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1. Introduction. Let x— (xi,x2, .. ..,Λ*:) be a point in the k dimensional

Euclidian space and f(x) =/(*j ,x>, , x*) be a function of the Lebesgue class
L having the period 2 7r in each variables let

(1.1) 2

be its Fourier series, that is

(1.2) a n ι Wl ..tnk = ( 2 7 r ) ί : Γ ί ..-.[ Axi,x> , x J e - w + ' n ^ dxx . . . d x banι Wl ..tnk = (27r)ί: Γ ί ..-.

We shall consider the spherical means of the series (1.1). This method
was inaugurated by Prof. Bochner [1] and developed by other writers.

By the spherical sum of (1.1) we mean

(1.3) 2

and write the spherical mean of the function f(x) at a point x by

(1. 4) Ut) = J(~.γ7JΛXι + tξi, X* + tξt, . . ., Λ + t

where σ denotes the unite sphere ξ{ + ξ\ + — + ξ:

k = 1, and ύfo-̂  its ^ — 1

dimensional volume element.
The general Abel mean of the series (1.3) is given by

U 5)' — I ( 7 " l
I)

If we put /w = 0, (1.5)' becomes ordinary Abel mean, which is established
by Bochner [1]. The formula (1.5)' is reduced to

1 f1I J1 f (fίfY

(1.5) I J [(ί-/fy(jlίo V i p ^ ^ > * + ̂ ί1)' as 6 -> 0,
o

by the localization theorem, where m > — ΰ~ττ\i since

itiεy f(t)(lt
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-*• 1 r/i4mUl .ι.n V ' I J- +k ~~^ f (+} fit

The general Abel mean of the function (1.4) is given by

( f ) « () (ε) U»f
0

where n > —1.

The formulas (1.5) and (1.6) were given by N.Levinson [3] for the case
of one variable.

The object of this paper is to establish the relations between (1.5) and
(1.6).

2. Tauberian lemmas. The following lemmas are essentially due to N.

Levinson [3], and N.Wiener [7].

LEMMA 1. Let

(2.0) lim (-J-)* ί ΛΓi(-§-)/(*) Λ = 0 boundedly, (k > 1),

(2.1) f Wί)I* < oo, f{t) = ί1-1 Λ(ί)

ϋ

and

(2.2) \Nx(t)\ < A.

Let R(t) be a function such that

(2.3) Γ tk^\R(t)\dt< oo

0

and

/

oo

\R(t)\ -γ- < oo.
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Then, if

(2.5)

then

(2.6)

PROOF. Since the following integral is absolutely convergent, we have

0 ϋ

(2.0), (2.1) and (2.2) yields

and we get

\ ^W)dt><M,

Let we take small δ > 0, we have
1

Λt)dt <V for any small

η > 0, by (2.0). Therefore the last term is less than

V ί R(u)uk~'du 4 - M Γ \ιf-ιR(u)\du.

Therefore for sufficiently small η the first term is arbitrarily small indepen-
dent of 8, and for small 8 and fixed δ the second term is arbitrarily small.
Combined this fact with (2.7) we have

/ Ί \K Γ

lim
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which proves the lemma.

LEMMA 2. Lemma 1 remains valid if (2.4) is replaced by

\R{t)\ <A, for t< I,
Δ

and

f |ΛW)|-y-

PROOF. The proof is the same as that of N. Levinson [3].

LEMMA 3. Let for some fixed b, t"hNι(t) and t-bN*(t) belong to Z(0, oo),
and let

ki(w) = ί Nι(t)t"wdt,

Hw) = ί N2(t)t-Wdt,

o

and yiw) ~ ~r~?—\~

If γ(ιv) is analytic, and

f I y(u + ivψdv < M < oo

— CO

in the strip, b — δ < w <b + δ, for some fixed δ > 0,

[(2.8) R(t) - 1. i. m. —

zs a solution of the equation (2. 5) and

(2.9) *-"#(*)

belongs to the class L(0, oo).

PROOF. The proof is analogous to that of N. Levinson [3J.

3. S u m m a b i l i t y theorems. Let P{m) represent

1 Γ1 = °
and ^(λi, α:) represent.

(3.2) l i m f l ( ^ j « ' (J-j / . O f ) " = 0 , » > - l , α > A - l .
()

THEOREM 1. E(n,ct) for n > m, implies P(m); while P{m) for m > n,
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implies E(n,a).

PROOF. Let

then

/ i v r 1 /t\
(3.3) P(m) means lim -^ I Ml c )tk-Ίf,(t)dt = 0,

o

and

(3.4) E(n,a) means limί ~ ) I JV2( -* )tk-γx(t)dt = 0.
€-»(» V <5 / J V c /

o
In the sequel we shall use the notations of Lemmas 1,2 and 3. Then

we have

(2.2) IMC*)I < A and |iVa(*)l < A

for m > — . - , n > — 1 and t € (0, oo). Also, we have

/ •

By the Mellin transforms, we have

C\ RΛ h ( \ — h C Λ- ' \~ 5L v( ^ ~~w \v & + 1 1 — W \

for 1 > w > -w(^ + l) — ̂ , and

l + «

for « > - ( α + 1), (c. f. Titchmarsh [4] p. 192), where V{x) denotes Gamma
function.

