

=¢ mLo+(m=1)I1+. ..+ Ipy—1 (t)

R R
m? )

me
_ 1
_(1_ imt)(l_i(l)z_jml_)f_) 1— it >
MmN mEN o ( a2y
_ 1
- irt
HI 1- ’mzx} .

rel -

We now find the limit of ¢./¢) as m— oo, For this we first consider the

limit of the denominator

m

[i(1- i) = [T {(x- rt
E( m*A E ! mn ) <P n
it <
X € -
‘xp( )»m*’gr)'

Consider now the limit as m — oo of

)

1)
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- rt
1— . ir t ) Z,,,___>
E ( mzx €xb min
ur ur it
Put 1+ W.(m)= <1 ~ o ) exp (mf) where % = *;"*.

Therefore

7 ur
Wi(m) = (1— E—)exp(mz) -1

Let [#| <%, we can choose an m > m, such that

ur \< &l <1 in |u| <k
it
Now
7
W(m) (1— oo >exp<ﬁ;) 1
_ _ur u (aer)? _
= (1 m2)<1+ TR ) 1
1/ ur 4 [ ur \3 6 [ ur
- 2(m‘>[ +‘3z<m‘~’> +4<"n24)+ ]
Therefore
| We(m)| < == - < A’: < i_, where A is a constant.
mt r r:

oo

. 1. .
Since 2—;; is convergent, conditions of Tannery’s theorem are fulfilled.

r=]
Hence

Lin 2L (1 27 Yexo (22 ) =1

r=1

Also

it it
Lim exp ( E = Lim exp n:m m(m;— 1)} = exp( - —;f )

M->00 m-yco

Hence the denominator of ¢,2) — exp( — it/2\), as m —> co.
Therefore Lim ¢,(t) = exp (¢i2/2\), for all ¢, since k is arbitrary.
Mm->c0

Hence

Lim Pr

m-eo

[t1+ ot im <x}= {1 if x=1/22

0 otherwise.

2

m-

tl + tz + . +tm COnVergeS in probability t iy

In other words por 27\
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