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1. Introduction. Concerning a Markov process with an invariant measure
the mean ergodic theorem for all the integrable functions was proved by
K. Yosida [11]. On the other hand, the individual ergodic theorem for the p-
th integrable functions (p > 1) was proved by S. Kakutani [5] and J. L. Doob
[1]. At length in 1954 E. Hopf [4] has established the individual ergodic
theorem for all the integrable functions by means of remarkably powerful
arguments. In the present paper we shall concern with general Markov
processes and study the necessary and sufficient conditions for the validities
of the individual and the mean ergodic theorems. Concerning the measurable
point transformations such studies were already taken by N. Dunford D. S.
Miller [2], F.Riesz [7], C. Ryll-Nardzewski [8] and the author [9J. The cor-
responding results will be obtained in this paper.

2. Notations and preliminaries. Let X be a fixed abstract space, 3?
a ήxeά cr-field of subsets of X and μ a fixed finite measure defined on ^ It
is supposed that X ζ g .

A function P(x, A) of two variables xζ X, A € $ is called a transition
probability of Markov process if it satisfies
(i) for each fixed x € X, P(x, A) is a probability measure on §•' as a set
function of a variable A € tS
(ii) for each fixed A <Ξ $, P(x, A) is a ^-measurable function of a variable
xζX.

We consider in the sequel a fixed transition probability P(x, A). If we
define

i*n>(s, A) = JP(n-»(y, A)F*ιKx, dyY> (n = 2,3, ),

then /*n>(*,A)'s satisfy

P<W+M)(ΛΓ, A) = jPM(y, A)Pw(x, dy) (m, n = 1,2, ).

In the sequel every function (every set, every measure) under consideration
will be a real-valued 3" measurable function (a set in S, a measure defined

1) J means the integral over the whole space X, Jχ .
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On δ).
We consider an operator S which is defined over the finite measures and

maps to the same sort as follows:

= ψ: ψ(A) = fp(x, A)φ(dx)

Then Sφ(X) = <p{X) and

Sφ(A) = fl*\x, A)φ(dx) U = 1,2, ).

A finite measure φ is called an invariant measure if Sφ(A) = <p(A) for every
A. For a measure <p, the transition probability P(x, A) is called φ-measurable
if ?̂(A) = 0 implies Sφ(A) = 0 or, equivalently, if φ(A) = 0 implies that
JP(ΛΓ, A) == 0 for φ-a. a. x 2 ) If P(x, A) is ^-measurable and φ(A) = 0, then
PΦ(#, A) = 0 for φ-2i. a. ΛΓ (i = 1,2, ). For instance, we shall prove the
case of j == 2. Let B = {y P(y, A) > 0}, then φ(B) = 0. Further, let C = {x;

P(x,B) = 0}, then φ(C) = 1. Hence we have

P«\x, A) = J P(y, A)P(x} dy) = 0 for all * € C,
B

as was to be shown. If φ is an invariant measure, P(x,A) is clearly im-
measurable.

Now let >̂ be a finite invariant measure. Then for any / € £ι(φ) the

integral 1 f(y)P(x, dy) exists for ?̂-a. a. x and

Hence we can define an operator T of LP(φ) (p ̂  1) into itself as follows:

f->π=g: g(χ) = jf(y)P(χ,dy).

The operator T is a linear bounded operator of LP(φ) into itself and ||Γ||P = 1.
Further T is a positive operator, that is, if f{x) > 0 for >̂-a. a. x, so is Tf(x).

Now we recall the ergodic theorems concerning a Markov process P(x, A)
with a finite invariant measure <p.

INDIVIDUAL ERGODIC THEOREM. Let φ be a finite invariant measure. Then

for every /*€ LP(φ) p > 1) there exists a function f ζ LP(φ) such that

1 «
(2.1) lim - ^ 2 ^W*) = / « ^-a. e.,

2) 4<for ?)-a. a. x" and "̂ >-a e." mean "for almost all x in X with respect to φ"
and "almost everywhere in X with respect to ?>", respectively.
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(2.2) f/WψW) = ff(x)φ(dx),

(2.3) TAx)= f{x) φ-a.e..

