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Introduction. The purpose of the present paper is to introduce the
notion of the crossed product to certain operator rings on a Hilbert space,
the so-called factors.”” This notion played the important role in the theory
of the classical algebra may ke brought in the modern theory of the opera-
tor rings. It seems that it will play as well the affirmative and active
role for operator rings. Indeed, our notion is already found in the construc-
tion of factors due to Murray and von Neumann [4] [6] for a certain
maximal atelian algebra and a group of its automorphisms. In view of this
point, the extension of factors in this manner will be apparently expected
to get factors of different algebraical types from the original one by varying
the groups of automorphisms. On the other hand, it invites the algebraic
decomposition of factors by its subfactors. Although it has, of course, the
innate meaning as in the classical algebra, we have begun this study with
the possibility as above. Therefore, the present paper is the first step
in our program, and we shall only give a way for the extension of operator
rings.

We first define the crossed product of a finite factor with the invariant
=1 by a group of its automorphisms,”? and show some lasic properties of
it. Then, all elements in the crossed product are determined uniquely by the
original factor and a group of automorphisms. The question naturally arises
whether the crossed product is also a factor or not, for a given group of
automorphisms. We shall give the negative answer for this.

Among all factors, our main object to study is those of the finite con-
tinuous case i.e. (II,) case. What we first ought to do is to see when the
crossed products are factors. Indeed, let M be a II,-factor and let G a group
of outer automorphisms (i. e. a group of automorphisms in which all but the
unit are outer.), then the crossed product of M by G is shown to be a fac-
tor of type II,. At the final section, we shall find a necessary and sufficient
condition that a W*-algetra te the crossed product of the subfactor.

1. The notion of the crossed product. We shall begin with the unitary

1) A Wkalgebra means a weakly closed self-ajoint operator algebra with the identity on a
Hilbert space, and in particular, a factor fostered by Murray and von Neumann means a
Wk.algebra whose center consists of scalar multiples of the identity. cf. (1](4].

2) By an automorphism of a factor, we always understand a %-automorphism.
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representation of a group of automorphisms. The elements of a group of auto-
morphisms are denoted by a,8,...,,7,...and its unit by e, and the image of
an element « in a factor by its automorphim & is expressed by a”. Let M
be a finite factor with the invariant C = 1 on a Hilbert space H and let G a

group of its automorphisms. Then G is represented to a unitary group on
H. That is:

LEMMA 1. The group G of automorphisms admits a faithful unitary
representation ¢ € G —> uy on H such that uwiau, = a° for all a € M.

PROOF. Let @ be a separating and generating trace vector of M, i. e.
<a*ap,p > = <aa*p,p > and [M @] =[M @] = H. Define the operator
u, as follows:

uap = a’ '@ for all a € M.
Then, u, is uniquely extended to a bounded operator on H and ¢ — «, is the
unitary representation of G as desired. In fact, since the trace < (,) @, @ >
is invariant by G,i.e. < a’p,p > = < ap, @ > (a € Mo € G),

lusap|® =lla”'p|I* = < (a*a) 'p,p > = < a*ap, 9 > =|lag||*

Thus, u, is unitary, and obviously #,, = #,u.. Further, since ¢ is separating
for M, this correspondence is one-to-one. Finally, wiau.bp = a’bp for all
a,b € M vyield u*au,r = a™y for all vectors ¥ € H.

Henceforward, for the sake of convenience, a unitary representation

of a group of automorphisms on H means any unitary representation which
satisfies the property in Lemma 1.

Next, we shall consider a unitary representation of G on the direct pro-
duct ¥ = HR) I,(G) of H and 2,(G). Denoting by {&,}asc a complete orthonor-
mal system of [,(G), each vector of H) [,(G) is expressed in the form

Za:@¢w ® sa
where @, are vectors of H such that 3 [l@al|® is finite. The operator a ® I

(a € M) means the operator on ¥ defined by (¢ ® I) (ZMG @ ® &») = ZMG
ap, ® &,. Then, a—>a® I is a *-isomorphism of M into the full operator
ring on ¥ and the set of operators a® I is a W*-algebra on X, denoted
by M@ I Each o € G induces an automorphism of M@ Iby a®I—>a°® I
(@ € M) and so G induces a group of automorphisms M &) I, which is de-
noted by the same notation G, without confusions.

LEMMA 2. The group G of automorphisms admits a faithful unitary re-
presentation o — U, on HE) I(G) such that

(1) UrAU, = A° for each A€ MK L
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2 (MRDULp ® E)}oee are mutually orthogonal for each wvector
@ ® &, (a fixred a € G).

