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The purpose of this paper is to study the structure of operator algebras
as Banach spaces that has been developed by J. Dixmier, Z.Takeda, S.Sakai
and others. § 1 is devoted to study the structure of the conjugate spaces
of an operator algebra, in which a certain decomposition theorem on the
conjuzate space is proved with some applications. In § 2, we prove the
decomposition theorem of a homomorphism from an operator algebra into
the other,corresponding to the decomposition of the conjugate space in §1.
Then, using this result we study the continuity property of a homomorphism
and find the alternative proof of those results which are discussed in J. Feld-
man and J.Fell [7].

The author wishes to express his hearty thanks to Prof. M.Fukamiya

and Mr. S.Sakai for their many valuable suggestions in the presentation of
this paper.

1. The conjugate space of operator .algebra. We denote always by
M* for the conjugate space of a Banach space M and if M is a W*-algebra
we write the space of all o-weakly continuous linear functionals on MM by
M,. Let M be a C*-algebra, then the second conjugate space IM** of M is
a W+*-algebra and its o-weak topology coincides with o (IM**, M *)-topology
by Z.Takeda [11]. M** has further properties sucn as any s-representation
of M on some Hilbert space has a unique o-weakly continuous extension to
a *representation of M**. Thus we call this W*-algebra universal envelop-
ing algebra of M and denote by M. '

Next, we define the operators L., R; on M*, the conjugate space of
C*-algebra M, for ¢ € M as follows;

<% Lap>=<ax, o> and <%, Rop > = < xa, ¢ > forallxeM,
@ € M*. Then the following properties are easily verified.

L()\a,+y.b) = XLa -+ ILLL’D; R()\a+,ub) = )\‘Ra + }LRD

Lany = LyLa, Ry = RoRRo,
where a and b are arbitrary elements of M, A and p arbitrary complex
numbers. We denote the family of all Z, (resp. R:;) by L (resp. Ran).
Next we call a subspace V of M* left invariant (resp. right invariant) if it
is invariant under L, (resp. R). Especially, we call a two-sided invar-

iant subspace invariant simply. Then we have the duality of left ideal and
left invariant subspace in the following

THEOREM 1. Let M be a C*-algebra, then there exists a one-to-one corres-
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pondence belween the o-weakly closed left ideal (resp. right ideal) m of M and
the closed left invariant (resp.right invariant) subspace V of M* such that
m= Ve and V =m°
where V° and m° are the polar of V and m in M and M* respectively.
Especially, if ML is @ W*-algebra, then there exists a one-to-one correspon-
dence between the o-weakly closed left ideal (resp. right ideal) and closed left
invariant (resp. right inrariant) subspace of M,.

Proor. Let V be a left-invariant closed subspace of M* and m = V°.
Since L.V V for all ¢ € M, we have< ax, V> =< x, L{V>=<x% V>
=0 for all x € m. Hence we haveax € m for alla € M, x € m. Therefore m

is a left ideal of 17[, for m is o-weakly closed and M o-weakly dense in M.

The converse correspondence and the second part of our theorem are
clear by the above arguments. This concludes the proof.

Using the similar argument we shall study the maximal left ideal of a
C*-algebra. Let M be a C*-algebra and @ a positive linear functional on
M. We call a subset of M m, = {x € M : < x*x, @ > =0} the left kernel of
@ by the terminology of R.Kadison [9]. Then we have the following

THEOREM 2. Let M be a C*-algebra, @ a pure state on M, then M/m,,
the factor space of M by the left kernel m, becomes a Hilbert space as quotient
space and its norm coincides with the onz canonicelly iniuced by .

Proor. (1) Case .where M is a W*-algebra and ¢ o-weakly continuous:
By the continuity of @, there exists a minimal projection e of M such that
m, = M(1 — e) where e is the carrier projection of @. Hence M/m, is alge-
braically isomorphic to Me by the natural correspondence.

If we denote by xthe element of M/m, corresponding to x&Me, we get

%l = inf[||x + yl; y€m,] = inf[|xe + (1 — e)|; yeM]
= ||xel| = ||l = ||«
Therefore, the mapping x— x is an isometry from Me onto M/m,.

