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The purpose of this paper is to study the structure of operator algebras
as Banach spaces that has been developed by J. Dixmier, Z. Takeda, S. Sakai
aαd others. § 1 is devoted to study the structure of the conjugate spaces
of an operator algebra, in which a certain decomposition theorem on the
conjugate space is proved with some applications. In § 2, we prove the
decomposition theorem of a homomorphism from an operator algebra into
tαe other,corresponding to the decomposition of the conjugate space in §1.
Then, using this result we study the continuity property of a homomorphism
and find the alternative proof of those results which are discussed in J. Feld-
man and J.Fell [7].

The author wishes to express his hearty thanks to Prof. M.Fukamiya
and Mr. S. Sakai for their many valuable suggestions in the presentation of
this paper.

1. The conjugate space of operator algebra. We denote always by
M* for the conjugate space of a Banach space M and if M is a PΓ*-algebra
we write the space of all σ-weakly continuous linear functionals on M by
M*. Let M be a C*-algebra, then the second conjugate space M** of M is
a W*-algebra and its <r-weak topology coincides with <r(M**, M *)-topology
by Z. Takeda [11]. M** has further properties such as any ^representation
of M on some Hubert space has a unique σ-weakly continuous extension to
a *-representation of M**. Thus we call this W*-algebra universal envelop-
ing algebra of M and denote by M.

Next, we define the operators La, Ra on M*, the conjugate space of
C*-algebra M, for a € M as follows ,

< x, La φ > = < ax, ψ > and < x, Ra φ > = < xa, φ > for all #€ M,
φ € M*, Then the following properties are easily verified.

μ>L), R(\a+μb) = λJ?α + μRt,

R(μb ) = RaRb,

where a and b are arbitrary elements of M, λ and μ arbitrary complex
numbers. We denote the family of all La (resp. Ra) by L(M) (resp. Hπo).
Next we call a subspace V of M* left invariant (resp. right invariant) if it
is invariant under L(M, (resp. R(w>). Especially, we call a two-sided invar-
iant subspace invariant simply. Then we have the duality of left ideal and
left invariant subspace in the following

THEOREM 1. Let ML be a C*-algebra, then there exists a one-to-one cones-
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pondeme between the σ-weakly closed left ideal (resp. right ideal) m of M and
the closed left invariant (resp. right invariant) subspace V of M* such that

m = V° and V = m°

where V° and m° are the polar of V and m in M and M* respectively.
Especially, if M is a W*-algebra, then there exists a one-to-one correspon-

dence betiveen the σ-weakly closed left ideal (resp. right ideal) and closed left
invariant (resp. right invariant) subspace of M*.

PROOF. Let V be a left-invariant closed subspace of M* and m = V°.
Since LaV a V for all a € M, we have < ax, V > = < x, LaV > = < x, V >
= 0 for all x € m. Hence we have ax € m for all a € M, x € nt. Therefore m

is a left ideal of M, for m is σ-weakly closed and M σ-weakly dense in M.
The converse correspondence and the second part of our theorem are

clear by the above arguments. This concludes the proof.
Using the similar argument we shall study the maximal left ideal of a

C*-algebra. Let M be a C*-algebra and φ a positive linear functional on
M. We call a subset of M mφ = {x € M: < x*x, φ > =0} the left kernel of
φ by the terminology of R.Kadison [9]. Then we have the following

THEOREM 2. Let M be a C*-algebra, φ a pure state on M, then M/ttv,
the factor space of M by the left kernel mφ becomes a Hilbert space as quotient
space and its norm coincides with the om canonically iniuced by φ.

PROOF. (1) Case where M is a TΓ*-algebra and φ σ-weakly continuous:
By the continuity of φ, there exists a minimal projection e of M such that
mφ = M(l — e) where e is the carrier projection of φ. Hence M/m^ is alge-
braically isomorphic to ΉLe by the natural correspondence.

If we denote by aΓthe element of M/m^ corresponding to x^Me, we get

W| = inf [||* + ^l|; ^ € m j = inf [\\xe + y(l - e)\\; yζM]

> ii^n = \\x\\ > W|.
Therefore, the mapping x-+x is an isometry from ΉLe onto M/mφ.