PROOF. Using the representation in Lemma 1, we define the operators
U, on HR) 1,(G) for each o € G as follows:

Ua (Za¢m ®8u) = Zwu.,?)w ®8¢,a.

Then, it is immediately verified that ¢ — U, is a faithful unitary representa-
tion of G on H) I,(G), satisfying the property (1). It is left only to prove
the property (2). If o <=7, for a,6 € M,
<(@a®DU@p®E,), 6ONUp ®&) > = < au,p ® Equ, btt,p @ E,0>
= < au,p, bu.p > < Eguy Eu> = 0.
Hence the property (2) holds.
REMARK 1. It shoud be noted that each U, is determined by the matrix
(0. p)a pec Where
Uy if af ' =¢o
b = {0 if a8 + o
In fact, denoting by Ji the linear isometry @ — @ ® &, of H onto the subspace
Mo in HR I,(G) and setting J = J;' on M = 0 on Ha,
T Udsp = JiUp ® &) = Ji(tap ® &.p)
{ UsP ifaB!'=g¢
0 if aB'=kao

for each vector @ € H.

At present, we shall define the crossed product of a factor by a group of
its automorphisms. The concept of the crossed product we are going to give
concerns with finite factors with the invariant C=1. Let M be a finite
factor with C =1 on a Hilbert space H and let G a group of its automor-
phisms. Passing the unitary repersentation of Gon H) [, (G) in Lemma
2, obtained from a unitary representation % of G on H, with the same
notation, we consider a system & of all linear froms

ZweGAwa
where A, are elements of M@ I and all but a finite number of them are
zero. Then, Since (AU,)* = U*A* =A**U,-1 and (AU,)(BU,) = AB* " U.4(A,
B e MQI) the system & is a *algebra. Now we shall give the definition
of the crossed product.

DEFINITION. The W¥*.-algebra on HQ) I,(G) generated by the system &
is said to be the crossed product of M by the group G of automorphisms
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and denoted by (M, G, ).

The crossed product defined above seems to depend on the choice of
the representation Z of G on H, but it will be shown that the crossed
product is uniquely determined M and G within unitary equivalence. The
original form of our notion introduced on operator rings is found in the so-
called factor construction due to Murray and von Neumann [4] [6], where this
notion concerns with a measure space (2, ») and a group of homeomorphisms
on , called an ergodic m-group. Recently, this fact has been explained largely
by T.Turumaru [8].

2. The general properties of the crossed product. In this section,
we discuss the general properties of the crossed product defined in the pre-
ceding section. We shall show that all elements in the crossed product
(M, G,%) are uniquely determined by a family of elements in M &) I and
{Uﬁ}aeG'

LEMMA 3. For each element A in the crossed product (M, G,), there
exists a unique family{Adlae in MQI such that
Alp®e&) =2, AUp ® &)
for all vectors ¢ @ &(p € H).
PROOF. Let A be an element in the unit sphere of (M, G,%), by Kap-
lansky’s density theorem [3], there exists a directed family A, € © in the unit
sphere which converges strongly to A. Put A,=3_ (a®’®1I) U, (all but a

finite number of af’ in M are zero),

” P ”2 = H Zw(agv)\) ® D UM(¢ ® &) ‘) P = H Zmag‘)ua‘i’ X &y l|2

= Zw”as‘)\)u"#’ ®8‘”H2 = Zw”ag\)ua¢”2

for all @ € H. Thus [|adu.9! |l@| and so all elements a2’ belong to the
unit sphere of M.

Now we show that a directed family a’ for each @ € G is cauchy in
the strong topology on M. Indeed, by the property (2) in Lemma 2 we
have

“ Za(a&” R®I—al I Ulp ®E,) = ]' Zw(aﬁf‘) — aPu.p &, lr
= 2" @@ — a@uap @ &alI* = 3_ (@l — aluasp|”.

Since the left side converges to 0, each || (@’ — a¥®)u.@ || > 0, or || (@ —
a$) @ | — 0 for all @ € H. Observing that the unit sphere of M is com-
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plete in the strong topology, each directed famly a{’ converges strongly to

a, in M, therefore each a{® ® I converges strongly to a ® I, because the

isomorphism M —> M &1 is strongly continuous in the unit sphere.
Setting Ay = ax ® I and A = a®® I, it must be shown that

D we AsUd@ ® &) converges and A(p @ €,) = ZMG AU p R E,). For each
& > 0, there exists A, such that

(A =3, AP U) (9 ®e)| <e/3  for A=, ),
and so

(e AL Ua — 3, AL Ul) (@ ®&,)|| < 26/3.