Now, we consider the canonical representation 7, of IM on the Hilbert space
H, induced by @ in the sense of I.E.Segal. Then there exists a cyclic
vector €, of H, such that < %, ¢ > = (m(®)E,, &,) for x€ M. Since m.(e)
is the projection to the one-dimensional subspace of H, spanned by &, we
have _

llxell = |lex*xel|V2 = |lmro(@)mro(®)*mo(x)my(e)]|*/
= (wp(x0)Ey, mo(He)E)* = ||mo(xe)Ey| .
Moreover, (M) is the full operator algebra on H,, for =, is a o-weakly
continuous irreducible representation. Therefore, the mapping x— m (0, is
an isometry from Me onto H,. Hence M/m, is isometric to H, by the cano-
nical correspondence.

(2) General case: Let M be .the universal enveloping algebra of M,



196 M. TAKESAKI

then @ is a o-weakly continuous pure state on M. Let r?t;, be the left kernel
of @ in M, then the factor space M/m, coincides with the Hilbert space
canonically constructed by ¢ in case (1).

Put V= r‘rTJ’, then V is a left invariant subspace of M* by Theorem 1

and V* = fvi/?ﬁ‘(,. Hence V is a Hilbert space, so that V is o(IM*, IM)-closed
by its reflexivity, and V = m,%. Thus we have

(M/mp)* =V and (M/m,)** = M/m,,
that is, M/m, is a Hilbert space and its norm coincides with the one
induced by @. This concludes the proof.
Applying this result for irreducible x-representation of C*-algebra, we
can give the alternative proof of the Theorem due to R.V.Kadison [9]. But
we omit the detail.

DEFINITION 1. A positive linear functional @ on a W+-algebra M is called
singular if there exists no non-zero o-weakly continuous positive linear func-
tional ¥ on M such as ¥ < @. Moreover we call a linear functional ¥ on M
singular too, if @ is a linear combination of singular positive linear functionals
as defined above. We denote by M; the space of all singular elements of M*.

THEOREM 3. Let M be a W*-algebra, then the left (or ﬁght) invariant
closed subspace V of M* is uniquely decomposed into the I'-direct sum of its
o-weakly continuous part V (| M, and singular part V(\My, i.e.

V=%NM) &V N M.

Moreover V (\ My ani V (| M, are writlen by the central projection zy of M
as follows :

VN Ms=R,V ani V[ M. = Ra_.pV.
Proor. As M, is an invariant subspace of IM*, There exists a central

projection z, of M such that M) = ﬂ(l — 2p) by Theorem 1. Hence we have
easily M, = R, M*.

Next we shall show M = Ru-.»pM*. In fact, if @ is a positive linear
functional of Ru_.,]M* and there exists a o-weakly continuous positive linear
functional ¥ such as ¥ < ¢, then we have < x*xz, ¥ > < < ¥*%z), - > =0

for all xeﬁ, which implies R, ¥ = 0. On the other hand, we have
Ri-.,¥ = 0 by the continuity of ¥ and the above argument, so that we
have ¥ = 0. Hence ¢ is singular. Conversely, if @ is singular positive,
then R, =0 because R,p =¢ and R,p € M,. Hence we have Mj =
Ru_.poM*, for My and R;_.,,M* are spanned by their positive parts. res-
pectively. ' «

Therefore, we have M, = R,,M* M3 = Rqa_.) M* and M* = M,PuMj.
Moreover, since V is invariant under R,, and Rs_,,, one may easily verify
that V = (V1 M,) ©u(VNM;). This concludes the proof.
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This theorem includes the decomposition of a finitely additive measure
into the completely additive part and the purely finitely additive partin the
commutative case due to Yosida-Hewitt |16].

Using Theorem 3, we can show the following generalization of the well
known Dixmier's result.

COROLLARY 1. ZLet M be a W*-algebra, then a bounded linear functional
@ on M is g-weakly continuous if and only if @ is o-weakly continuous on
every maximal abelian W*-subalgebra of M.

