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1. Introduction. Concerning a Markov process with an invariant measure
the mean ergodic theorem for all the integrable functions was proved by
K. Yosida [11]. On the other hand, the individual ergodic theorem for the p-
th integrable functions (p > 1) was proved by S.Kakutani [5] and J.L.Doob
[1]. At length in 1954 E. Hopf [4] has established the individual ergodic
theorem for all the integrable functions by means of remarkably powerful
arguments. In the present paper we shall concern with general Markov
processes and study the necessary and sufficient conditions for the validities
of the individual and the mean ergodic theorems. Concerning the measurable
point transformations such studies were already taken by N.Dunford-D.S.
Miller [2], F.Riesz [7], C.Ryll-Nardzewski [8] and the author [9]. The cor-
responding results will be obtained in this paper.

2. Notations and preliminaries. Let X be a fixed abstract space, ¥
a fixed o-field of subsets of X and p a fixed finite measure defined on &. It
is supposed that X € .

A function P(x, A) of two variables x€ X, A € % is called a transition
Dprobability of Markov process if it satisfies
(i) for each fixed x€ X, P(x,A) is a probability measure on ¥ as a set
function of a variable A € §;
(i) for each fixed A € &, P(x,A) is a F-measurable function of a variable
xe X.

We consider in the sequel a fixed transition probability P(x, A). If we
define

PO(x, A) = P(x, A),
P(x, A) = f P®-1(y, A)PW(x, dy)D n=2,3,........ ),
then P™(x, A)'s satisfy
Pmen(x A) = f P(y, A)P™(x, dy) mn=12........ ).

In the sequel every function (every set, every measure) under consideration
will be a real-valued F-measurable function (a set in §§, a measure defined

1) f means the integral over the whole space X, f X"
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on ¥).

We consider an operator S which is defined over the finite measures and
maps to the same sort as follows:

p—=+Sp=v%: ¥A)= f P(x, A)p(dx).
Then Sp(X) = @(X) and

Sp(A) = f PO(x, A)p(dr) G=1,2........ )

A finite measure @ is called an invariant measure if Sp(A) = @(A) for every
A. For a measure @, the transition probability P(x, A) is called ¢-measurable
if @(A)= 0 implies Sp(A) =0 or, equivalently, if @(4)= 0 implies that
P(x,A) =0 for @-a.a.x.® If P(x,A) is @-measurable and @(A4)= 0, then
PO(x,A)=0forpa.a.x (=12 ........ ). For instance, we shall prove the
case of = 2. Let B = {y; P(y,A) > 0}, then @(B)= 0. Further, let C = {x;
P(x,B) = 0}, then @(C) =1. Hence we have

P®(x, A) = f P(y, A)P(x,dy) = 0 for all x€ C,
B

as was to be shown. If @ is an invariant measure, P(x, A) is clearly ¢-
measurable.

Now let @ be a finite invariant measure. Then for any f & Z,(p) the

integral f f)P(x,dy) exists for g-a.a.x and

[ [ 702w gt = [rpian.

Hence we can define an operator T of Ly,(®) (p = 1) into itself as follows:

[2Tf=g: gx)= f JO)P(x,dy).

The operator T is a linear bounded operator of L,(e) into itself and || T, = 1.
Further T is a positive operator, that is, if f(x) =0 for @-a.a.x, so is Tf(x).

Now we recall the ergodic theorems concerning a Markov process P(x, A)
with a finite invariant measure .

INDIVIDUAL ErGoDIC THEOREM. Let @ be a finite invariant measure. Then
for every f € Lo(@) D = 1) there exists a function f € Ly(p) such that

1S ~
@.1) lim - - % Tf(%) = f(%) p-a.e,

2) “for g-a.a.x” and “p-a.e.” mean “for almost all x in X with respect to ¢”
and “almost everywhere in X with respect to ¢”, respectively.
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2.2) f 7('x»)<p(dx) = f Fx)p(dx),
@2.3) TH(x) = /(%) pa.e..

MEeAN ErGopic THEOREM. Let @ be a finite invariant measure. Then for
every f € Ly(p) (p = 1) there exists a function f € L(p) suck that

2.4 lim | L Srr—7 l =0,
ne N i »
(2.5) Tf~(x) 2];(}) @-a.e..

