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For the dimension theory of JF*-algebras, many results have been obtained
up to present, but the infinite case remains obscure. It is the purpose of
the present paper to remove this obscurity by defining a dimension function
in a properly infinite W*-algebra which admits the same properties as in the
case of finite γF*-algebra.

1. Considerations on multiplicity theorem. By a W*-algebra M,
we shall always mean a weakly closed self-adjoint operator algebra with the
identity operator acting on a Hubert space H and denote by M", ί l the center
of M and its spectrum. For a projection e in M, we denote by Mβ the res-
tricted algebra of M onto eH. Ω,βπ. means the spectrum of Me. We shall
always mean by z(e) the central envelope of a projection e. A word "cardinal
number" is used in its infinite case unless otherwise noticed.

LEMMA 1. Let {eL} (i ξ I), {/)} (j € / ) be infinite orthogonal family of
countably decomposable projections in a W*-aϊgebra M, and e a central pro-
jection. If 2 4 e i^ z = 0 = 'Σj jfjy then ft12 cardinal of I equals the cardinalies
ofj.

PROOF. It is sufficient to prove the lemma when e = 1. Since Mβt is
countably decomposable, there exists a faithful normal state ψι on Mβt. Let
Kt = { i€ J\eifjeiΦθ}; since for any /€:/ there exists i(j) <Ξ / such that βi^fj

έ?tα)Φθ, we have / = \JteτKi. From ^ - 2 ^ - ^ ^ ' w e g e t Ψ1^ =
 *ΣJ€J

φί(eif5ei)< +oo, so that Kt is at most countable. Therefore Card. /^(Card./)
x #o = Card./. By symmetry, we have Card./ = Card./.

This lemma admits the following

DEFINITION 1. Let M be a W*-algebra and a an infinite cardinal. A
non-zero central projection e is called a-dimensional homogeneous projection
if for every central projection /, bounded by e and couαtably decomposable for
M\ there exists a family of orthogonal, equivalent, countably decomposable
projection {/}} {j € /) in M such that f = *ΣJejfj, where the cardinal of / is
always a. Any projection/> in M is called a-dimensional homogeneous projection
if it is α-dimensional homogeneous projection, as a central protection in M p by
the above definition.

Our definition leads us to the multiplicity theorem of W*-algebra analogous
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to the usual one in the theory of spatial invariants. We give here only the
statements of our lemmas and omit their proofs.

LEMMA 2. Let M be a properly infinite W*-algebra, then M contains a
homogeneous central projection.

LEMMA. 3. For a cardinal number a for which there exists an a-dimensional
homogeneous central projection, we can find the largest a-dimensional homo-
geneous central projection £«. Any central projection contained in eΛ is a-
dimensional

LEMMA 4. If aφβ, then eae3 = 0.

Now we state our multiplicity theorem in the following

THEOREM 1. Let M be a properly infinite W*-algebra on a Hilbert space
H and iτ a family of all cardinals for which there are homogeneous central pro-
jections. Then there exists a unique central decomposition {eΛ} {a € TΓ), where
eΛ is an a-dimensional homogeneous central projection in Lemma 3.

We call this a homogeneous decomposition of the identity of M.

PROOF. The uniqueness is obvious, and the rest is clear by Lemmas 2,
3 and 4.

DEFINITION 2. Let M be a W*-algebra on. a Hilbert space H and {et}(/€/)
any family of orthogonal equivalent projections with Card. / = a. (a may be
finite in this case.) Set λ = max (%0, sup a) where a runs over all cardinals
of those families as above. In this case we call M λ-bounded. Next, if {/}}(/€/)
is any family of orthogonal projections in M, set μ = max. (#o, sup β) where
B runs over such cardinals as those of /. (β may be finite, too.) In this cale
M is said μ-decomposable W*-algebra.

The #o-decomposabity coincides with the usual countable decompusability.

THEOREM 2. Suppose M to be a W*-algebra on a Hilbert space H. If M
is X-bounded and M" μ-decomposable, then M itself is \μ-decomposable.

