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Introduction. The purpose of the present paper is to introduce the
notion of the crossed product to certain operator rings on a Hubert space,
the so-called factors.1} This notion played the important role in the theory
of the classical algebra may te brought in the modern theory of the opera-
tor rings. It seems that it will play as well the affirmative and active
role for operator rings. Indeed, our notion is already found in the construc-
tion of factors due to Murray and von Neumann [4] [6] for a certain
maximal abelian algebra and a group of its automorphisms. In view of this
point, the extension of factors in this manner will be apparently expected
to get factors of different algebraical types from the original one by varying
the groups of automorphisms. On the other hand, it invites the algebraic
decomposition of factors by its subfactors. Although it has, of course, the
innate meaning as in the classical algebra, we have begun this study with
the possibility as above. Therefore, the present paper is the first step
in our program, and we shall only give a way for the extension of operator
rings.

We first define the crossed product of a finite factor with the invariant
= 1 by a group of its automorphisms,50 and show some basic properties of
it. Then, all elements in the crossed product are determined uniquely by the
original factor and a group of automorphisms. The question naturally arises
whether the crossed product is also a factor or not, for a given group of
automorphisms. We shall give the negative answer for this.

Among all factors, our main object to study is those of the finite con-
tinuous case i. e. (IIj) case. What we first ought to do is to see when the
crosseα products are factors. Indeed, let M be a Πj-factor and let G a group
of outer automorphisms (i. e. a group of automorphisms in which all but the
unit are outer.), then the crossed product of M by G is shown to be a fac-
tor of type IIj. At the final section, we shall find a necessary and sufficient
condition that a*fl^*-algetra be the crossed product of the subfactor.

1. The notion of the crossed product. We shall begin with the unitary

1) A W*-algebra means a weakly closed self-ajoϊnt operator algebra with the identity on a
Hubert space, and in particular, a factor fostered by Murray and von Neumann means a
W*-algebra whose center consists of scalar multiples of the identity, cf. [1][4J.

2) By an automorphism of a factor, we always understand a ^-automorphism.
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representation of a group of automorphisms. The elements of a group of auto-
morphisms are denoted by a, β, .., <r, τ,...and its unit by e, and the image of
an element a in a factor by its automorphim α is expressed by αΛ. Let M
be a finite factor with the invariant C = 1 on a Hubert space H and let G a
group of its automorphisms. Then G is represented to a unitary group on
H. That is :

LEMMA 1. The group G of automorphisms admits a faithful unitary
representation σ £ G —• uΛ on H such that utauσ = aσ for all a € M.

PROOF. Let φ be a separating and generating trace vector of M, i. e.
< a*a φ, φ > = < aa*φ, φ > and [M φ] — [M φ] = H. Define the operator
uσ as follows :

uσaφ = aσ~ιφ for all a € M.

Then, z/σ is uniquely extended to a bounded operator on H and σ -> uσ is the
unitary representation of G as desired. In fact, since the trace <(,)φ,φ >
is invariant by G, i. e. < aσφ, φ > = < <z<p, <p > (<z € M, σ € G),

Wu^φW2 = | |a^V| | 2 = < {a*ay-ιφ,φ > = < a*aφ,φ> =\\aφ\\2.

Thus, uσ is unitary, and obviously uστ = wσwτ. Further, since φ is separating
for M, this correspondence is one-to-one. Finally, u*σauσbφ = aσbφ for all
α, b € M yield utauσψ = a^ψ for all vectors ^ € H.

Henceforward, for the sake of convenience, a unitary representation
of a group of automorphisms on H means any unitary representation which
satisfies the property in Lemma 1.