Let P(x, A) be @-measurable. Then, note that for /€ L)), Tf(x) may
not be defined. However for every f.€ L.(@), Tf(%) is defined for.p-a.a.x,
and T1 =1, ||Tf]|» < |f]|l~. Further we note that, for every /€ L.(¢p)

Tf(x) = f S\ P9z, dy) gp-a.e,

[ra@n = [rospan.

A set A is called a compressible (p) set if P(x, A) < es(x)® for @-a.a.x
and P(x, A) < e(x) for x in a set of positive g-measure. A set A is called an
incompressible (p) set if P(x, A) <esx) for @p-a.a.x and if A inpludes no
compressible (@) set. If A is an incompressible () set, then from the ‘definition.
it follows necessarily that P(x, A) = e4(x) for @-a.a.x. Note that if ' is an
invariant measure there exists no compressible (@) set and so X itself is an
incompressible (@) set.

In the sequel it is not supposed that w is an invariant measure, but it is
supposed that P(x, A) is w-measurable.

LemMma 1. The union of two incompressible () sets is an incompressible
(u) set.

Proor. We note first that, for two sets £ and F, if P(x,E) < ex(x), |
P(x, F) < esx) for p-a.a.x then P(x, E U F) < esyx), P(x,E | F) < esn(%) for
p-a.acx. »

Suppose that both A and B are the incompressible (u) sets. Then by the
remark we have V

P(x, A U B) = eaus%) ©n-a.e.
For any set C < A U B such that P(x,C) < ec(¥) p-a.e, it is sufficient to show
that P(x,C) = ef%) p-a.e.. By the remark,
P(x,C N A) =< ecn (%), P C B)=<ensx),
P(x,CN AN B é ecn 1n &%) pra.e.

3) ed4 denotes the indicator of a set A.
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Since A and B include no compressible (u) set,

P(x,C N A) = ecna(x), P(x,C N B) = ecnsx),
Pix CN AN B) = eanné(-x) p-a. e,
so that
P(x,C) =P CNA+ Px,CNB-Px,CNANB
= eon (%) + eonu(X) — ecnansx) = edx) ©-a, e,

as was to be shown.

THEOREM 1.9 The space X ‘splits - into-two disjoint sets Y and Z such
that
2.6) Y s an incompressible () set;
2.7 Z includes no. mcompmsszble (u) set of positive p-measure.

The sets ¥ and Z are called the incompressible (w) and the dissipative
(u) part of X.

,,PRQOF -Let a.denote the supremum of u-measures of the incompressible
(,u) sets in X. Then, by virtue of Lemma 1, there exists a -sequence of the
incompressible (u) sets Y, (n =1,2,....) such that

‘Y;c‘yzc....’, Climu(Ye) =a.
N->oo
We set
vy=\UJv., Z=Xx-v,

then Y and Z are mutually disjoint and satisfy (2.6) and (2.7) In fact,
suppose that A < Y and Px, A) < 24(x) u-a. e.Since each Y, is an incompres-
sible (u) set, P(x, A N Yu) ZTeinr,(¥) y,-a; e. and hence P(x, A (| Yu) = eanr, (%)
p-a.e., so that P(x,A) = e«(x) u-a.e. This concludes (2.6). Next, suppose that
Ac Z and A is an incompressible (u) set of positive w-measure. Then, by
Lemma 1, Y U A is an incompressible () set and the u-measure of ¥ |J A
is greater than @. This contradicts the, definition of @, so that (2.7) must be
true.

3. Individual ergodic theorem. We shall first state several propo-
sitions.

(f. 1) Forevery f€ Ly(w)(p=1), T/)(G=1,2,........ ) are defined for p-
a.a.x in the incompressible (w) part Y and there exists a function f e L,(Y ,;L)-’>j
such that

n-1 -

1im ; 2T’f(1¢) f(x) | p-a.e. inY.

n—oo

4) Elther Y or Z-may be of u-measure zero. The present decomposition theorem
is different from the decomposition theorem [4] with respect to the ajoint operator
T* of T,. apd cqrresponds to the decomposition. theorem [3] with respect to a
measurable point transformatlon