Proor. It suffices to prove only the sufficiency. By Theorem 3, it is
sufficient to show that there exists no non-zero singular linear functional
satisfying the hypothesis. Suppose there exists a non-zero singular linear
functional ¢ satisfying the hypothesis. Mor¢over we may assume, without
loss of generality, that @ is self-adjoint (i.e. @ is real valued on the self-
adjoint part of IM). _

There exists a projection e of M such as < e, @ > > 0(or < 0). Hence
we may assume < 1, @ > >0, considering the restriction of ¢ on elVe.

Now, if there exists a non-zero projection e of M such that </, > >0
for all non-zero projection f <e, L.R.p is a non-zero o-weakly continuous
linear functional by its positiveness. This contralicts to the singularity of
@. Therefore, for any non-zero projection e of IM, there exists a non-zero
projection f < e such as < f,¢ > <0.

Hence, if {e,} is a maximal family of orthogonal projections such as
< e, o> =0, we have 3,¢, = 1. Considering the maximal abelian W*-
subalgebra generated by {e,}, we get <1, > =0 by the continuity of ¢
on this subalgebra. This contradicts to the hypothesis <1, > > 0. This
concludes the proof.

Applying this result, we can show the following generalization of Ume-
gaki’s result in the case of semi-finite type [14].

COROLLARY 2. Let M be a W*-algebra, then a subset K of M, is relatively
o (M., M)-compact if and only if,for each maximal abelian W*-subalgebra A of
M, the restriction of K on A is relatively o (A, A)-compact in A,.

Proor. It suffices to prove only the sufficiency. Since M is the linear
span of the self-adjoint part of M, K is simply bounded on M, so that K is

bounded by Banach-Steinhaus’ Theorem.
Hence, if we imbed canonically K into M* and denote the o(IM*, IM)-closure

of K by kl? is o(IM*, M)-compact. We shall show I?CM*. In fact, for

each maximal abelian W*-subalgebra A of M, the restriction of Kon A is
contained in the o(A*, A)-closure of the restriction of K on A. Hence the

restriction ofE on A is contained in A, by the hypothesis. Therefore, for

each ¢ € I?, @ is o-weakly continuous on A. Thus we have ECM* by Corol-
lary 1, thatis, K is relatively o(MM,, M)-compact. This concludes the
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proof.

We conclude this section to prove the characterization of a singular
positive linear functional in the commutative case.

THEOREM 4. Let A be an abelian W*-algebra, Q. the spectrum space of
A. Then, in order that the position linzar functional on A induced by a Radon
measure p on Q is singular it is necessary and sufficient that ils support is
non-dense.

Proor. Sufficiency is clear from the definition of singularity so that it
suffices to prove only the necessity. Let F = {V,} be a maximal family of
mutually disjoint non dense Borel sets such as u(N,)+0, then F is at most

enumerable, for ,u(UN.,) = E,,y»(Na)S w(Q2) < 4oo. Since an enumerable sum

@
of non-dense sets is also non-dense in a hyperstonean space by Dixmier’s
result [3], Np= UN,, is non-dense.
o
Let N be any non-dense Borel set of {2, then wu(N — Ny =0 by the
maximality of F. Put <f,p > = < Xwf, p>Tfor f€CQ)=A and u,=
@ — w;, where Xy, is the characteristic function of N;, then any non-dense
Borel set is pw-measure zero, so that w, is 2 normal measure by Dixmier’s
result [3]. Therefore, if the positive linear functional on A induced by w is
singular, we have @, = 0, so that # =@ has a non-dense support. This
concludes the proof.

2. Homomorphism of operai:or algebra. We start with the following

DEFINITION 2. A bounded linear mapping A from a W*-algebra M to another
W*-algebra N is called singular if '0(N ) = M, where %@ is the transpose of .

We get the following theorem corresponding to the decomposition theorem
for the conjugate spaces of operator algebras.

THEOREM 5. Let M aend N be two W*-algebras and w a *-homomorbhism
from M into N, then there exists a central projection z in the o-weak closure
of w(M) such that if we define the x-homomorphisms m, and s from M into N
as follows:

(%) = w(x)z
7o%) = m(x)1 —2) for all x€ M,
then m, is o-weakly continuous and w, is singular.