Put J, = the finite set {a € G; ASY %=0}, then, by the property (2) in
Lemma 2,

(X, AP U — 32, AL Ul)(9p®2))||< 2¢/3
for all finite sets J D J, in G. Hence
(2., A% U — 3, AUl) (9 ®¢.) || < 2¢/3 2

Combining (1) and (2), we conclude that for all finite sets J D J, in G,
(A= 3,, Ala) (p®e)| <eé
Finally, it left only to prove that such expression is unique. In fact, if
e AU ®8) =0, 0=, AUul9®&)| =X, !l aattagp|* for all

@ € H. Thus a.u, = 0 for each @ € G and so as = 0, or A, = 0. Therefore,
our statement holds for any element in the crossed product (M, G, Z).

REMARK 2. As easily seen, for A € M, G,%), the family {As}se in

Lemma 3 is uniquely determind as follows:

44(¢ ®gq) = ZM_G Awa(¢ ®80)
for all 0 € G, € H. Hence A =0 if and only if A, =0 for all @ € G.

LEMMA 4. The crossed product (M, G,U) has a separating and genera-
ting vector.

PROOF. Since the invariant of M equals to one, it is known that there
exists a separating and generating vector @ of M. Then each u.@ is also
separating and generating for M. In fact, if ausp = 0(a € M), 0 = <au.p,
au, p > = < uta*ausp, ¢ > = < (a*a)’p, @ > = ||a.p||* and hence a.p =
0, a, = 0 since @ is separting for M, and so a =0. On the other hand,
uiMu.p] = [M@] = H, thus H = u, H = [Mu,p]. Now, ¢ ® &, is acceptable
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as a separating and generating vector of (M, G, ). Indeed, using Lemma 3,
Alp®e,) =2, . AUa(p®@&,) = 2w Qatta® ® Ea = 0(A € (M, G, U))yields
aqu, @ = 0 for all @ € G. But, since u,p are separating for M, a, = 0 for
all @ € G and so A = 0. Moreover, (M, G, %) (@ @ &,)] = [ZMGA,,U.,(¢®82)]

=2, 2atta® @ &] = HRL(G) since u.p are generating for M.

The crossed product of M by G defined in the section 1 depends on
the choice of the unitary representation 7 of G. But that it is independent
of the unitary representation is desirous.

LEMMA 5. The crossed product is uniquely determined by M and G,i.e.
let {u.l, {val (@ € G) be two unitary representation of G on H, then the
crossed product M, G,U) is spatially isomorphic to (M, G, ).

PROOF. Let {Uulae { Valae be two unitary representations of G on
H Q) I,(G) in Lemma 2 corresponding to {#%s} s, |Va}ac respectively and let S,
be the sets {ng A, Uw}, 'Zm A,,Vw} (where A,€M®)I and ¢ runs over finite

subsets of G) respectively. We shall prove that the mapping ¥: >~ AU, —

®eq

Zm AsVs of © onto &' is a spatial isomorphism. Since &, & is dense in

M, G, %), M, G, 1*) respectively, It is assured that (M, G, %) is spatially
isomorphic to (M, G, I*).

Let @ be a separating and generating vector of M, then @ ® &, is a se-
parating and generating vector of (M, G, %) and (M, G, %) c:y Lemma 4. Since
there exist unitary operators W, € (M@ I) such that U, = W,V,, it holds
from the property (2) in Lemma 2 that

” (Zaeg A’”U“) (¢ ® 82) P = ng H A“Ua(¢ @ 6e)||2 = ZwegHA“W‘;V"(¢‘®ge)“2
=3 IWeAVio®e) [P =3, | A Vio®e) P = X, A Vlp®e&)||%
Therefore, we can find a unitary operator W on H ) 7,(G) such that

W((X2,,4:Ua) (p ® &)= (22, AVa) (@R &),

xeg
because € (p®&,), S(p ®E,) are dense in H L,(G). Then, it must be
shown that W(ZM A,,Uw) W= Zm A,V,. Indeed, for each vector (ZBM

Ag Vg) (p ®&,), (h runs over finite subsets of G), W ( Z‘m AaUa) w-! (ZM
AV )(p ®e) =W (L, AU.)( 3, AsUs) (p®8) = W(E, , Aed§ ' Uss)
(@®e) =3,  AAs Vas(p ® &) =(3, , AuV) (2, A:Vs)(@ ® &.). Thus,
W(Zm A,,U,,) W = (Zm Aan) Y for all vectors ¥ € H) /,(G). The-
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refore, The mapping W(,)W™! induces a spatial isomorphism of (M, G, )
onto (M, G, I*).