Next, we shall consider a unitary representation of G on the direct pro-
duct U = H£§) Z2(G) of H and /2(G). Denoting by \BΛ\Λ9G a complete orthonor-
mal system of Z2(G), each vector of H (§) /2(G) is expressed in the form

where £>* are vectors of H such that Σ ^ I I ^ Λ I I 2 ^S finite. The operator a® I

{a € M) means the operator on H defined by (a ® /) ( Σ α e ί ? <p<* ® 8») = Σαe<?

aφ* ® £Λ> Then, a -» a ® I is a *-isomorphism of M into the full operator

ring on U and the set of operators a ® I is a W*-algebra on U, denoted

by M ® I. Each σ € G induces an automorphism ofMC>£)Iby a® I-* aσ ® I

(a € M) and so G induces a group of automorphisms M (̂ ) I, which is de-
noted by the same notation G, without confusions.

LEMMA 2. The group G of automorphisms admits a faithful unitary re-
presentation σ —> Uσ on H $£) L(G) such that

(1) UiAUσ = Aσ for each A € M <g) I.
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(2) j (M (££) I) Uσ(φ ® £«)} σΐG are mutually orthogonal for each vector
φ®8a {a fixed a € G).

PROOF. Using the representation in Lemma 1, we define the operators
Uσ on H (g) Z2(G) for each σ € G as follows :

Then, it is immediately verified that σ —• Uσ is a faithful unitary representa-
tion of G on H®Z2(G), satisfying the property (1). It is left only to prove
the property (2). If σ=f=τ, for a, b <Ξ M,

= < auσφ, bu7φ > < £σa, £τcc > = 0.

Hence the property (2) holds.

REMARK I. It shoud be noted that each Uσ is determined by the matrix
(«o5,β)« βeG w h e r e

if aβ'1 = σ

if ocβ-1 =+= σ .

In fact, denoting by J α the linear isometry φ -* φ ® 8* of H onto the subspace
WΛ in H ® h{G) and setting J£ = J*1 on )^α, = 0 on )4a,

Ja UaJβψ = JlUσ{φ ® θβ) = Jt{uaφ ® £σβ)

uσφ if α:/?'1 = σ

0 if tfβ-1 =f=σ

for each vector ^ 6 H .

At present, we shall define the crossed product of a factor by a group of
its automorphisms. The concept of the crossed product we are going to give
concerns with finite factors with the invariant C = 1. Let M be a finite
factor with C = 1 on a Hubert space H and let G a group of its automor-
phisms. Passing the unitary repersentation of G on H ® 12(G) in Lemma
2, obtained from a unitary representation U of G on H, with the same
notation, we consider a system © of all linear froms

where Aa are elements of M ® I and all but a finite number of them are
zero. Then, Since (AUa)*= U%A*=A**Ua-i and (AU«)(BU«) = AB^U^A,
B € M ® I) the system © is a *-algebra. Now we shall give the definition

of the crossed product.

DEFINITION. The W*-algebra on H <g) 12(G) generated by the system ©
is said to be the crossed product of M by the group G of automorphisms
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and denoted by (M, G, U).

The crossed product denned above seems to depend on the choice of
the representation U of G on H, but it will be shown that the crossed
product is uniquely determined M and G within unitary equivalence. The
original form of our notion introduced on operator rings is found in the so-
called factor construction due to Murray and von Neumann [4] [6], where this
notion concerns with a measure space (Ω, v) and a group of homeomorphisms
on ί2, called an ergodic m-group. Recently, this fact has been explained largely
by T. Turumaru [8].

2. The general properties of the crossed product. In this section,
we discuss the general properties of the crossed product defined in the pre-
ceding section. We shall show that all elements in the crossed product
(M,G,Ώ) are uniquely determined by a family of elements in M ® I and

LEMMA 3. For each element A in the crossed product (M, G, U), there
exists a unique family j Aa,} aίG in M ® I such that

A(φ ® 8e) = Σ,ΛtGA.Ua(φ ® Se)

for all vectors φ ® 8e{φ € H).

PROOF. Let A be an element in the unit sphere of (M, G,U), by Kap-

lansky's density theorem [3], there exists a directed family Ak €ί @ in the unit

sphere which converges strongly to A. Put Aλ— Σ α e G ( ^ λ ) ®/) Ua (all but a

finite number of α j } in M are zero),

II Ψ II1 2Ϊ IIΣ>«λ) ® i) ua{Ψ ® 6.) |f = (I Σ . α ί ί w ®«- |f

= Σ . K W ® e-ll1 = ΣJUίϊWII1

for all φ € H. Thus Wa^UaψW \\φ\\ and so all elements <2*λ) belong to the
unit sphere of M.