MEAN ERGODIC THEOREM. Let φ be a finite invariant measure. Then for
every / € LP(φ) (p > 1) there exists a function f € LP{φ) such that

(2.4) lim

(2.5) TAx) =Ax) φ-a.e..

Let P(x,A) be ̂ -measurable. Then, note that for fζ LP(φ), TAx) may
not be defined. However for every / € £-(#), 77W is defined for,^-af a. Λ:9
and 7Ί = 1, ||771|c=o < ||/||co. Further we note that, for every / . € . Z ^ )

= f(y)P°Kχ,dy)

=• jf(x)Sφ(dx)>

A set A is called a compressible (φ) set if P(ΛΓ, A) < ^(ΛΓ)3) for #>-a. a. ΛΓ

and P(Λ;, A) < £Λ(#) for Λ: in a set of positive ^-measure. A set A is called an
incompressible (φ) set if P(x, A) ^ eΛ(x) for φ-α. a. Λ; and if A includes no
compressible (φ) set. If A is an incompressible (φ) set, then from the definitiorL
it follows necessarily that P(x, A) = eA(x) for φ-a. a. x. Note that if φ is an
invariant measure there exists no compressible (φ) set and so X itself is an
incompressible (φ) set.

In the sequel it is not supposed that μ is an invariant measure, but it is
supposed that P(x, A) is μ-measurable.

LEMMA 1. The union of two incompressible (μ) sets is an incompressible
(μ) set.

PROOF. We note first that, for two sets E and F, if P(x, E) <; e^x)r

P(x, F) ̂  e/κx) for ̂ -a. a. x then P(x; E U F) ^eEUF(x), P(x7 E [] F) '^eEnF(x) ίov
μ-2L. a. X.

Suppose that both A and B are the incompressible (μ) sets. Then by the
remark we have

•P(x, A U B) ̂  βAuBix) μ-a. e.
For any set C cz A U B such that P(x,C) <i ec(x) μ-a. e., it is sufficient to show
that P(x, C) = eάx) μ-z. e.. By the remark,

P(x, C fl A) ̂  ecn ιW, P(x, Cf] B) ̂  ^ n ^ ) ,

P(x, C [) A f]B)^ ecnιnB(x) μ-* e.

3) eA denotes the indicator of a set A.
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Since A and B include no compressible (μ) set,

P(x, C Π A) = ecnΛ(x), P(x, CΠB) = ecnfa),

P{x, C n A f l δ ) = ecnΛhJx) μ-a- e.,
so that

BiXϊQ^JKXrC.n Ay + JP(^.G' n B) - P(*,C n A n #)
= eCπΛ(x) + βcniίW — ^n^nK*) - *c(*). μ-a, e.,

as was to be shown.
THEOREM 1.4) The space X splits into two disjoint sets Y and Z such

that
{2:6) Y is an incompressible (μ) set
(2.7) Z includes no\\inQompressible (μ)\ set of positive μ-rneasure.

The sets Y and Z are called the incompressible (μ) and the dissipatiυe
(μ) part of X.

, -yjfcΦPF*; :Let^<ίeαoίe thesupremum of ^rηeasures of the incompressible
(μ) sets in. X Then, by virtue of Lemma 1, there exists a sequence of the
incompressible (μ) sets Yn (n = 1,2, ) such that

Tι :c:T2c=..'.. ',

We set

then Y and Z are mutually disjoint and satisfy (2.6) and (2.7) In fact,
suppose that A c F and P{x, A) g ?A{X) ,μ~a. e. Since each Yn is an incompres-
sible (μ) set, P(x, A Π Yn) Se.inYn(x) μ-Wβ. and hence P(x, A f] Yn) = eAΠrn(

χ)
μ-a.e., so that P(x, A) = eA{x) μ.-a. e. This concludes (2.6). Next, suppose that
A en Z and A is an incompressible (μ) set of positive//.-measure. Then, by
Lemma 1, Y U A is an incompressible (μ) set and the .^-measure of Y (J A
is greater than #. This contradicts the, definition of a, so that (2.7) must be
true.