Now it is allowed to express the crossed product (M, G, ) by the nota-
tion (M, G), in what follows. We shall state the main result in this section
by using the lemmas obtained up to now.

. THEOREM 1. Let M be a finite factor with the invariant C =1 and
let G a group of its automorphisms. Then, the crossed product M, G) is a
Sfinite W*-algebra with the invariant C=1, and for each element A of (M, G),
there exists a unique family {Aglae in M QI such that

A=3", AU
where %' is taken in the sense of the metrical convergence®.

PROOF. We first prove that (M, G) is finite. To do it, we must show
that there exists a faithful normal trace of (M, G). Let @ be a separating
trace vector of M, then @ @ &, isa separating trace vector of (M, G). Indeed,
since @ ® &, is separating for (M, G) by Lemma 4, it is sufficient to prove
that | A(e®¢&,) P =] A*(@®E,)I|? for all A € (M, G). By Lemma 3, there
exists a family {as ® [} in M &I such that

A(¢ ® eg) - Za G(aw ® I)Uw(¢ ® 85)’

and then [|A(@ @ &) =3 | (@a® D Ulp @ &) = 2, || dattap ® &> =
2 Naaap |l = 3 llapl* = 2 laioll* = 2°, luiale|* = 2 || uiaip ®
&2 = Za | UHat @ 1) (@ ® &,)|[°. Thus Za o Ua(aad ) (p @ &,) converges
and the desired identity holds because of A*(@®¢&) =2,  Uiai® I)
(p ® &.)”. In addition,the invariant C equals to one by Lemma 4.

Now, applying Lemma 3 to the above fact, we assure that for each A €
(M, G), there exists a family {Ax}ae in M QI such that A = Z;(G AU,.

Indeed, this family {Aas}ase is unique, because Za AUy = 0 yields 3~ AU,
(p®e&,) =0, and so AU p®E,) =0 for all @ € G as we have seen, or
A, = 0 since @ @&, is separating for (M, G).

In connection with this theorem, it is convenient to introduce the follow-

4) Let M be a finite W*.algebra with a separating and generating trace vector ¢. Then, M
becomes a topological space in a new way with the metric [[a]]=|]|apl|. A directed family
{ai}ier in M is said to be metrically convergent to @ in M if [[ai —a]]l > 0. For this
metric [ ]], cf. [5: Chap. 1] [6: Chap. 1].

5) Putting 4, = a, ®1, then <y R &0, Em U;A:(¢®sy)> = 2‘,“ <¥Qéq, U:A*f(¢®se)>
=3, <4U, (4 @¢), o Q&> = <AWR® &), o®E> = <YR &, A¥(p ®&)> for all
yeH, ccG.
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ing phrase : For each element A € (M, G), the elements A, in M®1I in
Theorem 1 are called the a-component of A. Further, we shall often make

use of the following relations: If A = Z;EG A,U.(in Theorem 1),

U.A = Z;e(; UoAaUa: AUw = Z;;a AanUa.
and for Be M1,
BA = Z;GBA:»UM AB=Y"

’

A.U.B.

aeG

These facts follow immediately from the property of the metric [[ ]I

An important question now arising is whether the crossed product
(M, G)is a factor or not for any group G of automorphisms. The answer for
this question is generally negative. Let M be a factor of type II, on a Hil-
bert space H, then one can find easily a unitary operator in M such that
u? = I. Denoting by G a group of automorphisms of M induced by # and
I, the crossed product (M, G) is not a factor. Indeed, put

lI lI
2 2

P= ,
1,1,
2 2

it is immediate to see that Pis a projection == 0, I in H &) /,(G) and is expressed
in the form:

%I 0 é‘u 0\ /0 u«
P= +
1 1
0 21 0 o U u 0

Recall that U =<2 16) is the representation of the automorphism induced by

«*(, ) u in Lemma 2, the direct computation shows that P is an element
of the center of (M, G). That is, (M, G) is not a factor.

This fact tells us that a group of inner automorphisms is, in general, not
appropriate for the purpose of the so-called factor construction as mentioned
in the introduction. In connection with this example, we shall find the con-
dition under which (M, G) is a factor, for an abelian group G.