Now, we consider the canonical representation irφ of M on the Hilbert space
Hφ induced by ψ in the sense of I.E.Segal. Then there exists a cyclic
vector ξφ of Hφ such that < x, φ > = (τrφ(x)ξφ, ξφ) for x € M. Since ττφ(e)
is the projection to the one-dimensional subspace of Hφ spanned by ξψ, we
have

r i = \\πΨ(xe)ξφ\\.

Moreover, πψ{M.) is the full operator algebra on Hφ, for nτψ is a σ-weakly
continuous irreducible representation. Therefore, the mapping x-+7rφ(x)ξφ is
an isometry from WLe onto Hφ. Hence M7mφ is isometric to Hφ by the cano-
nical correspondence.

(2) General case: Let M be the universal enveloping algebra of M,
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then φ is a σ-weakly continuous pure state on M. Let mφ be the left kernel
of ψ in M, then the factor space "M/mφ coincides with the Hubert space
canonically constructed by φ in case (1).

Put V = mφ

ϋ, then V is a left invariant subspace of M* by Theorem 1

and F* = M/nv Hence V is a Hubert space, so that V is <r(M*, M) closed
by its reflexivity, and V = mφ°. Thus we have

(M/m^)* = F and (M/m^)** = M/nv,

that is, M/rtv is a Hubert space and its norm coincides with the one
induced by φ. This concludes the proof.

Applying this result for irreducible ^representation of C*-algebra, we
can give the alternative proof of the Theorem due to R.V. Kadison [9]. But
we omit the detail.

DEFINITION 1. A positive linear functional φ on a T^*-algebra M is called
singular if there exists no non-zero cr-weakly continuous positive linear func-
tional ψ o n M such as ψ<:<p. Moreover we call a linear functional ψ on M
singular too, if φ is a linear combination of singular positive linear f unctionals
as defined above. We denote by M£ the space of all singular elements of M*.

THEOREM 3. Let M be a W*-algebra, then the left (or ήght) invariant
closed subspace V of M* is uniquely decomposed into the V-direct sum of its
σ-weakly continuous part V f] M* and singular part FΠMJ, i.e.

v = (F n M*) ®t\v n
Moreover V Π M* ani V Π M£ are written by the central projection Za of M
as follows:

F Π M* - R20V ani V (] M* = i?(1-,0)F.

PROOF. AS M* is an invariant subspace of M*, There exists a central
projection zQ of M such that MJ = M(l — z0) by Theorem 1. Hence we have
easily M* = /?*0M*.

Next we shall show M£ = /?α_^)lV[*. In fact, if φ is a positive linear
functional of 7?u_*0)M* an.d there exists a σ-weakly continuous positive linear
functional ψ such as ψ ^ ψ, then we have < x*xzυ, ψ > <i < x*xzo, φ > =0

for all # € M , which implies RZoψ = 0. On the other hand, we have
Ra-zoϊΨ = 0 by the continuity of ψ and the above argument, so that we
have ψ = 0. Hence φ is singular. Conversely, if φ is singular positive,
then R20φ = 0 because Rzo<p<^φ and Rzoφ € M*. Hence we have MJ =
/?(1_0O)M*, forlVt^ and /?(i_ί0)lVt* are spanned by their positive parts res-
pectively.

Therefore, we have M* = /?C0M*,M* = i?α-?0) M* and M* = M^φίiMj.
Moreover, since V is invariant under Rzo and /?α-*0), one may easily verify
that F = XVnM*)@ιi(V(]Mϊ). This concludes the proof.
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This theorem includes the decomposition of a finitely additive measure
into the completely additive part and the purely finitely additive part in the
commutative case due to Yosida-Hewitt [16].

Using Theorem 3, we can show the following generalization of the well
known Dixmier's result.

COROLLARY 1. Let M be a W*-algebra, then a bounded linear functional
ψ on M is σ-iveakly continuous if and only if φ is σ-weakly continuous on
every maximal abelian W*-subalgebra of M.

PROOF. It suffices to prove only the sufficiency. By Theorem 3, it is
sufficient to show that there exists no non-zero singular linear functional
satisfying the hypothesis. Suppose there exists a non-zero singular linear
functional φ satisfying the hypothesis. Moreover we may assume, without
loss of generality, that φ is self-adjoint (i.e. φ is real valued on the self-
adjoint part of M).