Now we show that a directed family aW for each a € G is cauchy in
the strong topology on M. Indeed, by the property (2) in Lemma 2 we
have

Se) |f =

Since the left side converges to 0, each || (αiλ) — a^)uaψ || -> 0, or || (αί,λ) —
^^^ ^ II "^ 0 for all φ € H. Observing that the unit sphere of M is com-
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plete in the strong topology, each directed famly cβ? converges strongly to
aΛ in M, therefore each <z*λ) ® / converges strongly to a ® /, because the
isomorphism M —• M ® I is strongly continuous in the unit sphere.

Setting AΛ = aΛ ® I and A^ = <4λ) ® /, it must be shown that

J2aeG AΛU»(φ ® 6e) converges and A(φ ® 8e) = ΣatG AΛUΛ(φ ® Se). For each

S > 0, there exists λ0 such that

I {A - Σα, : f f Aί» U.) (φ ® fi.) I] < 6/3 for λ>λ 0 (1),

and so

I ( ΈaeG A? U« - ΣaeG At* U.)(φ®εβ)\\ < 2 6/3.

Put Jo = the finite set | a € G; A(«o) =}= 0}, then, by the property (2) in
Lemma 2,

I ( Σ β e J ^ W. - Σ α e J Aίf> t7.)(9>®fi.))||< 2θ/3

for all finite sets J 3 J o in G. Hence

| |( Σ α & 7 ^ λ 0 ) tT. - Σ α β J A.U.) (ψ ® Se) || ^ 2£/3 (2)

Combining (1) and (2), we conclude that for all finite sets J ZD Jo in G,

Finally, it left only to prove that such expression is unique. In fact, if

Σ β e G AΛJIΨ ® εe) = o, o = |[ E α e e Aaυiφ ® ee) |f = Σ α 6 C ! |αα M α 9>|| 2 for aii
ψ € H. Thus ααwΛ = 0 for each a € G and so α* = 0, or Aα = 0. Therefore,

our statement holds for any element in the crossed product (M, G, U).

REMARK 2. As easily seen, for A € (M, G, U), the family {A»}ee*
 i n

Lemma 3 is uniquely determind as follows:

A{φ ® Sσ) = Σ β e β ^ - t / (^ ® «σ)

for all σ € G, φ € H. Hence A = 0 if and only if A, = 0 for all a € G.

LEMMA 4. TΛe crossed product (M, G,U) has a separating and genera-

ting vector.

PROOF. Since the invariant of M equals to one, it is known that there

exists a separating and generating vector φ of M. Then each uaφ is also

separating and generating for M. In fact, if auaφ = 0 (a € M), 0 = <auaφ,

auaφ > = < uta*auΛφ, φ > = < (a*a)*φ, φ > = ||<zα£>||2 and hence aaφ =

0? <zα = 0 since £> is separting for M, and so a = 0. On the other hand,

w£[Mwα?>] = [Mφ~] = H, thus H = wΛ H = [Muaφ], Now, ?> ® 5e is acceptable
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as a separating and generating vector of (M, G, ίX). Indeed, using Lemma 3,

A (φ ® εe) = Σaeσ ΛMΛφ ® £e) = Σ α e G

 a«u«Φ ® *« = 0(A € (M, G, «))yields

aaUcc φ = 0 for all a € G. But, since zz*9? are separating for M, aa = 0 for

all Λ € G and so A = 0. Moreover, [(M, G, »)(<? ® £e)] = [ Σ β . β ^ - ^ ( ^ ® O ]

= [ Σ α e ( ?

 a*u<x<P ® £«] = H §ζ)l2(G) since &α<p are generating for M.

The crossed product of M by G defined in the section 1 depends on
the choice of the unitary representation U of G. But that it is independent
of the unitary representation is desirous.