LEMMA 6. If G is an abelian group of automorphisms of M by which
only the center is elementwise invariant, then M, G) is a factor.

PROOF. Suppose that A is an element in the oenter of (M, G) and
{A.lwe a family of a-components of A. Then for each U, Z“ U, AU, =
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> AuUlU, and 503, A5 Usw = 3, AslUaw = 3. AuU.a. Thus we obtain
by the uniqueness of a family {As}a that

A= A, for each a € G.
Then the assumption shows that A, = A,y for some scalars A, where I, is

the identity on ¥ = H&) /,(G). On the other hand, for each Be MK,
> BAU. =3, AuUsB, or Y., BAUy =3, AuB*'Ua. Using again the
uniqueness of {Aa}ae, We get

BA, = A.B*™" for each a € G.

Now, if A==0 for some a==e, B= B*'forall B€ M®]1 since A, = Ny
== 0, which contradicts to a@ ==e¢; hence A, = 0 for every a=Fe.

3. The crossed product of the factor of type II,. In this section, we
concern only with Il,-factors. Indeed, in our theory, we take an interest in
the factors of this type alone. First we wish to see the existence of a group
of outer automorphisms mentioned in the introduction. Already, it was known
that there exist II,-factors, having an outer automorphism. In particular, an
approximately finite factor on a separable Hilbert space has always such
automorphism, as shown in [2], i. e. an automorphism of the algebraic
extension K of a finite field induces an outer automorphism of it. In this
place, replacing an automorphism of K by a group of automorphisme of K,
we can obtain the desired group of automorphisms. Recently the author has
shown that an arbitrary countable group is isomorphic to a group of outer
automorphisms of the approximately finite factor on a separable Hilbert
space [7]. That is to say, since this kind of factors are all isomorphic each
other [5], we have the following

THEOREM 2. The approximately finite factor on a separable Hilbert space
has a group of outer automorphisms isomorphic to an arbitrary countable
group.

Next, we shall investigate the crossed product of a II,-factor by a group
of outer automorphisms. First we must ask whether the crossed product
obtained in this case is a factor or not.

THEOREM 3. Let M be a Il,-factor with invariant C =1 and let G a
group of outer automorphisms of M. Then the commutant of M Q1 in the
crossed product M, G) coincides with the center of M QL. That is, the cro-
ssed product M, G) is a factor.

PROOF. Let A be an element of the commutant of M@I in (M, G),
then we must show that it is scalar multiples of the identity I on H&
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1(G). By Theorem 1,
A=Y AUs (A, € MQD).

In this case, we obtain Za XALU, = Zw AUX = Zw AX*'U, for all X
€ M®I, and hence, by the uniqueness of a family {A.}acc,

XAmUa == AaXa_an, = AaUmX. (l)
for each @ € G. Thus A, is scalar multiples of the identity I. Now, suppose
that A, is non-zero for some a==e, then AU, € M@I) and UiA%
M) yield UtA:A U, € MQI), but it belongs to MQ]I, so that A}
A, = Mol (Az:a non-zero positive number). On the other hand, A,A% = A«
U,U:AY € M®I) and so A AL = \oI (for AXA, and A,A% have the same
spectrum). Therefore, passing the polar decomposition, A, = A/*W, where
W, is a partial isometry of M &I, so that A\, = AXA, =A, Wi W, and
Aol = ALAY = N, W, WE Thus it follows that WiW, = W,W% = I. Hence
we obtain

Aw = kyQWa (2)
for the unitary operator W, of M @ I. Combinig(1)and (2), XW, = W, X*"
for all X € M@ I and so X* ' = W:XW,. This contradicts to the fact that
a==e are outer. Thus A, = 0 for every a==e in G. This completes the
proof.

In succession, we shall determine the type of our crossed product being
deduced easily from Theorem 1.

THEOREM 4. Let M be a Il,-factor with the invariant C =1 and let G
a group of automorphisms of M, then the crossed product (M, G) is of type
11,. In particular, if G is a group of outer automorphisms, it is a factor of
type 1I,.

PROOF. By Theorem 1, assuming that (M, G) is of type I, we may show
that this assumption yields the contradiction. Since M is of type II,, we can
choose a strictly monotone decreasing infinite directed set of projections
{e;}ir in M. Then {e; & I}, is also a strictly monotone decreasing infinite
directed set of projections in (M, G). But since (M, G) is considered to
be the ring of all bounded operators on a convenable finite dimensional
Hiloert space, the directed set {e; ® I} is impossible to be infinite, strictly
decreasing.