5) Lp(Y,u) denotes the- famlly of all the functions which are p- -th integrable

(with respect to u) over Y.
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Moreover, for every f € L.(),

n—1

1 ~
lim —— > T7x) = f(%) wa.e.
nye Mo

(I.2) Forevery f€ L) d=1), THx)(j=1,2,....) are defined for p-
a.a.x and there exists a function 76 Ly(u) such that

n—1
lim —}7 > ) = f() p-a.e.
e j=0
(I.3) Forevery fEL(w®=1), TG =1,2,........ ) are defined for
p-a.a.%x and there exists a function 76 L,(u) such that
N = ~
Ltng ” E T1(x) = f(x) pu-a.e.

=0
Moreover, if f is @ non-negative function and positive in a set of positive p-
measure, so is f.

(C.1) There exists a positive constant K such that

n—1
lim sup % > S'wA) < K-u(A)

ne J=0
for all A.
(C.2® There exists a positive constant K such that
n-1
0 < lim sup %_ > SuA) < K-u(A)
noe i=v

for any set A of positive u-measure.
In this section we shall prove the following
THEOREM 2. (C.1)—(L.1)7, (I.2)— (C.1).

THEOREM 3. (C.2)5(1.3). If they hold, then X is an incompressible (i)
sel.

THEOREM 4. If X is an incompressible (u) set, then (C.1) 5 (C.2)5(1.1)
2 (1.2)5(1.3).

Before the proofs we shall prepare several lemmas.
For aset A, let (Al4Ax) =(AlAs, k=1,2,........ m) denote the partition
of A such that

A=\ A, Ai N Ay =0 G =)

6) Since P(z, A) is p-mesurable, u(A)=0 implies Sk (A4)=0 for j=1,2,...... ,
so that the proposition (C.2) implies the proposition (C.1).
7) With respect to the propositions P and Q “P — Q” means that P implies
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A set function « defined on & is called subadditive if a(A U B) < a(A)
+ a(B) for any sets A and B.

LeMMA 2. Let o be a non-negative subadditive set function on & and
have a dominant finite measure @, that is, a(A) =< @(A) for all A. For every
set A, define

B(A) = sup 2 a(Av),

% (414

where 2 means a summation with respect to the sels Ai's of a pariition
(4]4g)

(AlAx) and (illlp)denotes the supremum for all the partitions (A|Av)'s of A.
A
Then B is a finite measure with the dominant .

Proor. It is clear that 0 <B8(A) =< @(A) for all A. In order to prove
that 8 is a finite measure, it is sufficient to show that @ is finitely additive,
since @ has a dominant finite measure .

Take a finite number of disjoint sets AY, ........ , A¥ and set A =
N

UA'. Let & be any positive number. Then, for each A‘, there exists a
f=1

partition of Af (A'|AL;k=1,........ ,my), such that

BAY — = < 3 aa).

)
(4*14})

Here note that the collection of sets A, (k=1,........ omisi=1,........ ,N)
gives a partition of A, (A|A;). Hence we obtain

N N
3.1 2 BAY—E< D > alAp= 3 al(A) = B(A).

t=t UV 14

On the other hand, there exists a partition of A, (A|As; B=1,........ , m),
such that

BA)—&< 2 alAy.

(4] 4g)

We set AL=A'NAs(G=1,........ JN;B=1,........ , m). Then, for each
¢, the collection of sets AL(k=1,........ ,m) gives a partition of Af (Af]|Af).
Since a is subadditive, we obtain

> AA)=33 D a(dp s 364D

(4l4x) i=l by i=1

Hence

(3.2) BA) — & < 2 BA.

=]
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Since &€ in (3.1) and (3.2) is any positive number,
N
ZB(A‘) = B(A4).
i=1
This shows that 8 is finitely additive.

LemMA 3. For a set A, define

B =AU\ {& PO A4) > 0).