3. Individual ergodie theorem. We shall first state several propo-
sitions.

(Γ. 1) For every f € Lp(μ) (p > 1), Vfljx) C/= 1,2, .'. '..) W defined for μ-

a.a.x in the incompressible (μ) part Y and there exists a function f ζ LP(Y,μ)5:>

such that
1 1^ ^

lim — >, Tf(x) =/(*) μ-a.e. in Y,
^oo n j t?

4) Either F or Z may be of >-measure zero. The present decomposition theorem
is different from the decomposition theorem [4] with respect to the ajoint operator
T* of TV and corresponds to the decomposition theorem [3] with respect to a
measurable point trans formation,

5) Lp(X,μ) denotes the family p.f, all the functions which are,/>-th integrable
(witα respect to μ) over Y.
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Moreover, for every f ζ Loo(μ),

(1.2) For every f £ LP{μ) (/>J> 1), Vf{x) (j = 1,2, . . . . ) arc? cfe/irarf for μ-

a. a. x and there exists a function f € LP(μ) such that

lim — 2

(1.3) For every f^LP{μ)(p^l), TAx)(j= 1,2, ) are defined for

μ-a.a.x and there exists a function f € LP(μ) such that

lim ί V f x=~χ
n-,~ n —

Moreover, if f is a non-negative function and positive in a set of positive μ-

measure, so is f

(C. 1) There exists a positive constant K such that

lim sup —

for all A.

(C. 2)6) There exists a positive constant K such that
n-Λ

0 < lim sup — 2 9μ{A) g K-μ(A)

for any set A of positive μ-measure.

In this section we shall prove the following

THEOREM 2. (C. 1)-* (1.1)7\ (1.2)-»(C. 1).

THEOREM 3. (C.2)±;(1.3). If they hold, then X is an incompressible (μ)
set.

THEOREM 4. // X is an incompressible (μ) set, then (C. 1) t ; (C. 2) ±+ (1.1)

Before the proofs we shall prepare several lemmas.
For a set A, let (A| At) = (A|Afc, k = 1,2, m) denote the partition

of A such that

A = \J Ah,

6) Since P (x, A) is μ-meisurable, μ (A) ~ 0 implies S*μ (A) =0 for j = 1,2, ,
so that the proposition (C.2) implies the proposition (C.I).

7) With respect to the propositions P and Q "P -* Q" means that P implies
Q
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A set function a defined on $ is called subadditiυe if a(A U B) <: a(A)
+ a(B) for any sets A and £.

LEMMA 2. Ze£ a be a non-negative subadditiυe set function on $ and
have a dominant finite measure φ, that is, a(A) <i <p(A) for all A, For every
set A, define

β(A) = sup V "(A*),

^ 1
where 2 tneans a summation with respect to the seίs AkS of a partition

(A\Ak)

(A\Ak) and sup denotes the supremum for all the partitions (A\Ah)'s of A.
WMt)

Then β is a finite measure with the dominant φ.

PROOF. It is clear that 0 <; β(A) <Ξ φ(A) for all A. In order to prove
that β is a finite measure, it is sufficient to show that β is finitely additive,
since β has a dominant finite measure φ.

Take a finite number of disjoint sets A1, , AN and set A =
N

\JA(. Let S be any positive number. Then, for each A', there exists a
ί-l

partition of A', (A'| A£ , £ = 1, ,*»<), such that

N

Here note that the collection of sets Ak (ft = 1, , mi i = 1, , j\Γ)
gives a partition of A, (A|Aj.). Hence we obtain

(3.1) 2

On the other hand, there exists a partition of A, (A|Afc; k = 1, , m),
such that

We set AJ = Afn At(ί= 1, ,N;k = l, , m). Then, for each
1, the collection of sets AJ. (* = 1, ,tri) gives a partition of A*, (A'| AJ).
Since a is subadditive, we obtain

2 α(A»)S2 Σ ^
(A\Λk)

Hence

(3.2)
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Since £ in (3.1) and (3.2) is any positive number,

This shows that β is finitely additive.

LEMMA 3. For a set A, define

PC*:, 5) = TeB{x) <Mx) /χ-a. e.

