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1. Generalities. Let f(xι? }χk)=f(x) be a real valued integrable

function periodic with period 2ir in O S ^ S 2 π , i — 1, 2, k. Following

S. Bochner [1] and K.Chandrasekharan [2], we define the 'spherical means'

f{x, t) of a function f(x) at a point x — (xγ , xk\ for t > 0,
TV A /O\ r*

(l. l) /fe ί) = 2(τrγΐ* l/^1 + ^ * Xk + tf*)^

where σ is the sphere f? -f + ^ = 1 and dσ^ is its (k — 1) — dimentional

volume element, /(.r, ί) considered as a function of the single variable t

exists for almost all ί, and integrable in every finite ^-interval.

If p > 0, we define

( 1 2 ) «* '» =

which called the spherical mean of order p of the function f{x). At a point

#, we write fv(x, t) = /p(ί) for p > 0, where we assume that /0(Λ;, ί) = f(x, t).

The following properties of fv(l) are known [2].

as «-• oo.(1. 3) fV"1 I/U
•Ό

(1. 4) Γtk-ι\ftx, t)\dt = o(l), as «-> 0.
•Ό

(1. 5) fp(u) = O(l), for /> ^ 1, as « -> oo.

Further, if we define, for p ^ 0 [2],

(1. 6) φP(t) = t*p+k-*fp(t) B(p, k/2)/2pΓ(p),

then we have, for /> + q ^ 1,

(1. 7) <pp+9(*) = ^ ^ f' (t2 ~ sj-1 s ψv{s) ds.

Z 1 \q) Jo

It is clear for (1. 7) that if p >̂ 1 then ^ ( ί ) is absolutely continuous in

every finite interval excluding the origin.
Next, let us write the Fourier series of f(x) in the form,

1) The problem considered here was suggested by Professor G. Sunouchi.
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(1. 8) f(x)-~^ani. .«k eί(niXl+"+Vk)

where

Um..nk — ~ — I / J\X) V UU,\ UUsjc.
(27Γ) J_ 7 r J-it

Define, for δ ̂  0,

where
71 = 72? + + n\.

At a fixed point x, we may write *SB(Λ:) = S\R) S\R) is the Riesz mean
of order δ of the series (1. 8), when summed 'spherically'. If we write

(1.10) An= Σ, *«...., e i ( " Λ + - + " Λ )

with the convention that ΛW(Λ:) = 0 if n cannot be represented as the sum

of k squeres,

s\R)= Σ ( i - ^

We write S\R) = Ts(i?) i?"2δ so that S°(R) = S(R) = T\R) = 7XΛ). We have
the analogue of (1.7)

(1. 11) T+Q(R) = 2V<κp + q + V Γ(R2 - t2Tx t T(t)dt.
T(J> + ϊ)T(q) Jo

If Jμ(t) denote the Bessel function of order μ, it is well-known that

[10]

(1.12) £

(1.13)

(1.14)

and

(1. 15) Γt Vμ(at) (f - z>y dt = c a"2'"

for a > 0, μ — 1/2 ̂  2 p + 2 > 0, where c is a unspecipied numerical constant
(here and elesewhere in this paper).

Then we know that

(1. 16) S\R) = cR" Γt*-1 f(t)V8+k2 (tR) dt.



ON THE SUMMATION OF MULtlPLfi FOURIER SERIES 27

At last, if D(n) denotes the number of solutions in integers of

and a\n) denotes the number of solutions in integers of the equation
2 i I 2

n — n\ + + nί,

then

(1. 17) D(n) - Ό{n - 1) = d(n)

and

(1. 18) Din) = O(nkl2).
2. K.Chandrasekharan [4] have proved the following theorems.

THEOREM A. If p > 0, h is the greatest integer less than p, and a > 0,

then

(2. 1) fit) = oil") as t->0

implies

(2.2) S\R) = oil) as R^oo,

where

8=p+

f^λ-θ and β = ^ ^ V -
2 1 + h + a

THEOREM B. / / 0 < a < 1 and a < S then

(2. 3) S\R) = o(R-") as R -+ oo

implies

fpit) = oil) as t -> 0

for

where

S-h
θ =

1 + h 4- a

h being the greatest integer less than δ provided that

θ Λ- a

Above theorems are quite questional to us compared with the theorems

of Fourier series of one variable. Especially the estimation (3. 23) and (4. 10)

of Chandrasekharan's [4] seems to be incorrect.

