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1. Introduction. We consider an n-dimensional Riemannian manifold
whose curvature tensor satisfies

(1.1) Rtski = σ StjSti (hj, A,/ = 1,2, '..,«),

where σ is a non-zero scalar. We shall call such a manifold a manifold of
separated curvature, and denote it by Mn. There have been published several
papers dealt with the manifold in consideration, though it was not their main
subjects, for example, A.J.Walker [1], S.Sasaki [2], T.Otsuki [3], and M.
Matsumoto [4]. The purpose of the present note is to investigate exclusively-
such a manifold.

Furthermore, providing a convenience for our discussions, we write down
the following definitions due to S. S. Chern and H. Kuiper [5J:

(a) If, in an n-dimensional Riemannian manifold, an integer n — μ is the
minimum number of linearly independent linear differential forms in terms of
which the curvature forms Ωi} = Rijbidx0 Adx1 can be expressed, then we call
μ the index of nullity.

(b) The above integer n — μ is also the maximum number of linearly
independent equations in the system

They define a linear subspace of dimension μ in the tangent space by
the last equation. We call the subspace the space of nullity.

2. Now, by (1.1) the curvature forms Ω a in Mn are expressed by the
following equations:

(2.1) ilij = Riju d&Kdoί = σ Sij Sbι

where Λ '̂S are local coordinates in Mn. Substituting (1.1) into the third identity
of the curvature tensor, we get

(2.2) Sij Ski + Sίfc Sij + Sii Sjic = 0.

In order that the quadratic differential form SM dxc l\dod be monomial, it is
necessary and sufficient that the tensor Sij satisfies (2.2) [6]. So we obtain

SkιdxcΛdtf = ul\v,

where u and υ are Pfaffian forms with respect to dx*. Accordingly, from (2.1)
we get

Ωij = σSijU/\V.

If we denote the index of nullity at every point by μ, by its definition and
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the above expression we have

μ= n — 2.

Conversely, suppose that in an w-dimensional Riemannian manifold the-
index of nullity at every point equals to n ~ 2. Then n — (n — 2) = 2 is the-
minimum number of linearly independent linear differential forms in terms-
of which ίlίj can be expressed. Accordingly, ίlij can be expressed by

(2.3) Ω ί ; =

Putting

u = ab d&, v = bι dx\ Skl =

(2. 3) gives us the following

(2.4) Rtj*ι = ρStjS'kl.

If we use (2.4) and Rim = Rkv.h we can easily see that the following relation:,
holds good:

Rijhi z=z cr Sij SHI.

These considerations imply the following:

THEOREM 1. In order that an n-dimensional Riemannian manifold is of
separated curvature, it is necessary and sufficient that the index of nullity at
every point equals to n — 2.

Because of Theorem 3 in [5] and Theorem 1, we have

THEOREM 2. A compact Riemannian manifold of separated curvature of
dimension n cannot be isometrically imbedded in a Euclidean space of dimen-
sion 2w — 3.

Next, since in Mn the index of nullity equals to n — 2, the space of nul-
lity is (n — 2)-dimensional at every point. Then by Theorem 6 in [5], Mn can
be locally sliced into submanifolds of dimension n — 2 which are everywhere
tangent to the space of nullity and are locally flat in the induced metric.
Because of this fact and [7], if the (homogeneous) holonomy group of Mn

fixes the space of nullity, then M« can be locally expressed as a direct pro-
duct F a x En-2, where F 2 is a 2-dimensional Riemannian space and En-2 is-
an (n — 2)-dimensional Euclidean space. On the other hand, a Riemannian
manifold can be locally expressed as a direct product F 2 x En-2, if and only
if the manifold admits one parametric holonomy group [2J. These considera-
tions give us the following:

THEOREM 3. If in a Riemannian manifold of separated curvature its holo-

nomy group fixes the space of nullity, then the manifold admits one parametric*

holonomy group.

Furthermore, we remark that

(2.5) . Ω/β = 0 (α = 1,2, , w - 2),
[5, (44)] and hence that



132 I. SATό

(2. 6) S,Λ = 0.

Using (2.5), Gauss-Bonnet's formula gives us the following:

THEOREM 4. In a compact orientable Riemannian manifold of separated
curvature the Euler-Poincare characteristic vanishes, in other words, by Hopf's
Theorem, there exists a continuous vector field throughout.