There exists a projection e of M such as < e, φ > > 0 (or < 0). Hence
we may assume < 1, φ > > 0, considering the restriction of φ on e'M.e.

Now, if there exists a non-zero projection e of M such that </, φ > > 0
for all non-zero projection/^e, LeReφ is a non-zero σ-weakly continuous
linear functional by its positiveness. This contradicts to the singularity of
φ. Therefore, for any non-zero projection e of M, there exists a nόn-zero
projection/rg e such as < / , ^ > $ 0 .

Hence, if {ea} is a maximal family of orthogonal projections such as
<eoύ1φ> gO, we have ΊLΛeΛ = 1. Considering the maximal abelian W*-

subalgebra generated by {#Λ}, we get <l,φ > <Ξ 0 by the continuity of φ
on this subalgebra. This contradicts to the hypothesis < l,φ > > 0. This
concludes the proof.

Applying this result, we can show the following generalization of Ume-
gaki's result in the case of semi-finite type [14].

COROLLARY 2. Let M be a W*-algebra, then a subset K of M* is relatively
σ(M*,M)-compact if and only if, for each maximal abelian W*-subalgebra A of
M, the restriction of K on A is relatively σ{A*,A)-compact in A*.

PFOOF. It suffices to prove only the sufficiency. Since M is the linear
span of the self-adjoint part of M, K is simply bounded on M, so that K is
bounded by Banach-Steinhaus' Theorem.

Hence, if we imbed canonically K into M* and denote the <r(M*, M)-closure
of KbγTt,K is <r(M*, M)-compact. We shall show ifcM*. In £act, for
each maximal abelian T7*-subalgebra A of M, the restriction of K on A is
contained in the σ(A*, A)-closure of the restriction of K on A. Hence the
restriction of K on A is contained in A* by the hypothesis. ^Therefore, for
each φ € K, φ is σ-weakly continuous on A. Thus we have i fcM* by Corol-
lary 1, that is, K is relatively σ(M*, M)-compact. This concludes the
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proof.

We conclude this section to prove the characterization of a singular
positive linear functional in the commutative case.

THEOREM 4. Let A be an abelian W*-algebm, Ω, the spectrum space of
A. Then, in order that the position linear functional on A induced by a Radon
measure μ on Ω is singular it is necessary and sufficient that its support is
non-dense.

PROOF. Sufficiency is clear from the definition of singularity so that it

suffices to prove only the necessity. Let F = {Na} be a maximal family of

mutually disjoint non dense Borel sets such as μ(Na)Φθ, then F is at most

enumerable, for μ(\jNa) = 2*μ(Na) S μiP) < +°° Since an enumerable sum

of non-dense sets is also non-dense in a hyperstonean space by Dixmier's

result [3], No = \J^Λ i s non-dense.

Let N be any non-dense Borel set of ίl, then μ(N — No) = 0 by the
maximality of F. Put <f,μι > = < XNJ, μ>forf€ C(ί2) s A and μ> =
μ — μ>ι, where XNo is the characteristic function of No, then any non-dense
Borel set is /^-measure zero, so that μ2 is a normal measure by Dixmier's
result [3]. Therefore, if the positive linear functional on A induced by μ is
singular, we have μ2 = 0, so that μ = μι has a non-dense support. This
concludes the proof.

2. Homomorphism of operator algebra. We start with the following

DEFINITION 2. A bounded linear mapping θ from a P7*-algebra M to another
PΓ*-algebra N is called singular if f0(N*) d MJ, where *θ is the transpose of θ.

We get the following theorem corresponding to the decomposition theorem
for the conjugate spaces of operator algebras.

THEOREM 5. Let M and N be two W*-algebras and TΓ a ^-homomorphism
from M into N, then there exists a central projection z in the σ-weak closure
of 7r(M) such that if we define the *-homomorphisms 7Γi and 7r2 from M into N
as follows:

- z) for all x € M,
then 7Γi is σ-weakly continuous and τrz is singula?.

PROOF. We may assume, without loss of generality, that 7r(M) is σ-
weakly dense in N.