Concerning these theorems we obtain the following theorems :
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T H E O R E M I . If ρ>o, a>0

(2. 1) fp(t) = o(t«) as t-*0

implies

(2. 2) S\R) = o{l) as R -> oo,

where

(2. 3) ft = +
1 + 2τ + a

THEOREM 2. // a > 0

(2.4) S'CR) = oCR-α) as i?-s-oo

implies

fv{t) = o(l) as t -> 0,

(2.5)
1 + 2 τ + tf 2

THEOREM 3. If a > 0, 1 > μ > 0, p > 0

(2. 6) /0(ί) = O(r2τ->0 as ί -* o

(2. 1) fp(t) = o(l") as

implies

(2. 2) 5δ(i?) = o(l) as R

(2.7) g = X^ + 2r) + τ T = AZZ1.
A4 + 2τ + α 2

THEOREM 4. /f Λ > 0, S > 0, a > 0

(2. 8) anι...nk = O\(n\ + + n%Y^\

and

(2. 3) &(R) = o(i?-α) as i? -» oo

for
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δ > 2 τ + α - / * > - 1 and τ = k " 1 .
2

For the case k = 1 S. Isumi [7], G. Sunouchi [9] and the present author
[8] has obtained the theorems of similar type.

3. Proof of theorem 1. Since δ > T we can appeal to the formula

(1. 16) S\R) = cRk Γ tk~ι fit) VM:i (tR)dt

(3. 1) - cR\ (

say, where η be chosen sufficiently small and kept fixed. Using the formula
(1. 3) and (1. 13) we get

j=θ\R'-C+ψ) Γ**- fit)r(8+*f)dt\
Jη >

; dt } , F(t) = JΓV» |/0(5)| ds,

(3. 2) = o (1) as 22 -»• oo, by integration by part.

(3. 3) I=CR"\ Γ*~P + f ί*'1 Λ(ί) I W ( ί «) Λ = /i + /„

say, where C is a sufficiently large constant and

<3 4 ) " • = s T Ϊ T T < 1

/, = C22* f ί*"1 fo(t)Vs+m (t R) dt

{ Jc

I

(3.5) = O|C-(δ+τ+1M = o ( l ) ,

by (1.3), (1. 13) and (3. 4),
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We may assume that p is not an integer. For the case that p is an

integer we can easily deduced the theorem by the familiar argument. Let

h be the greatest integer less than p. By (h + l)-times applications of in-

tegration by parts, and noting (1. 6), (1. 7) and (1. 12) the integral 7i,

becomes

/, = CRk Γ''V"1 fit) Va+fc/2 (tR) di

, CS R
k + iS φs + 1(ί) Vs+m+s(Rt)

o J o

/ CR-P

h

(3. 6) = Σ.K. + K,
say, where s = 0 if p < 1 and s — 0, 1, 2, h if p i> 1.

Now, by K. Chandrasekharan and O. Szasz [6],

Φv(t) = tiV+k-*fv(t) = c

is equivalent to

0 - 511-1 5 φls) ds =

Therefore, according to ψι{t)~ <P\(ί) — I sφQ(s)ds = o(l) and

•'o

^)p(ί) = o(tp+k~1+*), applying M. Riesz's convexity theorem we have

φ*(j) = 0(ί(-D'p+*-i+-):(p-i)) f 1 ^ 5 ^ A,

a n d

^ * + 1 ( ί ) = o(th+1c+«).

That is,
^,(ί) = o(ί("iX*+*-i+Ό+ -i)/ 1 < 5 S A,

and

Hence, we obtain
Λ - l h-l -

5=0 s = l "-

Λ - 1 Γ
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The exponent of R in the bracket is

(k - l)/2 + s-B-p \s(ρ + k + a - l)/(ρ - 1) - δ - (k + l)/2}

= τ + s - S - * ~T \s(p + 2τ + ct)/(p - 1) - (5 + r + 1))
o + T + 1

= r + s - S - Ps(P + 2r + a) + g _ τ

(p + 2τ + a + 1) (p - 1)

= - (2τ + a

And

Kh = [chR
k+™ φh+1(t) VS+*I

= O I Rk + 2h Z?-( δ + Λ + fc/2+1/2) fh + k + cύj.-(δ+h+k/2+l,2) 1C

L JO

= o [JR;( f c-1)/2 + 7 ι-δ-p<( f c-1)/2 + Λ +« j-δ>Ί

The exponent of R in the last bracket is equal to

A + τ - δ - p ( A + τ - S + tf) = A + τ - 8 - . s ~ τ — (h + T - δ + a)

δ + T + 1

= {(A + T - δ)(2τ + 1) + (r - S)a}/(8 + r + l)

= |A(2r + 1) - (δ - τ)( l + 2τ + α)}/(8 + T + 1)

= \h(2r + i)-p(i + 2τ)}/(δ + T + 1)

= (2r + 1)(A ~/>)/(δ + T + 1) < 0,

for δ - T = p(l -f 2τ)/(l + 2τ + α) and A < p.