PROOF. We note first that, for any f,g 6 L~(μ),

(3.3) (Tfr(x)^Tr(xf> μ-a.e.,

(3.4) if /(*) > (̂ΛΓ) /x-a. e., then

r>Λ%) ~ W ^ 1]+(ΛΓ) > Wflf(Λτ).- [/iflF - 1]+(*) /z-a. e.

Now we set

), ^ 7 Λ - {X; fm{x) > 0}

Then

Further, W/W(ΛΓ) — [Λ/?Λ — l]*(ir) increases and converges to. eBm(x) as
and eβut(x) increases and converges to ^(ΛΓ) as m -* oo. Hence, by the convergence
theorem, (3.3) and (3.4), we have

P(x, B) = Γβi**) ^ 5Γ(lim lim {Λ/W(ΛΓ) -^ [«/m - 1]+U)»

= limlim{Γ«/,n(Λ;) - TW i ~ U*(*)}

^ lim lim {nT/m(x) - \nTfm - 1] μ(#)}

<; lim lim .{Λ/«I+I(*) - Γw/«+i - !]!(#)} = ̂ (Λ:) /x-a. e.,
m->oo M->oo

as was to be proved.

LEMMA 4. //* (C.I) holds, there exists a finite invariant measure X such
that

(3.5) \(4)</ϊp.μCA) for all A,

n-l

(3.6) λ(A) > lim sup — 2 S>(A) for all A,

(3.7) if \(A) = o ί t e M A n n = o.

8) For a function f,f+(x) denotes max(/(x),0)
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PROOF. If we set

n Jmΰ

1
a(A) = limsup — 'ΈS'μiA) for all A,

n

then a is a non-negative subadditive set function on $ and has a dominant
finite measure K μ by virtue of (C. 1). Hence, if we define

β(A) =* sup 2 tf(A*0 f o r a 1 1 A>

then, by Lemma 2, /3 is a finite measure such that

(3.8) β(A) ^ K-μ(A) for all A,

f o r a 1 1 Λ

?

for all A.

Both (3.8) and (3.9) are clear. We shall prove (3.10). For any fixed set
A, set

(3.9)

(3.10)

β(A) > lim sup

β(A)

n-ι

2-
^ Sβ(A)

Then we note that, for any finite measure φ,

Let £ be any positive number. Then there exist a positive integer m such
that

m

Sβ(A) + £ > 2 βiXmfd-
fc = l

By (3.9) there exists a positive integer w0 such that

w n

{k = 1, Pί fl =^ Wo, Wo + 1,

Hence, for any w ̂  w0, we have

so that

Since £ is any positive number,

m

+ f>2—
J f c - 1

w — 1 m

op(Ά) + ^£ s

- ra-1

— 2 s

im sup

'>(

*fc)

j_

w

W - l

-Σ
J-0

1 !£i
— Σs i +MA)-£,

.7 = 0
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Sβ(A) > a(A).

Hence, for any set A and for any partition (A|Afc) of A,

Sβ(A) - 2 2

so that by the definition of β we have (3.10).
By (3.10),

(3.11) β(A) S 5/3(A) ̂  S*β(A) ^ for all A.

Now we define

λ(A) = lim S"ΆA) for every A.
W->oo

Then we shall prove that λ is the desired finite invariant measure. It is
clear that λ is a non-negative, finitely additive set function on $. By (3.8)
and (C. 1), it follows that

n-i

S KΛim — 2 S>(A) ί£ K*-μ(A) for all A,

which is just (3.5). Since λ is a non-negative, finitely additive set function
on $ and has a domiant finite measure K2ψ by (3. 5), λ is a finite measure.
(3.6) follows directly from the definition of λ, (3.11) and (3.9). Since S"β{A)
converges to λ(A) for every set A as n -> oo and is dominated by λ(A),

= / P(x, A)\(dx) = lim / P(ΛΓ, A)Snβ{dx)x)

= lim Sn+1£(A) = λ(A) for every A,

which shows that λ is an invariant measure.
Finally we shall prove (3.7). Suppose λ(A) = 0. Since λ is an invariant

measure, S}X(A) = 0 (/ = 1,2, ) and so

eA{x) = 0, pυ\x, A) - 0 λ-a. e. (/ = 1,2 ,).