We can prove this theorem even if M is an AW*-algebra, but we give
here a proof for T7*-algebra.

PROOF. Dropping to direct summand and applying Theorem 1, we may
restrict ourself to the following two cases in which we must show M being
at most λ-decomposable. Proving this, we find M at most \μ-decomposable
because the cardinal of a central decompposition does not exceed μ. Then one
verifies easily that M is λμ,-decomposable.

1° M is finite and M* countably decomposable. In this case, it is clear
that M is countably decomposable, i. e. at most λ-decomposable.

2° M = Mo ® B(K), where Mo is countably decomposable and B(K) the full

operator algebra on some Hilbert space K. In this case, 1 = 2 t e7^' where {̂ ί}
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(i € /) is a family of orthogonal, equivalent, countably decomposable pro-
jections. Suppose M to be λ'-decomposable and for some cardinal a (a <i λ')
there exists a family {fj} (j € J) of orthogonal projections with Card. / = a.
Since it might be 1 = Σ*jΛ> w e n a v e a ^ Card. / S λ , as in the proof of
Lemma 1. Therefore λ ' ^ λ ; that is, M is at most λ-decomposable.

2. Existence of dimension functions and additivity property.

LEMMA. 5. Any cardinal valued {order-) continuous function pit) defined on
a dense open set ίl 0 in a Stonean space ί l can be extended to a continuous
function on the whole space ίl.

PROOF. Take a point /„ € ί l - Ωo. We shall show Λ Vj>(Z7 Π Ωo) =
XT

V ί\p(U Π Ωj) where U denotes a neighbourhood of t0 and V(resp. Λ) the

supremum (resp. infinimum). At first, it is clear that the first member is

not less than the second. Therefore, if /\ \Jp (U f] Ωy) = # 0 , the above
u

equality is clear, so that we suppose /\ \Jp(U fl ίlo) > #o Take a cardinal
u

a such that /\ \/p (C/fl̂ o) > OL ( > £<0). Then, for any neighbourhood Uo of t0

u
we have \fp(U0 Π Ωo) > cc. Set V = {t € Uo f| Ωo | ί(0 > #} F is open and closed
in UQ Π Ωo, for F = {ί € £/0 Π βolί(ί) ^ #'} where α' is the next cardinal to
α:. Now V is open in ίl, moreover we have V[]UΌ Π Ωo = V where F deno-
tes the closure of F in ίl. Since ί l is Stonean V is open and closed in ίl.
Suppose to $ V\ then there exists a neighbourhood C/Ί of to such that
= φ. Take a neighbourhood Z72 of t0 such as U^^UΊ Π C7o. We have
Π ίlo) ^ <̂ , which contradicts our assumption /\ \/p(JJ Π ίlo) > «. Hence £0€

F, and as "F is a neighbourhood of t0 one can take another neighbour-
hood U3 with ί / ^ F Π C/o. Thus, p(U3 Π Ωo) > <̂ , i e. Ap (U3 Π Ωo) > cc, so

that v ΛP(U Π Ωo) > tf Therefore \j /\p{U (\ ίl0) > /\\y P(U f] Ωo), so

that \J f\p{U {\ ίl0) = Λ V#tf Π Ωo).

Now we defineί(ί0) = V /\P(U[] Ωo) = Λ V ί ί ^ Π Ωo) for ί o^Ω — Ωo,
u u

then p{t) is defined for all t € Ω.
We shall prove that £ (t) is also continuous on Ω — Ωo. For the proof,

we may assume /\ yp{U) > %0. Take a cardinal α for which/\ \/p(U) > a
u u

( ^ ^o) We shall show p(t0) > a. Suppose p(t0) ^ a, then there exists a neigh-
bourhood Uo of £o such that p(U0 Π Ωo) ̂  α. Hence p{U0) ^ α , for if there
exists t€Uo with p(t) > a we can take a neighbourhood Z7(ί) of t with
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Π Ωo) > a, which contradicts p(U0 ft Ωo) S a. Therefore /\ \jp(U) < a. How-
u

ever this contradicts our assumption. We have p(t0) > a. Now there exists
a neighbourhood Uι of tG such that ^(ίΛ [\ Ωo) > #, then the same argument
used above yieds p(UΊ) > a which implies t\p (UΊ) > a. Hence \j /\

u

p{U) > a, and Λ VP(U) = p(t0) = V ΛP(U). Therefore pit) is continuous on
U U

Ω — Ωo, so on the whole Ω. This completes the proof.