Jj=1
Then
P(x, B) = Tey(x) < ex%) p-a. e.
Proor. We note first that, for any f,g € L.(u),
3.3) (TH*(®) = T (2 ua.e.,
(3.4) if f(%) = g(x) pa.e, then
-nf(x%) — [nf — 1]*(x) = ng(x) — [ng — 1]* (%) u-a. e

Now we set
fu®) = e(®) + 2 PO(x, A), B,y = {%; fu(®) > 0}
J=1

m=1,2,........ ).
Then
Tfm_(x) = fnr1(X) — €4(X) Sfrnr(x) p-a.e. ‘ m=1,2,...... E ).
Further, nf,.(x) — [#f,, — 1]*(x) increases and converges to. ez, (x) as #-— oo,

"

and ep, (%) increases and converges to ex(x) as m — . Hence, by the convergence
theorem, (3.3) and (3.4), we have

P(x, B) = Tex®) = T(}Li_mlim {nful®) — [fw — 11*(H)))
= limim A{Tnfu(x) — T [#f — 11+ (2)}

M-r00 N—peo

< limlim {#Tfin(%) — [#Tf;n — 11" ()}

M~»00 N0

< limlim {#fne1(X) — [Wins1 — 117 (¥)} = es(x) p-a.e.,

M->00 N->oc0

as was to be proved.

LeMMA 4. If (C.1) holds, there exists a finite invariant measure \ such

that
(3.5) MA) = K p(A) fo.r all A,
’ n—1
(3.6) A(A) = lim sup —111— > SwA) for all A,
N o j=0
(3.7 i MA) =0 then W(ANY)=0.

"~ 8) For a function FoF E:i)— denotes max (f(z), 0)
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Proor. If we set
n-1

a(A) = limsup —:7 > Su(A) for all A,
nzee * d=0

then « is a non-negative subadditive set function on & and has a dominant
finite measure K-u by virtue of (C.1). Hence, if we define

B(A) = sup > a(As) for all A,
AR (4145
then, by Lemma 2, 8 is a finite measure such that
3.8) BA) = K-u(A) for all A,
1 n-1
3.9 B(A) = lim sup ” 2 Su(A) for all A,
nee j=0
(3.10) B(A) < SB(A) for all A.

Both (3.8) and (3.9) are clear. We shall prove (3.10). For any fixed set
A, set
E—1

k
Bt <Puays L)

Xk = {x; W

Then we note that, for any finite measure ¢,
e B
Sp(A) —gz . P,

Let & be any positive number. Then there exist a positive integer m such
that

SB(A) + & > Z;%B(x,m).

k=1

By (3.9) there exists a positive integer #, such that
n—1

_ e 1 _
B + = > - Esﬂ(x,,.,c)
(k=1, ......... m;n=mn,n+1........ )

Hence, for any » = #n,, we have

se) +&> 3% (i > S ) ~ =)

k=1 n j=0
1 n—-1 m k 1 n-1
2 23 SuEw) —EZ - 2 SA) — €,
J=0 k=1 J=0
so that
n—1

SB(A) + 2& =lim sup % D1S*L(A) = a(A).
kardd i=0

Since & is any positive number,
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SB(A) = a(A).
Hence, for any set A and for any partition (A|Ax) of A,

S3(A)= X SBA)Z= X alA),

(4] 4p) (4]4)
so that by the definition of B we have (3.10).
By (3.10),
(3.11) BA) ZSBA)ZSBA) < ........ for all A.
Now we define
AMA) = 17}3; S"B(A) for every A.

Then we shall prove that A is the desired finite invariant measure. It is
clear that A is a non-negative, finitely additive set function on &. By (3.8)
and (C.1), it follows that

n—1

AMA) = lim —1—2 SiB(A)
F=0

Nn-yoo n -
n—1

< K-lim 7172 Su(A) < K2 p(A) for all A,
N >eo0 =0
which is just (3.5). Since A is a non-negative, finitely additive set function
on ¢ and has a domiant finite measure K*-u by (3.5), A is a finite measure.
(3.6) follows directly from the definition of A, (3.11) and (3.9). Since S"B(4)
converges to A(A) for every set A as # — o and is dominated by A(A),

SMA) = f P(x, A)\dx) = lim f P(x, A)S"B(dx)
NS>0

= lim S**1B(A4) = AMA) for every A,
n->eo

which. shows that A is an invariant measure.
Finally we shall prove (3.7). Suppose A(A) = 0. Since A is an invariant
measure, SAMA)=0G=1,2, ........ ) and so

esx) =0, PO(x,A) =0 Mae. (j=1,2........ ).
Hence, if we set

B=AU\ {x; PO A) > 0},
Jj=1

then A(B) = 0.
On the other hand, by virtue of Lemma 3,

P(x, B) < es(x) p-a.e.
Since P(x,Y) = er(x) p-a.e,

Px,B N Y)= esnr(®) p-a.e.

