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1. Poisson Process X(t, ω) [ω € Ω, 0 < t < ooj is a temporally and
spatially homogeneous Markoff Process [Stationary increments (in the strict
sense)] satisfying X(0, ω) = 0 and X(t, ω) = integer greater than or equal to
zero for every ω € Ω (ω denotes the probability parameter)

Pr[X(t, ω) - ^

for ί > t', where i is a non-negative integer and λ is a positive constant.

2. Definition of Zm(ω).

Lm(ω) = tm+ι(ω) — tm(ω)

where tm(ω) = Min [Γ, X(Γ, ω) = wz],

/?Λ(ω) exists almost certainly by the right continuity property of the Poisson
Process. Further tm (ω) is measurable. Thus Lm{ω) is a non-negative random
variable.

3. A k n o w n Theorem. Lo, Lly , Lm, are mutually independent
random variables, with a common distribution function F(x), where

(1 — e~Kx if * > 0
P(χ) =z

(0 otherwise.
Further E{Ln) = 1/λ

ViLj^l/K, ι» = 0,1,

This theorem was suggested by P. Levy [1] and a rigorous proof was given
by T. Nishida [2].

4. Summary. From the sequence Zo, L\.... we form a new sequence
yi, y*, where y1 is the mean of the first n elements, jy2 is the mean of
the next n elements and so on in the Z-sequence.

We define um = Max O Ί , Λ , . . . .ym) and lm = Min (yι,y2, . . . .ym) we have
investigated the asymptotic behaviour of um and lm. Takeyuki Hida [3] has
defined

Mn = Max {LQyLι, Ln-i)

and „
Z

Using some of his results, we have obtained the asymptotic behaviour of
Mn and Z». We have also investigated the asymptotic properties of
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*i + Ϊ2 + .. .. +tm

which we have shown converges in probability to ψr ,

5. Distribution of the arithmetic mean y = L° + L ι + •''''
n

It follows immediately from the theorem in [3] that the characteristic
function of L is

Hence the characteristic function of y is

Hence the frequency function p{x) of y is

p(x) = - ^ λ ) - χ»-ι e~nκx ϊί x>0

= 0 if x < 0.

6. Definition and distribution of um. Let us consider the sequence of

independent random variables Lo, Li, Z2, we now form a new
sequence as follows

UΛ-LΛ + ....Zn-i
Λ = " — ,

__ Z» + "τL>2n-\
2 " " /2

So ^i,^2, form a sequence of independent and indentically dis-
tributed random variables.

Let um = Max 0 Ί , Λ , ,y»)»

we now obtain the distribution function of um

Pr\um < x] = Prl>i < ΛΓ, 2̂ < x, •. ., ym<x]

Ί < x]-Pr[y2 < * ] . .

(6.1)

where * > 0 .

7. We now prove the following result which will be used in the next section.
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- ^ f P- 1 <?"' Λ > er* {θ > 0). (7.1)
T(n)J

Θ

To show this it is enough, we prove

Put t -θ = w. Then

l Γ
——- I wn~ι e~w dw (θ being positive)
Γ(/2) Jo

= 1.

Hence the result (7.1).

8. THEOREM 1. If 0 < a < 1,

Pr Γ Lim Inf J ^ L > 11 = 1. (8.1)

PROOF.

Pr(um < x)< (1 - e nλx)m, if x ^ 0 from (7.1).

Therefore

The series on the right side is convergent if 0 < a < 1. So if 0 < a < 1

Let V rik J

Let Λ be the set of points in infinitely many Sm's. By Borel-Cantelli Lemma
Pr(A) = 0.

Therefore Pr(Λc) = 1, where Λc is the complement of Λ

i. e. Pr (Lim Inf S^) ~ 1

i. e. ΓLimInf^
L w->oo a l o g
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9. Definition and distribution of Zw. We define

lm = Min(yl7y2) ....ym),

> x) = Pr(yi >x, ...., y2> x,ym > x)

> x)Pr(y2 > x).. ..Pr(ym > x)

X

-[•hi vn'le'vdv

where x >̂ 0.

10. THEOREM

Pr IT

PROOF. By (9.