Let zo be the central projection of M as in Theorem 3. *π is uniquelly
extended to a σ-weakly continuous *-homomorρhism TΓ from M onto N by
A. Grothendieck [8]. If we put z = 7r(̂ o), then z is clearly a central projec-
tion of N and has the properties in our theorem.
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In fact, let φ be an arbitrary element of N*, then for all * € M we have

< X, ΐf7Γι(φ) > = < irι{x\ ψ > = < π(x)Z, ψ >

= < ΛΓ,

where Vi is the transpose of TΓI. Since i?,0 M* = M* by Theorem 3, we have
Γ7Γi(<7>)€M*, so that ΊΓI is σ-weakly continuous. By similar computation we have
t07r2(φ) = Ru-zo)trπ(φ) for all φ € N*, so that V 2 ( N * ) c M ί ; i. e. 7r2 is singular.
This concludes the proof.

Combining the above result with the characterization of a singular
functional in §1, we study the σ-weak continuity of the *-homomorphism
from a PF*-algebra into another σ-finite one.

LEMMA 1. Let A be an abelian W*-algebra, B a σ-finite W*-algebra and
7r a ^-isomorphism from A into B, then there exists a non-zero projection e of
A such that ΊΓ is σ-weakly continuous on Ae. Moreover, the σ-weakly continu-
ous part 7Γi of ΊΓ is a ^-isomorphism form A into B and the singular part 7ra of
7r is a non- faithful *-ho/nomorphism from A into B.

PROOF. 777](0) is a σ-weakly closed ideal, so that there exists a projec-
tion z of A such that.TΓf^O) = Az. If 2=t=0, then 7r2 is a singular •-isomor-
phism from Az into B.

Now, there exists a faithful σ-weakly continuous state φ on B by σ-fini-
teness of B. Put ψ = Trπ-2{φ)y then ψ is a singular positive linear functional
on A.

Hence there exists a non-zero projection e<Lz such as < e, ψ > ^0 by
Theorem 4, so that we have

< ir2(e),ψ > = <

which implies nr^e) = 0. This contradicts to the faithfulness of ΊΓ2 on Az.
Therefore we have z = 0, i.e. TΓI is faithful on A.

Finally, there exists a non-zero projection e of A such as τra(£) = 0 by
the above argument, so that Aezz7r^\0). Then, *π and TΓI coincide on A^
and 7r2 is not faithful. Therefore, ΊΓ is σ-weakly continuous on Ae. This
concludes the proof.

LEMMA 2. Let ΉL be a σ-finite W*-algebra, then there exists a maximal
abelian W*subalgebm Ao o/M as follows: if a *-homomorphism nr from M to
another oneN is σ-weakly continuous onA0, then ΊΓ is σ-weakly continuous on
M. Moreover, if ML is of finite type or type III, any maximal abelian W* -sub-
algebra of M has this property.

PROOF. It is sufficient to show that ΊΓ is σ-weakly continuous on all
abelian TF*-sυbJgebras which are generated by the family of orthogonal
projections.

(1) Type In case: Let Ao be a maximal abelian TF*-sυb.lgebra of M,
{en} a family of orthogonal projections and A be a maximal abelian TF*-sub-
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algebra containing {en}, then u*Aou = A for some unitary « € M . From the
assumption, the mappings

X.r+ UXU* - > πiuXU*)-= 7Γ(W)7Γ(ΛΓ)7Γ(W*)

- > 7Γ(W*)TΓ(W)7Γ(Λ:)7Γ(M*)7Γ(W) = TΓ(Λ )

are continuous on A, hence 7r is continuous on M.
(2) Type ΪLi case: Let Ao be any maximal abelian W*-subalgebra of M,

then for any projection of M there exists a projection of Ao equivalent to
this projection. Moreover, one easily verifies that for any projection p^e
(e € Ao, p € M) there exists also a projection q of A, such as p^q g e.
Therefore, for an arbitrary family of orthogonal projections {pn} in M, we
can get the family of orthogonal projections {qn} in A,, such as pn~qn. Hence
there exists a partial isometry u in M as u induces the equivalency for
all pn and qu. Furthermore we can choose u as a unitary of M by the fini-
teness of M. That is, upnu* = qn for all n.