LEMMA 5. The crossed product is uniquely determined by M and G, i. e.
let {ua\, [vcc] (oL € G) be two unitary representation of G on H, then the
crossed product (M, G,U) is spatially isomorphic to (M, G, 2Λ).

PROOF. Let I Ua}aeG, {Vcc)oίeG be two unitary representations of G on

H ® Z2(G) in Lemma 2 corresponding to {««UeG, \va\aeG respectively and let @,@

be the sets | Σ α e ί , Λ«fΛ»}> ' Σaeg AΛVa] (where ^ ^ ^ M ^ I and g runs over finite

subsets of G) respectively. We shall prove that the mapping ψ : Σ Λ AaUΛ ->

Σ Λ e { / AΛVa of @ onto ©' is a spatial isomorphism. Since ©, © is dense in

(M, G, Zf), (M, G, V ) respectively, It is assured that (M, G, U) is spatially

isomorphic to (M, G, ZΛ).
Let ^ be a separating and generating vector of M, then φ ® 8e is a se-

parating and generating vector of (M, G, ϊί) and (M, G, ZΛ) Ly Lemma 4. Since
there exist unitary operators W'a € (M ® I) such that UΛ = W'ΛVa, it holds
from the property (2) in Lemma 2 that

Σ,at9 A . U . ) (φ ® « . ) ||2 = Σ α e ί , II -A.C7β(9» ® εe)\\* =

Σ II 2 = Σ l l A

Therefore, we can find a unitary operator Ψ o n H ® /2(G) such that

w{{Σ,ae(,A«u*) (<P ® ε*>) = ( Σ ^ ^-v.) (9> ® €«),

because © (^®fe), <5{<p®Se) are dense in H(g)/2(G). Then, it must be

shown that W(ΣlaaAMa)W-1=ΣatβAaVa. Indeed, for each vector

AβVβ)(φ0εe), (h runs over finite subsets of G), W ^ Σ ^ ϋ ) W"1

AsVβ^φ® Be). Thus,

= (ΣM AaVa) ψ for all vectors ψ € H<g>/,(G). The-
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refore, The mapping W(,)W~ι induces a spatial isomorphism of (M, G, XX)
onto (M, G, ZΛ).

Now it is allowed to express the crossed product (M, G, XX) by the nota-
tion (M, G), in what follows. We shall state the main result in this section
by using the lemmas obtained up to now.

THEOREM 1. Let M be a finite factor with the invariant C — 1 and
let G a group of its automorphisms. Then, the crossed product (M, G) is a
finite W*-algebra with the invariant C = l , and for each element A of (M, G\
there exists a unique family (A a \ mG in M (££) I such that

A = z_Ja_G AaUoc

where Σ' is taken in the sense of the metrical convergence^.

PROOF. We first prove that (M, G) is finite. To do it, we must show
that there exists a faithful normal trace of (M, G). Let φ be a separating
trace vector of M, then φ®Se is a separating trace vector of(M, G). Indeed,
since φ®Se is separating for (M, G) by Lemma 4, it is sufficient to prove
that \\A(φ®8e) |2 = I A*(φ®ee)\\2 for all A € (M, G). By Lemma 3, there
exists a family \aa®I\aeG in M ® I such that

A(φ ® O = Σ α G U . ® DUJ& ® O ,

and then |U(<p ® £e)l!2 = Σ J I («. ® /) f/.(^ ® Oi l 2 = Σ α W"aUaφ ® θ α | | 2 =

Σ Λ llαβMβV||» = Σ J I ^ I I 2 = ΣJIatφ ||2 = Σ . l l ^ ^ l l ' = ΣJuialφ®
«--1 II2 = Σ α II E/iCaί ® /) (^ ® θe)||2. Thus Σ α e ϋ*(α*>g>7) (^ ® «β) converges

and the desired identity holds because of A*(φ ® θβ) = Σ αeG C/2(ΛΪ ® I)

(φ®Se)
5\ In addition,the invariant C equals to one by Lemma 4.