Since Y includes no compressible (u) set,
P(x, BNY) = esnr(%) w-a.e.
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and so
PO(x,BNY) = esnr(%) p-a.e. G=12,........ ).
Hence
SuBNY)=puBNY) Gg=12, ........ )
so that, by (3.6),
n—1

MB N Y) Z lim sup —i— >SuBNY) =wBNY).

=0
Since A < B and AMB) = 0,
wWANY)=0,
as was to be shown. Thus the proof of Lemma 4 is terminated.
For a measure ¢, a function f is called an invariant (@) function if
Tf(x) = f(x) for p-a.a.x.

LEMMA 5. Let N be the finite invariant measure defined in Lemma 4
and let f€ Li(\) be an invariant (\) function. Then, for any real numbers
a,Bla<p),

P(x, A(a, 3)) = €48 (%) A-a.e.,
where
Ala,B) = {x; a < fx) =B}

Proor. We note first that if ¢ € L;(A) is an invariant (A) function, so
is g*. In fact,

g*(x%) = (T9)*(x) = Tg9*(x) A-a.e.
Since A is an invariant measure,

f To*(x)A(dx) = / g (x)SA(dx) = f g+ (Ndx).

Hence
Tg+(x) = g*(x) A-a.e.
For any real number «, set
Ala) = {x; f(x) > a}.
Then [n(f — a)]* (%) — [#(f — a) — 1]*(x) increases and converges to es«)(¥) as
n —oo. Since f is an invariant (A) function, [#(f — «)]* and [»(f — a) — 1]*
are the invariant (A) functions. Hence

P(x, A(a)) = Tesa (%)
= T(lim{[n(/ — a)l*(x) ~ [nlf —a) — 11*@®)}H
= }‘22 {TIn(f — a)1*(x) — TIn(f — a) — 11*(x)}
= 7133 {In(f — )1*(x) — [5(f — a) — 1]*(#)}

= €.4(y)(%) A-a.e.



156 S. TSURUMI

Thus, for the set A(«,3) in the lemma,
P(x, A(a, B)) = P(x, A(ax)) — P(x, A(B))
= C4(a)(X) — C4p)(%) = €u(a,p)(%) A-a.e,
as was to be proved.

LeMMA 6. ZLet A be the finite invariant measure defined in Lemma 4.
Then, if f € L,(\) (p =1) is an invariant (\) function, f € LY, p).

Proor. Suppose that f € L,(\) is an invariant (A) function. Then f*
and lfl( = —;—(f +f “)) are the invariant (\) functions as was noted in the

proof of Lemma 5. Now, set

An = { x; (k;_l>”1’ < fw)) = (%)1”}

- {x;k—l < fwr< F } mE=1,2 .. ... ).

n n
Then, by Lemma 5, each Aw: satisfies
P(x, An) = €4,,(%) A-a.e.
Since P(x,Y) = er(x) p-a.e., it follows by (3.5) that P(x,Y) = er(%) A-a.e.
Hence
P, A N Y) < e4,nr(%) A-a.e,
so that, by (3.7)
P, An: N Y) < €4,,n7(%) pa.e in Y.

Since P(x, Aw: N Y) and e4,,nr(x) are majorized by P(x,Y) and er(x), respecti-
vely, and P(x,Y) ( = er(x)) vanishes for p-a.a.x outside of Y,

P, A N'Y) = eapeny(®) p-a.e.
Since Y includes no compressible (u) set,
Px, A, NY)= e4,.nr®) pa.e.
and so
PO, Au: N Y) = €a,,nr(x) p-a.e. (G=12,........ ).
Hence
SuAm NY) = p(Am N Y)) 7j=12........ )s

so that, by (3.6),
MAw NY) = w(Anw: N Y).
‘Therefore

) = Tim 5 2
Yf ) 7) = lim 3 e 1Y)

. k _ » .
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‘which shows f € L,(Y,u) .