Now we consider the mappings as follows:

x-*uxu*-+τr{uxu*) = 7Γ(«)7Γ(Λ;)7Γ(W*)

->7Γ(W)*7Γ(«)7Γ(Λ;>/Γ(W*)7Γ(W) = 77*0),

for # € M. The continuity of *π on Ao implies that of 7r on an abelian
W*-subalgebra generated by {£»}• This implies the σ -weak continuity of 7r,
for {pn} is an arbitrary family of orthogonal projections in M.

(3) Type I*> or II*, case: Let {eΛ} bs a family of orthogonal finite pro-
jections such as Σen = 1 and Aq an arbitrary maximal abelian W*-subalgebra
containing them.

For a projection p € M, we shall show that Ao contains a finite pro-
jection q as q^b. By the assumption on {e,,} there exists a number m such
that c(p)eno =ί= 0 where c(β) means the central envelope of p. Hence we get a
central projection z such as zp ^$ze,i0, (1 — z)p >(1 — z)eno and zp =tθ or (1 —
z)eno Φ 0. If (1 — 2)eΛo Φ 0, then q = (1 — <ε) 0̂ is the desired one. If (1 — 2 ) ^
= 0 we have zp Φ 0, which implies the existence of a finite projection e

of Ao as zp ̂  e. Applying the argument in case (1) and (2) for a finite T7*-
algebra eM.e and its maximal abelian T7*-subalgebra eACn we get a projection
q £ Ao as z£^tf.

Now suppose a family Fsuch that F = {^€A0 ^ ^ } for a finite project-
ion /> of M. The above argument shows that F is a non-empty inductive
set, so that there exists a maximal projection q of F and £ becomes
equivalent to q. Therefore, for a finite projection such as p ^ e for some
projection e of Ao we get a projection # € Ao, such as p^q^e consider-
ing with a VP-algebra #M£ and its maximal abalian W*-subalgebra eAυ.
Next, if p is an arbitrary projection of M there exists a family of orthogo-
nal finite projections {p»} such as p = ΣΛ». Hence, we have a family of
orthogonal projection {qn} of Ao such that pn^qn for all n. Put # = Σtf », then
q € Ao and />~tf. Therefore the same computation for M and Ao used above
shows that p^e, eζA0 implies the existence of a projection tf €A 0 such
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as p^q <̂  e.

After all, the above arguments show that Ao contains a projection e
with e^(l — e). Take an arbitrary family {pn} of orthogonal projections of
eΉLe, then (1 — e)A0 contains a family {qfl} of orthogonal projections such
as Qn^pn for all n. Let vn be a partial isometry of M that gives an equi-
valency of pn and qn, that is, ϋ*nvn = pn and υnv*τ - qn. Put « = Σn(#w +

 VΌ
4- (1 — Ίinipn -f #»)), then w is a unitary and induces all equivalencies bet-

ween {pn} and {#«}. Considering the decomposition of rr by this unitary u
as in case (1) and (2), we get the σ -weak continuity of iτ on the abelian W*-
subalgebra of eΉLe generated by family {pn}. Therefore nτ is σ-weakly
continuous on eΉLe,

If we decompose TΓ into its continuous part and singular one, the sin-
gular part vanishes on eΉLe, hence vanishes on M because of the equiva-
lency of e and (1 — e). This completes the proof of case (3).

(4) Type III case: Take an arbitrary maximal abelian W*-subalgebra
Ao and a projection p of M. Denoting by c(p) the central envelope of p we
consider the maximal family {qn} of orthogonal projections of Ao whose
central envelopes are orthogonal each other and covered by c(p). Put
q = Σn#«, then, by the maximality of {qn}, we have c(p) = c(q), which im-
plies p^q. Therefore the same computation as in case (3) shows the contin-
uity of TΓ on M if TΓ is continuous on Ay. This concludes the proof.

REMARK. Though we restricted our arguments to the case of σ-finite
W*-algebra, the above proposition holds without the assumption of cr-fini-
teness. We omit the proof because this is immaterial for our further argu-
ments.

THEOREM 6. Let ir be a ^-isomorphism from a σ-finite W*-algebra ΉL into
a σ-finite W*-algebra N, then the continuous part TΓΊ of ΊΓ is a ^-isomorphism
and the singular part 7r2 of TΓ is always non-faithful *-homomorphism.