3. The relation (2.2) in section 2 moreover shows that Sij is a simple
bivector. We denote the measure of simple bivector Sij by S and the angle
defined by the two simple bivectors Sij and Tij by θ. Then the well-known
relations Sij Si1 = S2 and StJ TiJ = ST cos θ hold good. We consider the sect-
ional curvature determined by a simple bivector Tij and denote it by K{T).
K(T) is given by

•*• ft 'Tij HΓhl

-(3 1) K(T) — — - = <τ\^ι5 J- ) J ^ ς 2 c o«2 β

2 I i j

and in particular

(3.2) Z(S)=-|-σS^|i?,

where R is the scalar curvature. Consequently from (3.1) and (3.2), we find

(3.3) K(T) = #(S) cos2 θ = (/? cos2 (9)/2.

Thus we have

LEMMA /# « Riemannian manifold of separated curvature with positive
(negative) scalar curvature throughout, we have

From now on, we shall describe the applications of the above Lemma. First,
by Theorem [8. p. 348] we get

THEOREM 5. A complete simply connected Riemannian manifold of se-
parated curvature with negative scalar curvature is homeomorphic to Euclidean
space.

Returning to a general Riemannian manifold, we consider n mutually ortho-
gonal unit vectors ξ, ξ2, •..., ξn. Then the Ricci curvature with respect to the
unit vector ξ is given by

where Ka is the sectional curvature determined by a two-dimensional plane
spanned by ξ and ξa. If R is positive (negative) everywhere, then we get

Λ j f ' P > 0 ( < 0 ) ,

-since by Lemma there is at least one non-zero Ka. Consequently, by virtue
of Theorems in [9. Chap, ίlj we attain the following conclusions.
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THEOREM 6. In a compact Riemannian manifold of separated curvature
with positive scalar curvature throughout, there exists no harmonic vector other
than zero vector, and moreover, if the manifold is orientable, then the ήrst
Betti number vanishes.

THEOREM 7. In a compact Riemannian manifold of separated curvature
with negative scalar curvature throughout, there exists neither one-parametric
group of motions nor one-parametric group of affine transformations, and more-
over, if the manifold is orientable, then there exists no one-parametric group of
conformάl transformations.

4. In this section, we assume that σ in (1.1) is ± 1 without any loss of
generality. In a general Riemannian manifold we consider a two-dimensional
plane spanned by two vectors ξ 1 and f3 at every point and denote its current
Pliicker coordinates by ξϋ. Then Ruse's Riemannian complex is given by

Returning to a manifold Mn of separated curvature, the above complex turns
to

&,?* = <),
which we shall call the special Riemannian complex.

The necessary and sufficient condition that the holonomy group of Mn.
fixes the special Riemannian complex is that we have

(4.1) SiJ i^Stjθ*,

which is derived from d(Sijξij) = ΘSijξ11, the operator d being the ordinary
differentiation. By virtue of (4.1), it is easily seen that if in Mn the holonomy
group fixes the special Riemannian complex, then Mn is of recurrent cur-
vature.

Conversely, suppose that Mn of separated curvature is of recurrent cur-
vature. Then we see

(4.2) (S u Sfc,) ϊ »=Su&, 2 ί m ,

which can be written also as

(4. 3) SijiSv; m - S« θm) + SlcliSij; m - SiJ θw) = 0.

Since the rank of the matrix (Stj) is equal to two by (2.6), there exists a co-
ordinate system such that at the origin only one component Sn-w of Stj does
not vanish. Referring to such a coordinate, (4.3) with i — k ~ n — 1, .7 = /'
= n gives

•byj—w; m *^n-jn um — U.

Putting i = n — 1, j = n k, l=£n — 1, n in (4.3), we have

Sjsi m — Ski Um = 0,

that is, we obtain (4,1). Consequently, by means of (4.1) the holonomy group*
of Mn fixes the special Riemannian complex.

Differentiating (3.2) we get
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On the other hand, we have

By above expressions we see that θm vanishes if and only if the measure of

Sij is always constant. Thus we have the following:

THEOREM 8. In order that a manifold of separated curvature is of recurrent

^curvature, it is necessary and sufficient that the holonomy group fixes the special

Riemannian complex. Moreover, if and only if the measure of S%5 is constant,

a manifold in consideration is symmetric in the sense of Cartan.

Secondly, by virtue of Ricci's formula we have

Sίj je; i — Sij; i; fc = —Saj RαifcZ ~ Sia I&jkl

= — CΓ Qab Ski(Saj Sbi + Sia Sbj)

= - σ - gah S«( - S δ α Sjt) = σ SM Sji Sba gba = 0.

O n the other hand we get

Sίj is i —Sij i js = Sijiθfc ι — θl} fc)

Consequently we have

that is, θfs is a gradient vector.
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