First we prove that P(m) implies E(n, a) if m > ΛZ and α: > k — 1. We
use the Lemma 1 and Lemma 3. Since t{k~l)Nι(t) and ί(A~]) iV2(f) belong to
the class Z(0, oo) under the hypothesis of the theorem, we have

(3.7)

2(ί+»ι)/2 2(ί+»ι)/

The well known formula of Γ-function

(3.8) |ΓCiί + iv)\^v2τr\v\u"^exp{- Ji^'l}, as

implies that
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(3.9J \y(u + w)\^C\v\]^*~ { f
in the strip — (k — 1) — δ <; u S — (k — 1) + δ for some fixed δ > 0, and some
constant C. Since y(u + w) is analytic in that strip, we have

(3.10) ί \y(u -f zV)|2^ < M, in - ( Λ - 1 ) - « S « S - ( * - 1) + δ.

By Lemma 3, if we put b — —(k — 1), there exists a function /?(£) such that
(2.3.) and (2.5) of Lemma 1 are satisfied. Since 1/Γ(w) is an entire function,
the regular property of the function η(u + iv) depends only on the behavior
of numerator of the function. Consider the same way as above in the strip
- 2 S « S l + δ, we have (2.9) in Lemma 3 for b == - 1 . (The details of this
statement, see N. Levinson [3].) Thus we have (2.4).

Therefore all the conditions of Lemma 1 are satisfied, we have the theorem
in this case.

Finally, we shall prove that E(n, a) implies P(m) for n > m and a>k — l.
In Lemmas 1,2 and 3, interchange Nh iVa, kL and k> with N2, Ni, k> and kλ

respectively. We have

(3.12)

1 — w \Γ/k+l 1—w

k I+u+a
(3.13) I y(u + iυ) \~C\v\~ ~ '^ir e χ p -

ΊT ί

21 , as

in the strip — (& — 1) — δ S ^ .S — (Λ — 1) + δ for some fixed δ > 0, and some
constant C. y(w) is analytic in the strip 1 > u > -m(k + 1) — k and by (3.13),
it belongs to L1 on any ordinate of this strip. Thus as before, the conditions
of Lemma 1 are satisfied except for (2.4). Again by Lemma 3, if we put
b = 0, we have an absolutely integrable

(3.14) J
The integrand of (3.14) has poles at w = 1 and w — 2m -4- 3, but it has no
pole in the strip 1 < u < 2m + 3. We displace the path of integration to the
right of iv = 1 and observe that iv — 1 is a pole, we have

(3.15)

1 -iv \ΛΛ k±l_ 1-ΐV \
9. 9.n+τri\l
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so that

(3.16) \R(t)\ SA + A'tU2)"

where A and A' are some positive constants. Since m > — ̂  > R(t) is bound-

ed for finite t and the conditions of Lemma 2 are fulfilled. This proves the

theorem of this case.
REMARK. The essential parts of our theorem are as follows , E(n, a) for

n > 0, a > k — 1 implies P(0), while P(0) implies E(n, a) for 0 > n > -1 and

4. Absolute summability theorems. The Tauberian treatment of the
absolute summability theorems was inaugurated by Prof. G. Sunouchi [4]. In
his method, we get the following lemma.

LEMMA 4. Under the hypothesis of Lemma 1 or Lemma 2

(4. 0) j jd, (I) j * ΛΓ, ( £ V(ί) Λ < oo
0 0

implies
oa 1

(4.1) J * ( 1 / J
0 0

PROOF. Put

(4.2) S(x)= f th-i

0

(4.3) Fι{y)=(ί

y)*f N^
0

and

(4.4.) ftOO - ( * )* J AT, (^
o

then by (2.3), S(0) and S(oo) exist. By (2.7), we get

(4-5)

f
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- if &" «(
0

t

Integrating by parts, the last ter.n is

(4.6) L S (f) F j C y ) l 0 " / s(ε)dFι(yl

0

Since S(0), S(oo), F,(0) and F2(oo) exist by (2.3) and (4.0), we have

(4,7) f f
0 0 0

Then, by (4.2) and Cameron-Martin's unsymmetric Fubini theorem [2],

(4.8)
oo βo I

f IdFι(y)I f Iu«~ιR(u)\du< oo.

This proves the Lemma.

If we denote by \P(m)\ the fact that

(4.9)

)

is of bounded variation in (0, oo), and by \E(n,a)\ the fact that

iA -

is of bounded variation in (0, oo). Then we have

THEOREM 2. \E(n, a )| for n > m and a>k — I implies \P{rn)\, while

\P(m)\ implies \E(n,a)\ for m > n, a>k — \.

PROOF. TO prove the localization property of absolute summability, we
need to show that

(4.11) f \ d ± [ kL__ ffx(t)dt < oo, m > 0.
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Since

/

j

O ( £ > H ( A l j ) ) as

( ) as ,

where Λ is a constant, we have (4.11).

The existence of the solution R(y) of (2.5) is the same as that of Theorem

1. Using Lemma 4 instead of Lemmas 1 and 2, we can show Theorem 2.
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