LEMMA 6. For any properly infinite projection e of a W*-algebra M on a
Hϊlbert space H there corresponds a cardinal valued (including zero) contin-
uous function D{e){f) on Ω such that l°,0 ̂  D{e)(f) ̂  dim(H) and D(e){t) = 0
if and only if e = 0; 2°, for any central projection z, D{ze){t) = z(t)D(e)(t) in
the obvious sense.

PROOF. Consider a homogeneous decomposition of e and let {Ka} {a 6 7r)

be a family of mutually disjoint open and closed sets in ΩβH corresponding

to the homogeneous decomposition of e. Set Ωo = U aelf.Ka Ωo is a dense

open set in ΩβH By the isomorphism between M J andMJ ( β ) one can consider

Ωo as a dense open subset of Ω ^ H , a subset of Ω.

We define a cardinal valued continuous function D(e)(t) on Ωo such as

D[e)(t) = a for t € iζ*. By Lemma 5 we can extend D(e)(t) to a continuous,

function D(e)(t) on Ω, ( e)a. Next, we set a function on Ω ;

D[e)(t) = ZX«?)(£) for ί € Ω, ( r t H

= 0 otherwise.

Clearly D{e)(t) is a continuous function on Ω and satisfies the conditions la

and 2°.

LEMMA 7. Z,£ί £, / be properly infinite projections of M, then D{e)(t)

if

PROOF. Since "if" part is clear we shall show "only if part alone. As
we may work in each direct summand we can assume z{e) = z(f) = 1 and
further the central decomposition makes us possible to consider D{e)(t) = α:,
D(f)(t) = /3. Moreover, we may assume that M" is countably decomposable.
Then, e = 2ίβΛ» ^ = 2 ^ where {**}(/€ /) and {fj}(j€β are families
of orthogonal, equivalent, countably decomposable projections with Card. / =
a and Card. / = β. Without changing cardinals of I and /, we may assume
that ei and f3 are all properly infinite. Thus, & s equivalent to f} (cf. [8 .

Lemma 2]). Therefore e = 2 , r ^ ^ 2 f / ; =/•

LEMMA 8. If e, f are orthogonal properly infinite projections,

D(e +f)(t) = DWt) + D(f)(t).
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PROOF. If z(e)z(f) = 0 this identity is clear, so that we assume z(e) z(f)
4=0. Since it is sufficient to prove this equality on a dense open set in ί2, we
can suppose, as in the proof of Lemma 7, D(e)(f) ~ a, D(f){t) = β and e =
2 ί e 7.£i, / = 2 /}. Without loss of generality,^- and/} are supposed to be
properly infinite for all i € / and j € / . We have ei^fj, for z(e) = 2/ ; = 1.
Thus e +f is an (oc + /9)-dimensional homogeneous projection. Hence

+ /)(*) = a + /8 = D(e)(f) + D(/)(ί). This completes the proof.

THEOREM 3. For every properly infinite W*-aIgebra M on H, there exists
<a function D(e)(t) on the projections in M to the continuous functions on ί2,
with the following properties

1° 0 < D{e\t) <Ξ dim (H) for any projection e and D{e){t) = 0 if and only

2° D(e)(f) ^ £>C0(ί) «/Λ«rf OΛίy if ^f;

3° 2/ ̂  and f are mutually orthogonal projections in M then D(e

49 if z is a central projection, then

5° D(e)(t) is minimal in its infinite part among the functions satisfying the

conditions 1°—4° that is, if D(e){t) is such a function on M then D(e)(f) ^

D(e)(t) for any properly infinite projection e.