Proor. We may assume, without loss of generality, that =(M) is o-
weakly dense in N. ' ,

Let 2z, be the central projection of M as in Theorem 3. = is uniquelly
extended to a o-weakly continuous *-homomorphism 7 from M onto N by

A. Grothendieck [8]. If we put z = ;(zo), then z is clearly a central projec-
tion of N and has the properties in our theorem.
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In fact, let @ be an arbitrary element of N, then for all x&IM we have
<% 'mip)>=<mk), ¢ >=<nmx2 ¢>

= < m(x2), @ > = < %2, "w(p) >

= < 2, R w(p) >
where ‘7, is the transpose of 7. Since R., M* = M, by Theorem 3, we have
') €M, so that m; is o-weakly continuous. By similar computation we have
'ro(p) = Ra—-0"m(p) forall ¢ € N, so that (N, )<M;, i.e. o, is singular.
This concludes the proof.

Il

Combining the above result with the characterization of a singular
functional in §1, we study the o-weak continuity of the *-homomorphism
from a W+-algebra into another o-finite one.

LEMMA 1. Let A be an abelian W*-algebra, B a o-finite W*-algebra and
7 a *-isomorphism from A into B, then there exists a non-zero projection e of
A such that w is o-weakly continuous on Ae. Moreover, the o-weakly continu-
ous part mw, of mw is a *-isomorphism form A into B and the singular part m. of
7 1S @ non- faithful +-homomorphism from A into B.

Proor. 77%0) is a o-weakly closed ideal, so that there exists a projec-
tion z of A such that #»7'(0) = Az. If 2%0, then . is a singular *-isomor-
phism from Az into B. :

Now, there exists a faithful o-weakly continuous state @ on B by o-fini-
teness of B. Put ¥ = "iry(p), then ¥ is a singular positive linear functional
on A.

Hence there exists a non-zero projection e <z such as <e, ¥ > =0 by
Theorem 4, so that we have

< Wg(e),q) > =< e,tﬂ'z((ﬂ) > =< 2,11/' > :0,

which implies mi(e) = 0. This contradicts to the faithfulness of =, on Az.
Therefore we have z = 0, i.e. ; is faithful on A.

Finally, there exists a non-zero projection e of A such as wye) =0 by
the above argument, so that Ae—=;'(0). Then, 7 and 7; coincide on Ae
and 7, is not faithful. Therefore, = is o-weakly continuous on Ae. This
concludes the proof.

LEMMA 2. Let M be a o-finite W*-algebra, then there exists a maximal
abelian W*-subalgebra A, of M as follows : if a *-homomorphism m from M to
another one N is o-weakly continuous on A,, then m is c-weakly continuous on
M. Moreover, if M is of finite type or type III, any maximal abelian W*-sub-
algebra of M has this property.

Proor. It is sufficient to show that = is o-weakly continuous on all
abelian W*-sub.lgebras which. are generated by the family of orthogonal
projections. ‘

(1) Type I, case: Let Ay be a maximal abelian W*-sub.lgebra of M,
{en} a fimily of orthogonal projections and A be a maximal abelian W*-sub-
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algebra containing {e.}, then #*Ay = A for some unitary #€IM. From the
assumption, the mappings
x— uxu* — w(uxu*) = w(w)w(x)mr(u*)
— 7 (u* ) () (x)mr(2* Yy (u) = (%)
are continuous on A, hence 7 is continuous on IM.
~ (2) Type II, case: Let A, be any maximal abelian W*-subalgebra of M,
then for any projection of IM there exists a projection of A, equivalent to
this projection. Moreover, one easily verifies that for any projection p=<e
(e € Ay, p € M) there exists also a projection g of A, such as p~g=e.
Therefore, for an arbitrary family of orthogonal projections {p»} in M, we
can get the family of orthogonal projections {g.} in A, such as p.~ga. Hence
there exists a partial isometry # in IM as # induces the equivalency for
all pn and g.. Furtiermore we can choose # as a unitary of M by the fini-
teness of M. That is, #p.u* = g. for all n.
Now we consider the mappings as follows:

x— wxu*—m(wxu*) = w(@)mr(x)m(u*)
= 7 (e6)* () (Xym(w* Yy (u) = (),

for x € M. The continuity of = on A, implies that of = on an abelian
W+-subalgebra generated by {p.}. This implies the o-weak continuity of =,
for {p.} is an arbitrary family of orthogonal projections in M.