Thus we have

h

(3. 7) Σ ^ s = o(D as R -> « .

Let us estimate ^ . For the sake of completeness, we reproduce the
same method to theorem 1 of K. Chandrasekharan [4]. Using (1. 7) we get

K = cRk+ιh+* ΪCR\ V8+m+h+1(Rt)dt f(t* - s*)h-psφp(s)ds

(3.8) = cRk+2h+2 I sφp(s)ψ(s, R)ds, say.
Jo

The interchange in the order being justified by the succeeding argument.

We may write, by (1? 15)?
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(3. 9) Ψ(s,R) = (Γ - Γ ) θ 2 - s')h-p t Vs+m+h+ι(Rt) dt

D2P-2Λ-2 ΎT CΏΛ I (A O2\Λ-P + JT (Ώ + \sJ+

w h e r e

— ΓΓr2??~2p — c 2 ^ - p Γ / TΛ ^ CRtλ/Jt CR~P <Γ f <̂  oo

2 ' - 5 2 ) Λ - P i ? ' 2 f ^ S V,+ ϊ / 1 +»+ i (5)

2" - ,» )»- ' i ? " 2 Γ F δ + f c / 2 + f t (
 f

L

(3. 10) = OKi?-2*1 - SI)»->',R-«.R-<I-P>(»+*/»+I/«+»>)> b y (1. 12) and (1. 14).

Using (3. 9) and (3. 10) in (3. 8) we obtain

K = cRk+°p

(3. 11) + o\jRk+tlι*('-iilt+t'Mlt*hi
 ΓB~\R-2> - s2f-ps\φv(s)\ds\.

The first term is

cRk^H + )sφp(s) Vs+*ι,+P(Rs)ds = L, + L,, say.

By (1. 6), (1. 13) and (2. 1), we get
Λl/R

(3. 12) L, = o{Rk+2P I s*p+k+«-ιds\ = o(R-«) = o(l) as i ? ^ o

and in addition, by (1. 14),

U = o \Rk+*p [c*~Ps*p+k+*-1(sR)-s-ik+w-pds\

= o

(3. 13) = o j^+r-a-p^r-β+ )^

for /> + r - δ + a =ρa/(l + 2τ + a) + a =a(ρ+l + 2τ+a)/(l +2τ+ά) < 0.

The exponent of R is p + T - h — ρ(p + r — δ + ά) = 0,

because /> + r — δ = ^α/(l + 2τ + α)

and p = />/(/> + 1 + 2τ + #),
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Since φp{ί) = o(t2P+k~2+") by hypothesis, the second term is

~\R-P _ s)
h-p(R-p + s)h'p s2P+k+a~Ί ds]

k + 2h + (p-l){δ+(k-\-l)l2+h}-g-p(K-p)-p( >p + k+c(/-l) Γ J]i~? (R-P — s)h~

Jo

(3 14) ;__ _ j ΏΛ + 2Λ+(p-l)[δ + (fc + l)/2+/t} 2J-p(2Λ + fc + α) 1

The exponent of i? is

A + 2A - δ - i (A - 1) - A - p{A + (* - l )/2 + Λ - 8}

= (A + T - δ) (1 - />) - a p < (/> + T - Λ) (1 - p) - a p

l + 2 τ + ^ β / > + l + 2 τ + Λ i?> + l + 2 τ + Λ

Therefore, we obtain

(3. 15) £Γ= o(l) as R-> 00.

Summing up (3. 1), (3. 2), (3. 3), (3. 5), (3. 6), (3. 7) and (3. 15) we have

S\R) = o(l) as R -> 00,

which is the required.

4. proof of theorem 2. We need the following lemma.
LEMMA. Let W(x) be a positive non-decreasing function of x, V(x)

any positive function of x, both defined for x > 0, A(t) a function of t
which is of bounded variation in every finite interval, and

Ak(t) = k [\t - uf'1 A(u) du.

Then

A(x + t) - A{x) = O(? V(x)\ o<t=O[{ W/V\1Kk+y)l γ > 0,

and

Ak(x) = olW(x)l k>0

where

0 < W(x )/W(x) < H < 00, for 0 < x - x = O( W/VfKk+y\

together imply

A{x) = o [^/(fc+Y) T^ v / ( f c + γ ) ] .