LEMMA 7. If T is a linear Dositive operator of L,(u) into itself, then
T is a bounded operator.

For the proof, see [8].

ProOF OF THEOREM 2. Proof of “(C.1)— (I,1)”: Let A be the finite
invariant measure (defined in Lemma 4. Take any f € Ly(u)(» =1). Then,
by (3.5), f € L,(A). Hence, by the individual ergodic theorem concerning
Markov process P(x, A) with a finite invariant measure A, there exists an
invariant (A) function f € L,(\) such that

n-1

lim L 2T = ) A-a.e.
nre N 3=0
Hence, by Lemma 6, 7 € L(Y,w). Further, by 3.7), T/ (G=12,........ )
are defined for p-a.a.x in ¥ and
n—1
lim% 2 TS = f(x) pa.e in Y.
N->c0

J=u
Thus the first half of (I.1) is proved.

Next we shall prove the second half of (I.1). :Suppose f € L..(u). For
the proof it is no loss of generality to assume that 0 =f(x) <1 p-a.e. Now
we set

1 n—_l 1 n-1
9(® = limsup —— > Tf(x) — liminf —— > Tf(®).
nre Ly T
n-1

Then it is sufficient to show f g(@u(dx) = 0. Since 0= —’11— ET-f(x) <1

J=0

pae (=12 ........ ), it follows, by the convergence theorem, that
Ty(x) = 9(%) u-a.e.,
and so
3.12) T7g(x%) = g(%) p-a.e. n=12........ ).
Set
Xoss = {x:k;l <g@= 7’;—}
k=1,........ , my =12 ........ )

Let & be any positive number. Then there exists a positive integer m such
that

f 9NED) + & > 3 E A,

k=1

By (3.6) there exists a positive integer » such that
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n-1
& 1 .
AMX ) + —— > — 20 S u(Xoms) k=1,........ m).
m n =0
Hence
15y _ &
n > STl Xome) m )

j=y

3.13) f JOND) + & >

L
[
-

<.

Ms
R
~

M
M=

7’;- S u(Xoms) — €

v

k=1

9(H)Su(dx) — &.

v
NI
T
—

<.
I
<

Here, by (3.12),

f 9(0)S'u(dx) = f T g(x)yu(dx)

= f g(®)u(dx) G=0,........ ,n—1).
Thus we obtain, from (3.13),

f g(XNdx) + € > f g(@)u(dx) — €.
‘Since & is any positive number,

(3.14) f gONdx) = f 9(®)(d).

n—1
On the other hand, 1 2 Tf(x) converges A-a.e. as #—>co as was shown
Jj=u

in the proof of the first half of (I.1), so that g(x) = 0 A-a.e. and so
3.15) f g(x)\dx) = 0.
Consequently, by (3.14) and (3.15),

f g(X)u(dx) = 0,

as was to be shown.
Proof of “(I.2)—(C.1)”: We shall use the case of p =1 of (I.2). Define
an operator T of Ly(w) into itself as follows:
= T TN s _l;n—1 o
f=>Tf=f: fx)= %Ll_)ﬁa} ” E Tf(x).
Then 7 is a linear positive operator of Z,(u) into itself, so that, by Lemma
7, T is a bounded operator. Let K denote the norm of T, ||T],. Since, for
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n-1
every set A, “ 2 T e(x) converges boundedly to Tes(x) u-a.e. as n— oo, it
Jj=0
holds that
1 n-1 1 n-1
lim L S'S WA = 1 1 S ey
lim — E wlA) lim [~ FZUTeA(x),L\dx)

= f T es(x)u(dx) < K- f el X)u(dx) = Kou(A).

Proor or THEOREM 3. Proof of “(I.3) - (C.2)”: It is clear that (I.3)
—(1.2), and, by Theorem 2, (I.2)—(C.1). Hence it is sufficient to prove

n-1
that if u(A) > 0 then lim sup i S1Su(A) > 0. Suppose z(A) > 0. Then, by
n—>eo .
~ j=v
(I.3), e.(x) is positive in a set of positive u-measure, so that
n—1

0< f zn(x)p(dx) = }Llﬁm f 711 1=20 T es(x)u(dx)

n—1

.1 .
=lim n % S (A')’v

N->eo

as was to be proved.