Hence, if we set

B = A U 0 {*; Pco(^, A) > 0},

then λ(B) = 0.
On the other hand, by virtue of Lemma 3,

P(x, B) ^ eB{x) yLt-a. e.

Since P(x, Y) -= eY{x) μ-a. e.,

Since F includes no compressible (μ) set,

/χ-a.e.
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and so

PV>(x, B(]Y) = ennrix) μ-a. e. (J = 1,2, ).

Hence

SWBfl Y)=-μ(Bf] Y) (7 = 1,2, ),

so that, by (3.6),
n-l

λ(B Π F) > lim sup — 2 S > Φ Π Y) = /*(B Π F).

Since A c 5 a n d λ(B) = 0,

as was to be shown. Thus the proof of Lemma 4 is terminated.
For a measure φ, a function / is called an invariant (φ) function if

Tf(x) =/(*) for 90-a.a.Λr.

LEMMA 5. Let X be the finite invariant measure defined in Lemma 4

and let / C £i(λ) be an invariant (λ) function. Then, for any real numbers

a,β(a<β),

P(x, A(a, β)) = eA(Λiβ) (x) λ-a. e.,

where

A(a,β)=-{x; a<f(x)<β}.

PROOF. We note first that if g ^ Zi(λ) is an invariant (λ) function, so
is g+. In fact,

9+(x) = (Tg)+(x) ^ Tg+(x) λ-a. e.

Since λ is an invariant measure,

fτg+(x)\(dx) = Jg+(x)S\(dx) = f g+(x)\(dx\

Hence

Tg+(x) = g+(x) λ-a.e.

For any real number a, set

Then [n(f — a)]+ (x) — [w(/ — α) — 1J+(ΛΓ) increases and converges to eAw(x) as
w->oo. Since / is an invariant (λ) function, [n{f— ά)]+ and [w(/— a) — 1]+

are the invariant (λ) functions. Hence

= lim {Γ[«(/- aψ(x) - T[n(f- a) - l]*(

= lim {[«(/- α)]+(Λr) - [n[f - a) - lY{x)}

= eA{Λ){x) λ-a. e.
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Thus, for the set A(a, β) in the lemma,

P(x, A(a, β)) = P(x, A(a)) - P(x, A(β))

= ej(a)(x) — eA(β)(x) = eA(Λ,β)(x) λ-a. e.,

as was to be proved.

LEMMA 6. Let λ be the finite inυaήant measure defined in Lemma 4.
Then, if f €• LP(X) (p ί>l) is an invariant (X) function, / € LP(Y,μ).

PROOF. Suppose that / € LP(X) is an invariant (λ) function. Then / +

and \f\( = -^-(/+/ + ) ) are the invariant (λ) functions as was noted in the

proof of Lemma 5. Now, set

— Ί \llP

I (n,k=l,2, ).| / ( ) | S

n n

Then, by Lemma 5, each Awfc satisfies

P(x, Am,) = eΛfιk(x) λ-a. e.
Since P(x, Y) = eY(x) μ-z.e., it follows by (3.5) that P(x, Y) = er(x) λ-a. e.
Hence

P(x, Ank Π Y) S eAnλΠY(x) λ-a. e.,
so that, by (3.7)

P(Λr,A«fc Π Y) ^ eAt,knr(x) μ-a.e. in Γ.

Since P{x, Ante Π F) and eAnknτ{x) are majorized by P(x, Y) and ^K )̂» respecti-
vely, and P(x, Y) ( = er(x)) vanishes for /x-a. a. # outside of F,

P(x, Anic Π F ) ̂  eAnbnr(x) μ-a. e.

Since F includes no compressible (μ) set,

P(x, Ank Π F) = eAnkV.γ(x) μ-&. e.

and so

P<»(x, Anh Π F) = ^ t λ n r W At-a. e. (J = 1,2, ).