Now, applying Lemma 3 to the above fact, we assure that for each A €

(M, G), there exists a family (A»}«.G in M ® I such that A = ΣΛtGA»U».

Indeed, this family {Aa\^G is unique, because Σ α AcoU* = 0 yields Σ α AccUa

(φ®£e) =0, and so AaUa(φ®6e) = 0 for all α: € G as we have seen, or
Aa = 0 since φ ® Se is separating for (M, G).

In connection with this theorem, it is convenient to introduce the follow-

4) Let M be a finite W*-algebra with a separating and generating trace vector φ. Then, M
becomes a topological space in a new way with the metric [[α]]= | \aφ\ |. A directed family
{cn}iei in M is said to be metrically convergent to a in M if [[at — aj] -> 0. For this
metric [[ ]], cf. [5 : Chap. 1] [6 : Chap. 1].

5) Putting Λa = aa ® 1, then <ψ (g) εσ, 2 α ^ * Λ * O ® «") > = Σ α <Ψ ® *σ, U*A* (φ ® £e; >

= Σ Λ <^αί/ α (Ψ®^σ), 9>®fe> = <A(ψ(g)£σ), 9>®fβ> = <Ψ®£σ, ^*(?)®f β )> for all

ψ 6 H, σ € G.
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ing phrase : For each element A € (M, G), the elements AΛ in M (g) I in

Theorem 1 are called the a-component of A. Further, we shall often make

use of the following relations: If A = Σa G AaUΛ(in Theorem 1),

U*A = Σ l β β UσAM«, AUa = Σ,'Λ*AΛU.U*.

and for B € M (g) I,

These facts follow immediately from the property of the metric [[ ]].

An important question now arising is whether the crossed product
(M,G)is a factor or not for any group G of automorphisms. The answer for
this question is generally negative. Let M be a factor of type Hi on a Hu-
bert space H, then one can find easily a unitary operator in M such that
u2 = /. Denoting by G a group of automorphisms of M induced by u and
/, the crossed product (M, G) is not a factor. Indeed, put

Λ . 1

P =

it is immediate to see that Pis a projection =f= 0, /in H 0 12(G) and is expressed
in the form :

1 -I

10
/ 2 ~ V 19." \ I

P =

Recall that U = ί |fjis the representation of the automorphism induced by

u*( , ) u in Lemma 2, the direct computation shows that P is an element
of the center of (M, G). That is, (M, G) is not a factor.

This fact tells us that a group of inner automorphisms is, in general, not
appropriate for the purpose of the so-called factor construction as mentioned
in the introduction. In connection with this example, we shall find the con-
dition under which (M, G) is a factor, for an abelian group G.

LEMMA 6. If G is an abelian group of automorphisms of M by which
only the center is elementwise invariant, then (M, G) is a factor.

PROOF. Suppose that A is an element in the oenter of (M, G) and

\Aoc\«-G a family of α-components of A. Then for each Uσ, ΣΛ UσA*U» =
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Σa AaU«Uσ and s o Σ ^ S " 1 ^ * * = Σ α AaUaσ = Y^aAccUσa. Thus we obtain
by the uniqueness of a family {Aa]a*G that

Al~λ = Aa for each a € G.

Then the assumption shows that Aa = λα/μ for some scalars Xa where /¥ is

the identity on U = H (g) /2(G). On the other hand, for each JB € M ® I,

Σ^Aβ[7β = ΣXA»tfΛ o r Σ l β ^ - ί ^ - Σ l ^ - ^ " 1 ^ - - U s i nS a S a i n t h e

uniqueness of {Aa\^G9 we get

£A* = AaB«~ι for each α: € G.