Notices that D(e)(t) is numerical valued except on a dense open set of ί2 if
and only if e is finite.

DEFINITION 3. A function D{ ){t)m the above theorem is callec a dimen-
sion function of a properlymfinite W*-algebra M.

PROOF OF THEOREM 3. Take a normal, faithful, semi-finite pseudo-appli-
cation £, φ{), on the semi-finite part of M. For any projection e £ M there
exists a central decomposition e = eτ + ez where eΛ is finite and e2 properly
infinite. Consider the central decomposition M = ΊVLz + M(l — z) where IV12 is
semi-finite and M(l — z) purely infinite. Then Φo {βτ) is a continuous function
on ί2rH, a compact open subset of Ω. Hence if we set Φ0(e,)(£) = 0 for t€
Ώ(I-2>H, Φo(eι)(t) is considered a continuous function on Ω. Moreover we as-
sume Φo(£i)GO = #0 if Φo( î)(ί) is infinite. Now we define D(e)(t) = Φofe)(/)
-f D{e>)(t) for ί C ί l in which D(e«)(t) is a cardinal-valued continuous function

described in Lemma 6. Clearly D{e)(f) is a continuous function on ί l and one
can easily verify, together with Lemmas 6, 7, 8, and the property of Φo,
that this function D{e){f) satisfies the conditions 1°, 4° and 2°, 3° if e and /
are both finite or properly infinite. On the other hand, if e is finite and f pro-
perly infinite, one verifies easily that the conditions 2°, 3° also hold recalling
the convention for this theorem. Therefore all the conditions, except 5°, hold

1) Here we need some conventions to prevent us from unnecessary confusions.
Let ct be a cardinal number and s a positive number, then we write that s<υs and
s+at = at even if s is not an integer.
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for this function D(e){t).

Now suppose D(e)(t) to be another function satisfying the conditions 1°—
4° and let e be a properly infinite projection. By 4°, we may assume D(e)(t)

= a and M11 being countably decomposable. Set {et}{i 6 /) for a family of

projections such that a <; e, D(ed(t) ±= oct^a and D{et)(f) ̂  D(et)(t) where

{tft}(/ 6 /) are cardinals. By Zorn's lemma we have a maximal family of such

projections. Set β = \/ uiOLt^a, then there exists a projection e such that

έΓ< e and Z?(e)(ί) = >8. Suppose β < a. Take the cardinal β' next to >9 and a

projection V such as *Γ<Ξ g and D(e)(t) = /3'. Then from the maximality of

•Ot}0* € /), ZXβ)(ί) >~D(e)(t) on some open and closed set Ωo. Now D(et)(t) <

D(e)(t) implies ^ ^ w h e n c e ~D(et)(t) sΊXeXt) for all ί. And β= D(ej(t) =

VuiΣKβiXt) ^ Vui~D(eiχt) <ΓD(e)(t). Therefore D(e)(f) = D(βj"(ί) = ^ on O0 and

taking a central projection z corresponding to ίl 0 we have ze^ze which con-

tradicts to D(i)(*) < D(7)(ί). Hence y8 = α; we have D(e)(*) = D(^(ί) S B(e){t)

= /5(̂ )tf). Thus, the condition 5° also holds.
Next, we shall consider the normality property of our dimension function.

THEOREM 4. Let M be a properly infinite W*-algebra on H. Suppose
e = 2ie/-β ί w^ere e and βi ore all properly infinite projections. Then for any
central projection z which is countably decomposable for ΊM},we have

D(ze)(t) = Λ *ΣttξvrKzetXU),

where U is any neighbourhood of t € Ω.

PROOF. We may assume that M11 is countably decomposable. We must

show£>0?)(f)= Λ 2 ί e / V % ) ( W At first, we have \jD{βι)(U)= V D(ed

(UflΩi), where Ωi is an original definition domain of D(eι)(t) (cf. Lemma 6).
We have also \f D{e)(U) = \j D(e)(U f] Ωo) for an original definition domain Ωo
of D(e)(f).