With respect to factors of type II,, the difficult and significant problem
is to construct factors of the different algebraic type from the approximately
finite factor in this manner. We wish to discuss fully this problem elsewhere.
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4. The subfactor of the crossed product. A group of unitary opera-
tors {U,} on a Hil.ert space ¥ is said to conserve a factor A on ¥ if it
leaves A invariably (i.e. U A U, & A) and all U, don’t belong to A except
the unit. The crossed product (M, G) is, as we have seen, generated by the
subfactor M I and a unitary group {Usal}«e which conserves M &I, and
in which all but the unit are orthogonal to M &I (in the sense of the
structure of the prehilbert space M defined by the trace). Now, we are going
to consider the converse of this fact.

THEOREM 5. Let A be a countably decomposable, finite W*-algebra with
the invariant C=1 on ¥ and let B a subfactor of A. If there exists
a unitary group $ = {U.} in A conserving B, in which all buc the unit
are orthogonal to (B, and A is generated by B and G, then A is spatially
isomorphic to the crossed product (B, G) where B is a factor with the in-
variant C =1 and isomorphic to (3 and G is a group of automorphisms of
B isomorphic to G.

PROOF. Let @ be a normalized, separating and generating trace vec-
tor of A. Consider the isometry ® of the prehilbert space A (induced by
the trace <(,) @, #>) onto the dense set A in W as follows

d: Aed—Ap € K.
Then, Pgryyare mutually orthogonal and I = Za Py In fact, for A, B
€ B, <AU.p, BUsp> = < UB*AUap, 9> = <(UB*AU,) UsUsp, p >
= 0 if a@ == 8. Further, passing the isometry ®, the fact that A is generated
by {BU.} yields easily 1= )" Pey o

Putting B = B 5,3, B is a factor with the invariant C = 1 and isomorphic
to B since @ is separating for /. Now, denote by G the group of automorph-
isms & of B induced by U,.then {U,} is considered to be a unitary representa-
tion of G on K (recall that {U,} defines a group of automorphisms of B by
Uz (,)Ua).

We shall show that R(B, Us; a@a € G) = A is spatially isomorphic to the
crossed product (B, G) of B by G. Since ||AU.p|I>* = |[|[ULAU.@||> = ||Agp]|?
for A € {3, we obtain partial isometries W, on ¥ which maps [Be] on
[BU.@]l. Setting H = [Bp], we denote by S, the isometries of H onto the
subspaces H, in H) 1,(G), carring Ap(A € B) on Ap @ &,. Then, it is im-
mediately verified that the isometry ZMG Se Wi of ¥ onto H) I,(G) carries

B on BEI and the inverse of Z«.a Ss W% is the mapping ZN‘G WSk, where
St =S, on H,,=0 on H;.

Now, define unitary operators v, on H by
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voAdp = U AU for all A € B.
Then, by Lemma 1, {v.} (@ € G) is a unitary representation of G on H
(for Ap = A5, (A € B) and U, AU i@ = (Age)* @). We shall complete
the proof by showing that, for each ¢ € G

(Z, SeW2) UL (2, SaW2) ™" = 7,

where V, is a unitary representation of ¢ in Lemma 2 obtained from v,. For

each vector 2 Asp ® & (As € B) in HY L, (G), we have.

(XS W2 Uo (2,8 WE) (X, Awp ® &) =(_ SaWE) U (3, AUap)
= (X, SaW2) (X, (UoAdU Uoupp) = 3, (Us Al $)p @ Eqa
=, 00Aep ® Eu = V, (5, Aup @ &),

whence the proof is completed.

REMARK 3. In this theorem it may be noticed that the invariant of B
equals to the cardinal of G. This fact is easily verified.

CORLOLARY. Let A be a finite factor with the invariant C = 1 and let
B a subfactor of A such that B | A = (scalar multiples of the identity), G
a unitary group in A leaving B invariably. If there exists a subgroup G, of
G whose elements are orthogonal to B except the unit, and A is generated
by B and G, then A is spatially isomorphic to the crossed product (B, G)
where B is a factor with the invariant C = 1 and isomorphic to B3 and G
is a group of outer automorphisms of B isomorphic to ..

In fact, it is easy to see that G, conserves the subfactor B, and if Uy ==1
in 9, defines an inner automorphisms of @B, there is a unitary operator
U € B such that U,U € B, and hence U, = AU € B for a scalar A. This
contradicts to the fact that U, is orthogonal to .
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