Proof of “(C.2)—(I.3)”: We shall first prove that X is an incompressible
(w) set. Since (C.2)—(C.1), we can consider the finite invariant measure A
defined in Lemma 4. By (3.6) and (C.2),
(3.16) if u(A) > 0 then A(A) >0
or, equivalently,

if A(A) = 0 then w(4) = 0.

Now we shall show that no compressible (u) set exists. Suppose

P(x, A) < es(x) p-a.e.
Then, by (3.5),

P(x, A) = ea(x) A-a.e.
Since A is an invariant measure, it follows that

P(x, A) = ex) A-a.e,
Hence, by (3.16),

P(x, A) = e,(x) p-a.e.,

which shows that A is not a compressible (u) set. Since no compressible (u)
set exists, X must be an incompressible (u) set.

Hence, in the present case, (I.1) coincides (I.2), and by Theorem 2,
(C.1) > (I.1). Thus for the proof of (I.3) it is sufficient to show that if f &
L,(p) is a non-negative function and positive in a set of positive u-measure,

so is /. Suppose that /€ L,(u) is a non-negative function and u{x; f(x) > 0}
>0. Then, by (8.5), f€ L,A) and, by (3.16), A{x; f(x) > 0} > 0. Hence,
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by the ergodic theorem concerning Markov process P(x, A) with a finite
invariant measure A,

f FoONd%) = f FNdx) > 0,

so that A{x; ?Ex) > 0} > 0. Hence, by (3.5), ,u{x;?(‘x) >0} >0, as was to be
proved.

Proor oF THEOREME 4. We shall prove the implications “(C.1) —(I.1)
—-(1.2)—> (1.3)—~(C.2) - (C.1)". The implications “(C.1) > (I.1’Y and “{.3)
— (C.2)" follow from Theorems 2 and 3, respectively. The implication “(C.2)
—(C.1)” is trivial. Since X is an incompressible (x) set, (I.1) coincides (I.2).
Thus it remains to prove the implication “(I.2) — (I.3)”. Let A be the finite
invariant measure defined in Lemma 4. Since X is an incompressible (u) set,
(3.7) coincides with:

(3.16") if MA) = 0 then w(A) =0
or, equivalently, with:
if w(A) > 0 then A(A) > 0.
Then the proof of “(I.2)—(I.3)” is the same to that of the latter half of
“(C.2)—(1.3)" of Theorem 3. Thus the proof of Theorem 4 is terminated.
4. Mean ergodic theorem. We shall first state three propositions.

(M.1) The operator T is a bounded operator of L,(u) (b =1) into itself
and, for every f € Ly(p), there exists a function [ € L,(u) such that

hm‘v'-ETf f’

i =0

(M.2) The operator T is a bounded operator of Ly(u) (p = 1) into itself
and, for every f € L,(u), there exists a function f € L(u) such that

1 n—1
tim| L3777 | =

i=0

Moreover, if f is a non-negative function and bositive in a set of positive -
measure, SO is 7
(C.3) There exists a positive constant K such that
n—1
L3 SuA) < KA (=12 ........ )

Jj=0

for all A.
Now we shall prove the following
THEOREM 5. (C.3)Z(M.1).
THEOREM 6. (M.1)— (I.1).
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THEOREM 7. (M.2) —(I.3).
THEOREM 8. If X is an incompressible (u) set, (M.1)—(M.2).

Theorem 5 (the case of p = 1) has been proved by I.Miyadera [6].
The proof depends on the method of that of the Riesz, Yosida and Kakutani
ergodic theorem in Banach space (see, for example, [10]). In the present
paper, Tneorems 5,7 and 8 will be proved on using the results in §3. Theorem
6 follows from Theorems 5 and 2, since (C.3)— (C.1) trivially.

Proor oF THEOREM 5. Proof of “(C.3)—(M.1)”: For every f €L,(w)
@z,

1/l» 9

| L2 = {[| [ - Zrocsan | wan}

=

u—-l 1/p
f )|»—- EPw(x dyyu(d) |

{
(i 1 "zfsmy) I
{
= K!