Hence

SWA,* Π F) = MAnfc Π Γ)) (/ = 1,2, ),

so that, by (3.6),

λ(AnfcΠ F)>/.(An f cn F).

Therefore

Γ I/WI χ<fc) = lim V — MAn. fl 10

w*) = Γ |lim 2 —
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which shows /<Ξ Lp(Y,μ) .

LEMMA 7. If T is a linear positive operator of Liiμ) into itself, then

T is a bounded operator.

For the proof, see [8|.

PROOF OF THEOREM 2. Proof of "(C. 1) -> (1,1)": Let λ be the finite
invariant measure [defined in Lemma 4. Take any / € LP(μ) (p ̂  1). Then,
by (3.5), / € LP(X). Hence, by the individual ergodic theorem concerning
Markov process P(x, A) with a finite invariant measure λ, there exists an

invariant (λ) function / € LP(λ) such that

1 £
li™ ~ 2L T'Λx) = Ax) λ-a. e.

Hence, by Lemma 6, / € LP(Y,μ). Further, by (3.7), Tf(x)(j = 1,2, )
are defined for μ-a. a. # in y and

1 w~1 ^
l i m — 2 Tϋfad =/(^) -/iA-a.e. in Y.
**- n

 JTO

Thus the first half of (I.I) is proved.
Next we shall prove the second half of (I.I). ^Suppose f€Loo(μ). For

the proof it is no loss of generality to assume that 0 ̂ f(x) ^ 1 μ-a. e. Now
we set

g(x) = limsup -^-
1 n~λ i

— 2 Tf(x) - lim inf —p ^ 2 f( ^

g(x)μ(dx) = 0. Since 0 ̂  ^ - 2 T:f{x) S 1

μ-a. e. (« = 1,2, ), it follows, by the convergence theorem, that

Tg(x)^g(x) μ-a.e.,

and so

(3.12)

Set

Let 6 be any positive number. Then there exists a positive integer m such
that

kg(x)\(dx) + € > V
Πf

By (3.6) there exists a positive integer n such that
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ι» > n £J ^
Hence

/

m _ w—1

ί/(*)λ(<fo) + « > 2 ( Γ
n-l m

^ 1 ^ Ί "^Ί #

Here, by (3.12),

fg(x)$μ(dx) = jτjg(x)μ(dx)

^ fg(χ)μ(dχ) U = o, , Λ - 1 ) .

Thus we obtain, from (3.13),

fg(x)X(dx) + 6 > fg(x)μ(dx) - £.

Since 6 is any positive number,

(3.14) jg(x)Mdx) > fg(x)μ(dx).

n-l

On the other hand, -=- 2 75fad converges λ-a. e. as ^-^ oo as was shown

in the proof of the first half of (I.I), so that g(x) = 0 λ-a.e. and so

(3.15) Jg(x)\(dx)^ 0.

Consequently, by (3.14) and (3.15),

fg(x)μ(dx) = 0,

as was to be shown.

Proof of "(1.2) -> (C. 1)": We shall use the case of p = 1 of (1.2). Define

an operator T of Lλ{μ) into itself as follows:

Then T is a linear positive operator of Li(μ) into itself, so that, by Lemma

7, T is a bounded operator. Let K denote the norm of T, \\T\\i. Since, for
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every set A, — 2 T-'eA(x) converges boundedly to feΛ(x) μ-a. e. asw->oo, it

holds that

Ί n~ι r 1 n~ι

lim -- y* SufA) - lim / -x- V TeΛ(x)μ(dx)

- JTeA(x)μ(dx) S K- jeA(x)μ(dx) - if

PROOF OF THEOREM 3. Proof of "(1.3) -> (C. 2)": It is clear that (1.3)
-»(1.2), and, by Theorem 2, (1.2)-> (C. 1). Hence it is sufficient to prove

n-i

that if M(Λ) > 0 then lim sup V Sμ(A) > 0. Suppose ŷ (Λ) > 0. Then, by

(1.3), ^I(Λ:) is positive in a set of positive /x-measure, so that

0 < f7,(x)μ(dx) = lim / - 1 • 2 Γ eA(x)μ(dx)

V

as was to be proved.
Proof of ί4(C. 2)->(I.3)" : We shall first prove that X is an incompressible

(μ) set. Since (C. 2) -> (C. 1), we can consider the finite invariant measure λ
defined in Lemma 4. By (3.6) and (C. 2),
(3.16) if μ(A) > 0 then λ(A) > 0

or, equivalently,

if λ(A) = 0 then μ{A) = 0.