Now, if A =+= 0 for some a =f= *\ £ = J505"1 for all £ € M ® I since AΛ = \J»
=4= 0, which contradicts to OLφe; hence Aa = 0 for every α: =j= ̂

3. The crossed product of the factor of type H1# In this section, we
concern only with Πj-factors. Indeed, in our theory, we take an interest in
the factors of this type alone. First we wish to see the existence of a group
of outer automorphisms mentioned in the introduction. Already, it was known
that there exist Il^factors, having an outer automorphism. In particular, an
approximately finite factor on a separable Hubert space has always such
automorphism, as shown in [2], i. e. an automorphism of the algebraic
extension K of a finite field induces an outer automorphism of it. In this
place, replacing an automorphism of K by a group of automorphisme of K,
we can obtain the desired group of automorphisms. Recently the author has
shown that an arbitrary countable group is isomorphic to a group of outer
automorphisms of the approximately finite factor on a separable Hubert
space [7]. That is to say, since this kind of factors are all isomorphic each
other [5], we have the following

THEOREM 2. The approximately finite factor on a separable Hilbert space
has a group of outer automorphisms isomorphic to an arbitrary countable
group.

Next, we shall investigate the crossed product of a Hi-factor by a group
of outer automorphisms. First we must ask whether the crossed product
obtained in this case is a factor or not.

THEOREM 3. Let M be a II^factor with invariant C = 1 and let G a
group of outer automorphisms of M. Then the commutant of M ® I in the
crossed product (M, G) coincides with the center of M ® I. That is, the cro-
ssed product (M, G) is a factor.

PROOF. Let A be an element of the commutant of M ® I in (M, G),
then we must show that it is scalar multiples of the identity / on H ®
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/2(G). By Theorem 1,

In this case, we obtain ^ ' XA.U. = Σ ' A.U.X = Σ AβX
m~1Ua for all X

' ' 0ύ ' 'CO ' 'Cύ

€ M (££) I, and hence, by the uniqueness of a family j Aa \ a(Gi

XAMcc = AaX
a~ιUΛ = AaUaX. (1)

for each a € G. Thus Ae is scalar multiples of the identity /. Now, suppose
that Aa is non-zero for some aφe, then AMa € (M (g) I) and Z7M2 €
(M(g)I) yield C/MίA.E/ € (M(g)I)', but it belongs to M ® I , so that At
Aa, = λα/ (λα : a non-zero positive number). On the other hand, AaA% = 1̂«
?7Λ[/αA« € ( M ® I)' and so -A*-Aί = λα/(for A*u4α and AaAt have the same
spectrum). Therefore, passing the polar decomposition, Aa = XψWΌ, where
Wcc is a partial isometry of M ® I, so that Xj = A%Aa = λα Wt Wa and
XJ = AaAt = X«WaWt Thus it follows that WtWa = WaW% - I. Hence
we obtain

Aα = \ΨW« (2)

for the unitary operator W* of M <g) I. Combinig (1) and (2), XT^α = W^X^1

for all X € M £g) I and so X"~~ι = WtXWa. This contradicts to the fact that
a =4= e are outer. Thus Aa = 0 for every α =}= ^ in G. This completes the
proof.

In succession, we shall determine the type of our crossed product being
deduced easily from Theorem 1.

THEOREM 4. Let M be a IIj-factor with the invariant C •= 1 and let G
a group of automorphisms of M, then the crossed product (M, G) is of type
Πj. In particular, if G is a group of outer automorphisms, it is a factor of
type Hi.

PROOF. By Theorem 1, assuming that (M, G) is of type I, we may show
that this assumption yields the contradiction. Since M is of type Π1 ? we can
choose a strictly monotone decreasing infinite directed set of projections
\ei\ia in M. Then (e t ®/Ui is also a strictly monotone decreasing infinite
directed set of projections in (M, G). But since (M, G) is considered to
be the ring of all bounded operators on a convenable finite dimensional
Hiloert space, the directed set le t®/} ί ci is impossible to be infinite, strictly
decreasing.

With respect to factors of type Πj, the difficult and significant problem
is to construct factors of the different algebraic type from the approximately
finite factor in this manner. We wish to discuss fully this problem elsewhere.
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4. The subfactor of the crossed product. A group of unitary opera-
tors {Ua\ on a Hikert space H is said to conserve a factor A on )4 if it
leaves A invariably (i. e. U* A UΛ Ξ̂ A) and all UΛ don't belong to A except
the unit. The crossed product (M, G) is, as we have seen, generated by the
subfactor M (££) I and a unitary group [Ua\a€G which conserves M 0 I , and
in which all but the unit are orthogonal to M ® I (in the sense of the
structure of the prehilbert space M defined by the trace). Now, we are going
to consider the converse of this fact.