Now let Ωi = U K* Ωo = U ϋCβ be the decompositions corresponding to

the homogenous decompositions of eι and e. Set{ϋf£} for a sub-family of ϋΓj which

meets U then v D(eι)(U) = v DiβiWft Ωt ) = V {̂ ί, '«i, > =^1 + 0:' +

Hence Σίe7VΓKeι){U[\Ω,ι) = 2 ί e / 2 ^ O n t h e o t h e r h a n d > l e t ^ J b e ' t h e

sub-family of KΛ with Uf}KaΦφ. Ύhen\/D(e)(U f] Ωo) = 2 , α * P u t 7* =

{α}|Z7 Π #α, Π K'a^φ}, then we have, by Lemma l,α:s = 2 r . α ί Since {s} is

countable, we get 2/** = 2 ^ 2 / ^ ] ^ 2 ί β /2/ α i ; However for any a) such a

^α, Π ̂ Γ * Φ there exists a set /, (/, /) containing a), so that 2^« =
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Σ,.,Σ/*ί. whence 2,*. = ΣwΣ/xJ
Thus D(e)(if) =- Λ V£>(e)(C/nΩ0) = Λ 2 , , , V D(eι)(U f\ β,) = Λ Σ ι , , V

COROLLARY. If M is <zw infinite factor, D(e){t) is completely additive ove?
infinite projections.

Now we show some examples which illustrate the situation of Theorem 4.

EXAMPLE 1. From the definition of D{ )(t), it is normal in finite pro-
jections. And yet D( )(t) is not normal in properly infinite projections even
if they form a linearly ordered family. Let H be an #1 -dimensional Hubert
space and M = B(H), the full operator algebra over H. Let ωγ be the first ordinal

of #i, then 1 = 2 v < ω ^λ, where eκ is a minimal projection of M. Set^\ =

2 < λ ^ a^d denote by ω the first ordinal of # 0 We get a linearly ordered

increasing family of properly infinite projections {eλ}ω^κ<ωι and 1 = Vω<v<ω]*v

However, D(l)(£) =" #i and D(eλ)(t) = # 0 where ω S λ < ω i . Thus

EXAMPLE 2. So far as it is concerned with our dimension function, the
normality is not equivalent to the complete additivity over properly infinite proje-
ctions. It is hopeful that D{ ){t) has this property, but this is not the case
as shown by the next example.

Let {H<|ί = 1,2,3 } be a family of separable Hubert spaces and con-

sider M = UB(Hi),the product algebra of B(Hf). Then we can express Ω =
£ - 1

{̂ 1,̂ ,̂ 3, £°o}. Since the identity is an ^Ό-dimensional homogeneous
oo

projection, we have D(l)(/oo) = &0. Put 1 = 2*?* where a is the identity opera-
i = l

tors on Hi. We have D(et)(tJ) ̂  0 for all i. Hence

EXAMPLE 3. If z is a central projection not countably decomposable for
M\ Theorem 4 does not necessarily hold.

Take the first ordinal ©! of id and {H λ | λ< ωi} be a family of separa-
ble Hubert spaces. Put M = Π B(Hλ),the product algebra of B(Hλ), then

λ cωi

1 = 2 ^ A where eκ is the identity operator on Hλ. We may express ί2 =

{ti,tif tx, tωι\\ < ωi}. Let Uo be a neighbourhood of tm, then Uo Π
(support ofD(eκ)(t))Φ φ for uncountable numbers of λ. Hence ^ V D W l f t )

Λ<ωi

= &:. Since Uo is arbitrary, we have Λ 2 VD(eκ){U) = &t > D(l)(tm)
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= £(o where U runs over the neighbourhoods of tωι.