Now we shall show that no compressible (μ) set exists. Suppose

P(x, A) < eA(x) μ-2i. e.

Then, by (3.5),

P(x, A) ^ ^(ΛΓ) λ-a. e.

Since λ is an invariant measure, it follows that

P(x, A) - eΛ(x) λ-a. e,

Hence, by (3.16),

P(x,A) = eΛ(x) μ-a.e.,
which shows that A is not a compressible (μ) set. Since no compressible (μ)
set exists, X must be an incompressible (μ) set.

Hence, in the present case, (I.I) coincides (1.2), and by Theorem 2,
(C.l)-KI.l). Thus for the proof of (1.3) it is sufficient to show that iife
LP(μ) is a non-negative function and positive in a set of positive /^-measure,

so is/. Suppose that / 6 LP(μ) is a non-negative function and μ{x;f(x) > 0}
> 0 . Then, by (3.5), / € LP(X) and, by (3.16), \{x; fix) > 0} > 0. Hence,
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by the ergodic theorem concerning Markov process P(x,A) with a finite
invariant measure λ,

ff(x)\(dx) - jf(x)\{dx) > 0,

so that \{x; f{x) > 0} > 0. Hence, by (3.5), μ{x; f(x) > 0} > 0, as was to be
proved.

PROOF OF THEOREME 4. We shall prove the implications "(C. 1) ->• (1.1)
-* (1.2) -> (1.3) --> (C. 2) -+ (C. 1)". The implications "(C. 1) -> (1.1')' and "(1.3)
->(C2)" follow from Theorems 2 and 3, respectively. The implication "(C. 2)
—•(C.I)" is trivial. Since X is an incompressible (μ) set, (I.I) coincides (1.2).
Thus it remains to prove the implication "(I.2)->-(I.3)". Let λ be the finite
invariant measure defined in Lemma 4. Since X is an incompressible (μ) set,
(3.7) coincides with:

(3.16') if λ(Λ) = 0 then μ(A) = 0

or, equivalently, with:

if μ{A) > 0 then X(A) > 0.

Then the proof of "(1.2)-> (1.3)" is the same to that of the latter half of
"(C.2)-KL3)" of Theorem 3. Thus the proof of Theorem 4 is terminated.

4. Mean ergodie theorem. We shall first state three propositions.

(M. 1) The operator T is a bounded operator of LP(μ) (pl>l) into itself

and, for every f' ζ LP{μ), there exists a function / € LP{μ) such that

lim J- "X. 1 rτ\ j- ./• r\

n ~

(M.2) The operator T is a bounded operator of LP(μ) (p 2 1) into itself

and, for every f € LP(μ), there exists a function / € LP(μ) such that
n—\ [

lim —y\Tf-f ' = 0.

Moreover, if f is a non-negative function and positive in a set of positive μ~

measure, so is f.

(C. 3) There exists a positive constant K such that

~- 2 Sμ(A) S K μ{A) (n = 1,2, )

for all A.

Now we shall prove the following

THEOREM 5. (C.3)Jt(M.l).

THEOREM 6. (M. 1) -> (1.1).
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THEOREM 7. (M. 2) -> (1.3).

THEOREM 8. If X is an incompressible (μ) set, (M.1)->(M.2).

Theorem 5 (the case of p = 1) has been proved by I. Miyadera [6].
The proof depends on the method of that of the Riesz, Yosida and Kakutani
ergodic theorem in Banach space (see, for example, [10]). In the present
paper, Tneorems 5,7 and 8 will be proved on using the results in §3. Theorem
6 follows from Theorems 5 and 2, since (C. 3) -> (C. 1) trivially.