THEOREM 5. Let A be a countably decomposable, finite W*-algebra with
the invariant C = 1 on )4 and let 0 a subfactor of A. If there exists
a unitary group 9 — {Ua\ in A conserving B, in which all but the unit
are orthogonal to β, and A is generated by β and 9, then A is spatially
isomorphic to the crossed product (B, G) where B is a factor with the in-
variant C = 1 and isomorphic to β and G is a group of automorphisms of
B isomorphic to 9.

PROOF. Let φ be a normalized, separating and generating trace vec-
tor of A. Consider the isometry Φ of the prehilbert space A (induced by
the trace < ( , ) φ, φ>) onto the dense set Aφ in M as follows

Φ : A € A -^ Aφ € )4.

Then, Pijsuaφia.τe mutually orthogonal and / = ^ α P\.βϋaφ^ ̂ n fact, for A, B

€ β, <AUaφ, BUβφ> - < ϋΐB*AU*φ, <p> = <(U%&AUβ)U*βUaφ9φ >

= 0 if a =ή= β. Further, passing the isometry Φ, the fact that A is generated

by \BUa\ yields easily I=Σa

piBuaa

Putting B = β [βφ], B is a factor with the invariant C — 1 and isomorphic
to β since φ is separating for β. Now, denote by G the group of automorph-
isms a of B induced by £/Λ,then \UΛ] is considered to be a unitary representa-
tion of G on )4 (recall that \Ua\ defines a group of automorphisms of β by

We shall show that R(tfB, UΛ ', oί € G) = A is spatially isomorphic to the
crossed product (B, G) of B by G. Since \\AU«φ\\2 = \\U%AUaφ\\2 = \\Aφ\\2

for A € β, we obtain partial isometries Wa on )4 which maps [βφ] on
\βUaφ]. Setting H = \βφ\ we denote by Sa the isometries of H onto the
subspaces Hα in H ® h(G), earring Aφ(A € β) on Aφ ® 6Λ. Then, it is im-
mediately verified that the isometry ΣaίG SΛ Wt of )4 onto H 0 /2(G) carries

ίB on B ® I and the inverse oί^Σ!ΛίGSΛWi is the mapping ΣaeG WaSt, where

Sa — So, on Hα, = 0 on H«.
Now, define unitary operators va on H by
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= UaAUtφ for all A € β.

Then, by Lemma 1, \vΛ) (<2 € G) is a unitary representation of G on H

(for Aφ = A[Bφ]<p(A[Bφ] € B) and UaAUtφ = (A[βφ^f~ιφ). We shall complete

the proof by showing that, for each σ £ G

where Vσ is a unitary representation of σ in Lemma 2 obtained from vσ. For

each vector Σa Aaφ ® £« (A* € β ) in H <g) Z2 (G), we have.

whence the proof is completed.

REMARK 3. In this theorem it may be noticed that the invariant of β

equals to the cardinal of G. This fact is easily verified.

CORLOLARY. Let Λ be a finite factor with the invariant C = 1 and let

β a sub factor of A such that &' Π A = (scalar multiples of the identity), 9

a unitary group in A leaving β invariably. If there exists a subgroup Qo of

9 whose elements are orthogonal to β except the unit, and A is generated

by β and So> then A is spatially isomorphic to the crossed product (B, G)

where B is a factor with the invariant C = 1 and isomorphic to β and G

is a group of outer automorphisms of B isomorphic to So

In fact, it is easy to see that 90 conserves the subfactor β9 and if Uα =f= /

in 9 0 defines an inner automorphisms of β9 there is a unitary operator

U € β such that UJJ € &'9 and hence U« = \U € β for a scalar λ. This

contradicts to the fact that Ua is orthogonal to β.
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