3. Some applications. At first we apply the above dimension theory
to the spatial invariants.

THEOREM 5. Let Mj, M* be properly infinite W*-algebras not containing
the coupled component such as (properly infinite, finite). Suppose Mi is iso-
morphie to M, by an isomorphism θ and ML and M, has the same invariant
function C(t) on the common spectrum of M{ and Mi}, then θ is spatial.

C(t) is used here in the sense of E. L. Griffin [6] and J. Tomiyama [12]
further references R.Pallu de la Barriere [9], E.L. Griffin [5] and N.Suzuki
[11].

PROOF. Let Di( )(t) and D[( )(t) be dimension functions of Mi and M^ (i = 1,
2). Then an easy computation shows d(t) = (Zλ(l)OO, D't(l)(t)) (i = 1,2), where
d(t) denote the invariant functions of Me By the result easily verified from
the theorem due to J. Dixmier [3] there exists a W*-algebra N and two projec-
tions e, f in N' with z(e) = z(f) = 1 such that θ may be * spatially identified
with the isomorphism θ . ae->af for all a <Ξ N". Hence to prove θ being spatial
is reduced to prove that e^-f mod N'. Take a dimension function D'( )(t) of
N'. From the assumption, we get D\e)(t) = D'(f)(f). This implies that e is
equivalent to/mod N'. That is, θ is spatial.

THEOREM 6. If M is a X-bounded properly infinite W*-aϊgebra, then λ =

V oc ivhere ΊT is a family of cardinals used in Theorem 1.

PROOF. Suppose there exists a family {βi}{i € I) of orthogonal, equi-
valent projections with Card. / = β ^ λ. Take a countably decomposable
projection e7Q{^eio), then this induces a family {ei} (i € I) of orthogonal,
equivalent, countably decomposable projections. Set £ = Σ i e r e t ' w n i c n be-
comes an ^-dimensional homogeneous projection. And D(e)(t) ^ D(l)(t)<:

V a. That is, β < V α which implies λ ^ V α. Since the inverse

inequality is clear, we have λ = Vα^.
Lastly, we consider a result by R. V. Kadision (cf. [7: Theorem 13]).

Terms are used in the same sense as used there.

THEOREM 7. Factors of type IM and III have extreme point classes cor-
responding to each cardinal number in the range of their dimension functions.
Each such class, other than unitary operators, consists of all those proper semi-
unitary operators in the factor whose initial or final spaces (whichever is not
the whole space) have their complementary manifolds of the same dimension
(the cardinal corresponding to the extreme point class). In factors of type II«,
each extreme point class which consists of all those proper semi-unitary operator
whose initial or final spaces (whichever is not whole space) have their comple-
mentary manifolds of infinite dimension, has the same correspondence as des-
cribed above. And those for which the complementary projections have finite
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dimension form other extreme point classes (not necessarily one extreme point
class).

PROOF. It is clear from the proof of [7: Theorem 13] that the set of all
unitary operators forms an extreme point class.

Suppose u and υ are semi-unitary operators in the factor M with uu*
= e, vv* =/, e and/ different from 1 and 1 — e equivalent to 1 — *". Then

v can be reached from u as in the proof of [7: Theorem 13].
Now if υ can be reached from u by an isometry p we can express p = t σ

where t is unitary in M and σ either a *-automorphism or a *-anti-automor-
phism of M. Then σ(u) = t*v. But if σ is a *-anti-automorphism of JYΓ, we have
σ(uu*) = σ(u)*σ(u) = v*tt*v = Z;*ZJ = 1 so that uu* = £ = 1 which contradicts
our assumption. Hence σ- is a *-automorphism. We get σ(uu*) = σ (e) = t*vv*t
= **/*, whence σ-(l — e) = f *(1 ~/)ί. Then one easily verifies that D(l - e)
= D(l —/) if 1 — e has infinite dimension in the sense of our dimension func-

tion. In the case of I», a simple consideration shows D(l — e) = Z)(l —/) even
if they are finite. Now 1 — e is infinite if and only if 1 — / is infinite from

the relation σ(l — e) = ί*(l — /)ί. Thus the proof is completed.
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