PROOF. We can find a central projection z of M such as τrf](0) = ΉLz.
If z Φ 0, τra is singular faithful on ΉLz. So we may assume, without loss
of generality, that TΓ2 is faithful on M. Let Ao be a maximal abelian W*-
subalgebra in the sense of Lemma 2. By Lemma 1 there exists some non-
zero projection e of Ao such that τr2 is σ-weakly continuous on eA0. Hence
7r2 is σ -weakly continuous on eΉLe as eA0 has the same property in eΉLe as
Ao does in M. Since 7r3 is singular we have 7r2(eΉLe) = 0. This yields a
contradiction.

Therefore τrι is faithful and 7r2 is not. This concludes the proof.

The above discussions have some applications. We shall show in the
following that some of the results of J. Feldman and J. Fell [7] are proved
by this method.

At first, we start with the lemma which is somewhat well known (cf.
J. Calkin [1]).
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LEMMA 3. If the kernel of a *-homomorphism TΓ from a σ-finite, property
infinite W*-aϊgebra M into a W*-algebra N is not σ-weάkly closed, then there exists
a family of orthogonal projections in N ivith the cardinal of at least the
continum.

PROOF. By our assumption there exists a monotone increasing sequence

in m = 7r~2(0) with e = \J en $ nt.

Take a family of orthogonal projections {pn} in M and partial isome-
tries {vn} such that pn~~l, vtvn = pn and vnvt = 1 for all n. Define the family
{qn} of orthogonal projections by qn = v*eHvnt then we have

enι + 2(e» 4 + ι - <*.,) = \Jen - in.

Next, let {rΛ} be a countable set of all rational numbers. For any real
number s we can choose an infinite subsequence of {rΛ|} so that they coverge
to 5. Correspond s to an index set {m} of the above sequence {rnt}. We have,
if SΦS' for real numbers s and s', {m} Π {n\} as at most a finite set where

and {w } are corresponding index sets of s and sf respectively. Therefore,

if we set qs = 2 ^ W ί ^ o r a r e a * numt>e r s where {/2i} is an index set cor-
i = l

responding to s, we get </, φ m and qsqS' € m for 5 4= s'. Hence the family
W(qs)} of orthogonal non-zero projections of N is of the power of continuum
at least.

THEOREM 7. Let M. be a finite factor o? σ-finite, properly infinite W*-alge-
bra, then any *~homomorphism π from M into σfinite W*-algebra N is σ-weakly
continuous.

PROOF. Since a finite factor M is simple, there exists no non-trivial
non-faithful homomorphism on M. Therefore ΊT is σ-weakly continuous
by Theorem 6.

Let M ba properly infinite and suppose the kernel of the singular part
7r2 of IT is cr-weakly closed, then there exists a central projection 2: of M
such that 7r7\Q) = M(l — z). Hence τrΛ is a *-isomorphism from M2 to N,
which is impossible by Theorem 6. Therefore we have 2 = 0, i.e. 7r2 = 0.
On the other hand, if 7r2"

](0) is not cr-weakly closed, then N is not σ-finite
by Lemma 3, which is a contradiction. We get, after all, 7τ2 = 0. This com-
pletes the proof.

COROLLARY. Let M be a finite jacto? or σ-finite,properly infinite W*-algebra
and N a W*-algebra on some separable Hubert space, then any bounded homomor-
phism {not necessarily ^-preserving) TΓ from M into N is σ-weakly continuous.

PROOF. Let V ba the closure of MN*) in M*, then Fis a closed invar-
iant subspace of M*. Since N* is separable by our assumption for N, V
is also separable. Therefore, V (Ί MJ is also a closed invariant; separable
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subspace of M*. Hence there exists a central projection z of M such as

(V Π Mf)° = Mz and (F Π MJ)* = M(l - 2). By the separability of FflMJ,

M(l — z) is a cr-finite TF*-algebra. Therefore, by Theorem 7, the *-homo-

morphism from M to M(l — z) such as x->x(l — z) for Λ Γ € M must be σ-

weakly continuous. Hence V Π MJ = 0 and by the equality F = ( F ί l M*)

φji (F Π MJ) we get Fez M*. That is, ΊΓ is σ -weakly continuous.
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