ί _

2.

Ί11J

1)

n\x

0

If β>

s

we get

1, then

lm

t\)n m J

If

0

>φ{m)\ = expj - »

Now take

m[n\φ(m)]n _ ,

Therefore

.JFM/™ > φ(w. ] = exp{ — α log w[l

0

Assuming nXχ-^1, we get

Pr[lm > x] = [ l -

Write

rikx=riλφ(m), where φ{m)-+0 as w—>-oo.

Then

(10.1)
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So if a > 1

2 > φ{m)] converges.
m - l

S° Pr\Um Sup --J-- :S l ] = I.

Here φ{m) = - 1 - Γ

m J.
Therefore

p
171 j

Now β = α1 / w, since oc > 1, β >1. Hence we finally get:

If β > 1

L(Λλ)Λ m J

By putting w = 1, in Theorems (1) and (2) we get the results obtained by
Takeyuki Hida.

11. Takeyuki Hida [3] has proved the following results.

He defines

Mn = Max [Zo(ω), Li(ω), , Ln-ι(ω)]

~ _ L0(ω) + Zi(ω) +
^ n —

He has proved

We can derive the following theorems from the above results. The fact that
Mn and Zn are non-negative almost everywhere may be noted in the proofs
of the following theorems.

THEOREM 1. For any p>0

PROOF. We know that
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E(Mn) = O(!og n).

So

E\
 M* 1 = of—~ ^
L n (log ny+p J U (log w)1+J>/

Hence E I „ M\— I <
n (log n)1+p

where K is a constant not depending upon n.

By Tchebycheff's inequality

n(logn)2+p J Sn (log n)ι+p

for any £ > 0 and for all large n.
Hence

For any p > 0, the series on the right side is convergent.
Therefore

By applying Borel-Cantelli Lenrna

THEOREM 2. For «wy ί > 0,

PrΓLim — ^ - ^ r = θΊ = 1.
Ln->« Λa (log W)2' J

PROOF. We know that

So E \ n 1 <1<
n*(logn)p J n(logn)ι+p

where K does not depend upon n.
By Tchebycheff's inequality

for any £ > 0 and for all large n.
Therefore for any p > 0

Hence by Borel-Cantelli Lemma
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12. Asymptotic Behaviour of W +

We define
tm(ω) = Min (Γ,

Hence from the definition

to(ω) = 0.

We define

Zm(ω) = L+i(ω) — tm(ω).

Hence ίm(ω) = Zo + £i + + Lm-
Therefore

ίl + tl + . . . , + /» ( 1

Hence

f i + t2 + + ^w

THEOREM. -1 — ." " m converge in probability to —.
rϊi 2λ.

PROOF. Let φm{t) denote the characteristic function of ~ + tz +

Hence

Φm(t) = Φ(ri+...+ίm)/7»ι2(ί)

We now find the limit of φm

(t) as m -> oo. For this we first consider the
limit of the denominator

5

Consider now the limit as m^oo of



SOME ASYMPGOTIC PROPERTIES OF POISSON PROCESS

Put l + Wr{m)= ( l - 5 ) e x p ( ^ - ) where u= -£-.

Therefore

Let \u\ <Ξ k, we can choose an m > m0 such that

- 1*1 «r
in \u\

Now

= _ i (i«iy |Ί + i (i^Λ3

 + A (I*L\ +.... Ί.

Therefore

I Wr(wiJ I < — — < — -- < —7-, where A is a constant.

00 1
Since 2 ~ΊΓ * s convergent, conditions of Tannery's theorem are fulfilled.

r-l

Hence

Also

Litn 11 ( 1 — ,Λ- ) exp — — = 1.

/ /ί ^ i λ τ . it m(m + l) | / it= e x p l - ~^
Hence the denominator of φjt) -> exρ( — it/2\), as ra-> oo.

Therefore Lim φm(t) = exp (ιt/2X)y for all ί, since ^ is arbitrary.

Hence

Lim P r - L - Γ —T- 2 —™ ^ x = L ., ~ .
wi-̂co L ^ J 10 otherwise.

In other words τ — ' m- converges in probability to ——.
rri1 2λ
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