PROOF OF THEOREM 5. Proof of "(C. 3)-• (M. I)1' : For every f€LP(μ)

—

= I \ \f(y)\p — 1?
U n Tit

p UP 9)

μ(dx)

HP

\fiy)\»μ(dy)
UP

Hence

(4.1) n v <κ
On the other hand, the implication '(C. 3) ->• (C. 1)" is trivial and, by Theorem
2, (C. 1) -> (1.1). Hence, for every / € £>(/*) there exists a function / € Z.~(»
such that

Since T/(ΛΓ)

j - υ

11/11- /̂ -a. e. (Λ - 1,2, ), by the convergence

theorem it follows that, for every /> ^ 1,

lim \^-yVf-f\ =0.

Further, for every £ > 1, Zo.(/Lt) is dense in LP(μ). Hence, by (4.1), it holds

that, for every / € Zp(ffc),

sense of L»{L
n .a

as n->co.

converges to a function/€ LP(μ) in the

9) Here PCo;(x>A) denotes eA(x).
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Proof of "(M. 1) -> (C. 3)" : We shall use the case of p - 1 of (M. 1).

Since, for every/€ L{(μ), - - "V Tf converges in a sense of £i(;tt,)-norm asn ts
n->oQ, by the Banach theorem there exists a positive constant K such that

W
l! *

Hence, for every set A,

— 2 SXA) = f — 2 ^eA
n .f-o J Λ >o

71-1

j=[) 1

PROOF OF THEOREM 7. By the trivial implications and Theorem 5 it
is clear that (M. 1)->• (C. 1). If we prove the implication '*(C. 1)->(C2)" under
the assumption (M.2), then we obtain (1.3) by virtue of Theorem 3. For the

1 ^
proof it is sufficient to show that if μ(A) > 0 then lim sup — J£ 5 M ^ ) > °

n j=o

Suppose μ(A) > 0. Then, by (M.2), eΛ is positive in a set of positives-
measure. Hence

π-l /. n-l

lim --- 2 S>(A) = lim I — 2 T'eA(x)μ(dx)
n-*°° n IT? /έ"?βo J n ^

= J Ί>Λ(x)μ{dx) > 0.

PROOF OF THEOREM 8. By Theorem 6, (M. l)-KI.l). Since X is an
incompressible (μ) set, by Theorem 4 it holds that (I. l)->(1.3). The proposi-
tions (1.3) and (M.I) together imply (M.2).

Finally we shall give one of the applications of our theorems.

COROLLARY. Let the transition probability P(x,A) be generated by a
bounded function p(x,y) of two variables x, y ^ X as follows :

P(x, A) = J p(χ,y)μ(dy).
A

Then (1.2) and (M. 1) hold.

PROOF. Let p(x,y) < K. Then, for each A,

P^\x, A) = Jp(x,y)μ(dy) S K μ(A),
A

P°Kx, A) = Jp(y, A)P{x, dy) ̂  J K μ(A)P(x, dy) = K-μ(A\,
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t" {x,A) = JP^'1Ky,A)P(x,dy) < f K μ(A)P(x,dy) =

Hence

S 1 1 ^ ) = Jp<-n\x, A)μ(dx) < iΓ^CA) (Λ = 1,2, ),.

so that, by Theorems 5 and β, both (M. 1) and (1.1) hold.
Next we shall prove (1.2). Consider a n y / € L»(μ) (p>l). Let £ be any-

positive number. Then there exists a function g £ L~(μ) such that

n-\

W)-g{χ)\μ(dχ)< - ^ .

1 ^By virtue of (I.I), — Σ ^ ^ converges to a finite limit for μ-a. a. x as*

! -> oo. Thus
ra-i

1

lim sup

r i ^
^ lim sup / |/βθ — <7(jv) I — >

+ lim sup ! — 2 T>g& - — 2

lim sup ( I0GO /(y)| V

\f(y) - giy) \ μ(dy) <£ μ-a.e.

1 I""1,
Since £ is any positive number, — "5] Tf(x) converges to a finite limit for

71 £5
71 £5

μ-a.a.x as w->oo and, by virtue of (M.I), the limit function must belong to
LP(μ). Hence (1.2) holds.
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