(3) Type I. or II. case: Let {e.} be a family of orthogonal finite pro-
jections such as Se. = 1 and A, an arbitrary maximal abelian W*-subalgebra
containing them. :

For a projection p € M, we shall show that A, contains a finite pro-
jection g as ¢=<b. By the assumption on {e.} there exists a number n, such
that c(p)en, = 0 where c(p) means the central envelope of . Hence we geta
central projection z such as zp <ze., (1 —2)p = (1 — 2)es, and 2p += 0 or (1 —
2)en, 0. If (1 — 2)es, + 0, then g = (1 — 2)es, is the desired one. If (1 — 2)ex,
= 0 we have zp =0, which implies the existence of a finite projection e
of Ay aszp <e. Applying the argument in case (1) and (2) for a finite W*-
algebra eMe and its maximal abelian W*-subalgebra eA;, we get a projection
q € A as zp~q. .

Now suppose a family F such that F = {q€A,; ¢<p} for a finite project-
ion p of M. The above argument shows that F is a non-empty inductive
set, so that there exists a maximal projection ¢ of F and p becomes
equivalent to g. Therefore, for a finite projection such as p e for some
projection e of Ay, we get a projection g € Ay, such as p~q=e consider-
ing with a W*-algebra eMe and its maximal abelian W*-subalgebra eA,.
Next, if p is an arbitrary projection of IM there exists a family of orthogo-
nal finite projections {p.} such as p = Sp.. Hence, we have a family of
orthogonal projection {g.} of A, such that pn~@s for all n. Put ¢ = 3¢, then
g € Ay and p~q. Therefore the same computation for M and A, used above
shows that pe, ec A, implies the existence of a projection ¢€A, such
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as p~qg=<e.

After all, the above arguments show that A, contains a projection e
with e~(1 —e). Take an arbitrary family {p.} of orthogonal projections of
eMe, then (1 —e)A, contains a family {q.} of orthogonal projections such
as gu~pn for all n. Let v, be a partial isometry of IM that gives an equi-
valency of pu and g¢., that is, o}y, =p, and v} = q,. Put u = 3 (v, + v}
+ (1 — Su(pn + @»)), then # is a unitary and induces all equivalencies bet-
ween {p.} and {g.}. Considering the decomposition of = by this unitary =
as in case (1) and (2), we get the o-weak continuity of 7 on the abelian W*-
subalgebra of eMe generated by family {p.}. Therefore = is o-weakly
continuous on eMe.

If we decompose o into its continuous part and singular one, the sin-
gular part vanishes on eMe, hence vanishes on M because of the equiva-
lency of ¢ and (1 — e). This completes the proof of case (3).

(4) Type III case: Take an arbitrary maximal abelian W*-subalgebra
A; and a projection p of M. Denoting by c¢(p) the central envelope of » we
consider the maximal family {g.} of orthogonal projections of A, whose
central envelopes are orthogonal each other and covered by c(p). Put
@ = 3uqn, then, by the maximality of {g.}, we have c(p) = c(¢g), which im-
plies p~q. Therefore the same computation as in case (3) shows the contin-
uity of = on M if 7 is continuous on Ay. This concludes the proof.

ReMARK. Though we restricted our arguments to the case of o-finite
W+-algebra, the above proposition holds without the assumption of o-fini-
teness. We omit the proof because this is immaterial for our further argu-
ments.

THEOREM 6. Let 7 be a x-isomorphism from a o-finite W*-algebra M into
a o-finite W*-algebra N, then the continuous part m of m is a x-isomorphism
and the singular part m, of ™ is always nonfaithful *-homomorphism.