1/p

<k f V(3 aldy) }
Uz, ”f”z? = K‘If”p (n = 1,2, ........ ).
Hence
*.1 “ —,1,— 12—0: T"”pé K m=12........ )-

On the other hand, the implication “(C.3) — (C.1)” is trivial and, by Theorem
2, (C.1)—(1.1). Hence, for every f € L.(u) there exists a function /' € L.(u)
such that

n—1

l1m - 2 (%) = f(%) p-a.e.

J=0

Since 1—— ETf(x)l =M~ pae B=12........ ), by the convergence
Jj=v

theorem it follows that, for every p =1,

lim

N—>co

Further, for every p =1, L.(u) is dense in L,(u). Hence, by (4.1), it holds

n-1
that, for every f € Ly(u), 11’— 2 T converges to a function f € L,(u) in the
Jj=0
sense of L,(u)-norm as 7 — .

1 -l ~
w27 =0
Jj=0 »

9) Here FW(x, A) denotes e(z).
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Proof of “(M.1)— (C.3)”: We shall use the case of p =1 of (M.1).

n-1

7112" 2 Tf converges in a sense of L,(u)-norm as
J=0

n— o0, by the Banach theorem there exists a positive constant K such that

Since, for every f € Li(uw),

]‘}{;1{27*1 <K n=1,2.......0).
' j=u 1

Hence, for every set A,
n—1

S 2Su = [ L3 Tewuan
i=0 J=u

1S5 '
= |- 12 T | lledh = Koud) n=1,2........ ).

Proor or THEOREM 7. By .the trivial implications and Theorem 5 it
is clear that (M.1)—(C.1). If we prove the implication “(C.1)— (C.2)” under
the assumption (M.2), then we obtain (I.3) by virtue of Theorem 3. For the

n—1\

proof it is sufficient to show that if u(A) > 0 then lim sup —i— > Sul) > 0.

J=0
Suppose w(A) > 0. Then, by (M.2), eq is positive in a set of positive u-
measure. Hence

n—1 n—1
lim 1 3 SuA) = lim [ - S Teaxp(dx)
N N 120 n—yoo n i=0

= f e.(Rp(dx) > 0.

Proor oF THEOREM 8. By Theorem 6, (M.1)—(I.1). Since X is an
incompressible (u) set, by Theorem 4 it holds that (I.1) —(I.3). The proposi-
tions (I.3) and (M.1) together imply (M.2).

Finally we shall give one of the applications of our theorems.

COROLLARY. Let the transition probability P(x, A) be generated by a
bounded function p(x,y) of two variables x, y € X as follows :

Px A) = f (%, y)u(dy).
4

Then (1.2) and (M. 1) hold.
Proor. Let p(x,y) < K. Then, for each A,

POz, A) = f 505, )uldy) < K-ul(A),

PA(x, A) = f P(y, A)P(x,dy) = ./ K-p(A)P(x, dy) = K-u(A),,
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P (%, A) = f Py, A)P(%, dy) = f K-u(A) Pz, dy) = K-p(A),

Hence
S",u(A) = fP(")(x, Au(dx) < K-u(A) n=1,2,........),

so that, by Theorems 5 and 6, both (M.1) and (I.1) hold.
Next we shall prove (I.2). Consider any f € Ly(u) (p =1). Let & be any
positive number. Then there exists a function ¢ € L.(x) such that

[~ ginian < £

K
1 n-1
By virtue of (I.1), — 2 T'g(x) converges to a finite limit for u-a.a. x as.
J=u
n — oo, Thus
m— n—1
lim sup l 2 TH(x) — — 2 T (x) |
e ,-01 m—1
= lim sup f /) — 9| — 2 PO(x,dy)
Jj=v
1 —1
- Y - = j
+ limsup T 2 Tg(x) — - 120 Tg(x)|
+lim sup f ) — )| —2 POz, dy)
sk [ 1) - g0 i) < & wae,

=1
Since € is any positive number, % 2 Tf(x) converges to a finite limit for
j=0
p-a.a.x as #—oco and, by virtue of (M.1), the limit {unction must belong to-
L,(u). Hence (I.2) holds.
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