Proor. We can find a central projection z of M such as 7;'(0) = Mz.
If 2+ 0, o, is singular faithful on Mz. So we may assume, without loss
of generality, that o, is faithful on M. Let A, be a maximal abelian W*-
subalgebra in the sense of Lemma 2. By Lemma 1 there exists some non-
zero projection e of A, such that 7, is o-weakly continuous on eA,. Hence
7, is o-weakly continuous on eMe as eA, has the same property in eMe as
A, does in M. Since 7 is singular we have m;(eMe) = 0. This yields a
contradiction.

Therefore 7; is faithful and 7. is not. This concludes the proof.

The above discussions have some applications. We shall show in the
following that some of the results of J.Feldman and J.Fell [7] are proved
by this method.

At first, we start with the lemma which is somewhat well known (cf.
J. Calkin [1]).
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LeMmMA 3. If the kernel of a *-homomorphism m from a o-finite, properly
infinite W*-algebra M into a W*-algebra N is not o-weakly closed, then there exists
a family of orthogonal projections in N with the cardinal of at least the
continum.

Proor. By our assumption there exists a monotone increasing sequence

{ea} in m =710) with e = \/ea & m.
n=1
Take a family of orthogonal projections {p.} in IM and partial isome-
tries {vn} such that pu~1, vhvn = pn and vy = 1 for all n. Define the family
{gn} of orthogonal projections by g. = v}e,w,, then we have

n-n

zqﬂf Zen + E(em-u — ) = \/en =edgm.
i=1 i=1 n=1

Next, let {r.} be a countable set of all rational numbers. For any real
number s we can choose an infinite subsequence of {7} so that they coverge
tos. Correspond s to an index set {#;} of the above sequence {r,}. We have,
if s=s’ for real numbers s and s, {m} N {#;} as at most a finite set where
{m:} and {#} are corresponding index sets of s and s’ respectively. Therefore,

oo

if we set ¢, = Zq,., for a real number s where {»)} is an index set cor-
i=1

responding to s, we get ¢ ¢ m and ¢,gvr € m for s =s’. Hence the family

{m(gs)} of orthogonal non-zero projections of N is of the power of continuum

at least.

THEOREM 7. Let M be a finite factor or o-finite, properly infinite W*-alge-
bra, then any *-homomorbhism m from M into o-finite W*-algebra N is o-weakly
continuous.

Proor. Since a finite factor M is simple, there exists no non-trivial

non-faithful homomorphism on M. Therefore 7 is o-weakly continuous
by Theorem 6.
’ Let M be properly infinite and suppose the kernel of the singular part
7, of 7 is o-weakly closed, then there exists a central projection z of M
such that #z%(0) = M( — 2). Hence 7 is a *-isomorphism from Mz to N,
which is impossible by Theorem 6. Therefore we have z = 0, i.e. 7, = 0.
On the other hand, if 7;(0) is not o-weakly closed, then N is not o-finite
by Lemma 3, which is a contradiction. We get, after all, 7, = 0. This com-
pletes the proof.

COROLLARY. Let M be a finitejactor or o-finite, properly infinite W+-algebra
and N a W*-algebra on some separable Hilber: space, then any bounded homomor-
Dhism (not necessarily *-preserving) m from M into N is oc-weakly continuous.

Proor. Let V be the closure of w(IN,) in IM*, then V is a closed invar-
iant subspace of M*. Since N, is separable by our assumption for N, V
is also separable. Therefore, V (1 M; is also a closed invariant: separable
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subspace of IM*. Hence there exists a central projection z of M such as
(V N M) = Mz and (V | M)* =~ M( — 2). By the separability of V1 M3,
fVi(l —2) is a o-finite W*-algebra. Therefore, by Theorem 7, the *-homo-
morphism from M to 17[(1 — 2) such as x—>x(1 —2) for x €M must be o-

weakly continuous. Hence V 1 My = 0 and by the equality V = (V (1 M,)
@u (VI M;) we get V< M,. That is, 7 is o-weakly continuous.
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