If further VkKk+y) WyKk+y) is non-decreasing, then
Ar{x) = 0[y(fc-τ)/(^v) W(v+r)/(fc+7)j? o s r < ^

(See, for example [5, p. 20].)
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We know that

(4. 1)

(see [3]). Let us put m = [f] p, where

(4. 2) p = 2{p + r)/(p - r - 1) > 0,

for / > - T - 1 = ( 1 + 2τ)(δ - 2τ - Λ)/(1 + 2r + α) > 0.

Then we have, since anmk... -* 0 and (1. 18),

Since p — τ — 1 > 0, the " — " in (4. 1) can be replaced by equality.

Let h be the greatest integer less than δ, for the case δ is an integer

we can deduced by the following argument, then by partial integration

(h + l)-times, we obtain

m

w=0

= Σ "ΨvW + Ψ*»+i(0 + Ψ(t), say.

For ί = O(JR) we get

= o(j+ dΣKx))= oitR*'2-1), by (2. 18).

Since 5*(i?) = o(n"α) by hypothesis, we obtain by Lemma

Sr(R) =

Thus we get

(4 4)



ON THE SUMMATION OF MULTIPLE FOURIER SERIES 35

= o \ R \, 0 S r S h.

And by hypothesis (2. 4), we obtain

(4. 5) Th+\R) = o(R2M~

Substituting (4. 4), we have

rϋ ^ r 0

y ^ .r-p-τ.- - ξ - [ [ ? ( 2 δ - 2 τ I - I - * ) l - ( 2 τ + - Ί ) δ - « ] / ( δ + l ) - ( l > » - τ + r ) ]

The exponent of ί in the last bracket is

2r - (r + /> + T) - ^±i ί— |2(δ - 2τ - Λ ) + (1 + 2τ
δ — 2τ — cc o + l

+ (l + 2r)S-a\ + -Γ^A (p + τ + r)
0 — 2τ — cί

= _ Kl + 2r + a) + 8(1 Λ-2τ)- a + p + T + r ( 1 + 2 r + α )

δ - 2 r - ^ S - 2τ - a

= \(p + T) (1 + 2τ + Λ ) - δ (1 + 2r + rt|/(δ - 2τ - a)

= j(δ + 1) (1 + 2τ) - δ (1 + 2τ) + Λ|/(δ - 2τ - a)

= (1 + 2τ + Λ)/(δ - 2τ - Λ) > 0

for /> + T = (δ + 1) (1 + 2τ)/(l + 2τ + Λ)

and /> - T - 1 = (δ - 2τ - Λ) (1 + 2τ)/(l + 2 τ + 4 Thus, we obtain

h

(4.7)
r = ϋ

From (4. 5), we have

The exponent of t is

p — r — 1

+ 2τ + Λ) - (A + 1)(1 + 2r)}/(p - r -

2τ) - (1 + 2r)(A

= (1 + 2τ)(δ ~ h)/(p-τ- 1) > 0.
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Hence, we have

(4.9) ψh+1(t) = o(l) as t-+0.

Now we consider the integral ψ(t). By the same reason as in theorem
1, we repreat the argument of [4].

ψ(t) = rt2ft+4 f R V,+r+i»URt) dR \ (R2 - sT* s TB(s) ds

(4. 10) = cί2Λ+4 / s T\s) ds I R V,+τ+κ+w(Rt) (R* - sΎ's dR
Jθ Js

The interchange of integration teing justified by the succeeding argu-

ment. (4. 10) may be written as

ct»+i [ s TXs) ds f R F ϊ + τ + Λ + 3 i 2 (Rt) (i?2 - s*T~δ dR
L Jo Js

- Γ ms Πs) ds [ R y,+ T + f t + 3 / 2 (Rt) (R> - s2)"-8 dR ]
JO J sm

 J

- cί2ft+4 Γ ^ ί T5 0) ds f R VP+^h+3j, (Rt) (R2-s2)ft-δ d/ϊ
^0 ^ s -"nι

(4. 11) = X,(l) + χ2(i), say. And

_ Λ VP+τ+3,,(Rt)(R2 - s*f-sdR S(m- s2f's max R VP+T+h

ax r 2 Γ F P + τ + f t + 152) f t-δ m a x r 2 Γ F P + τ + f t + 1 / 2

Thus we obtain, by T\R) = R28 S8(R) = o(R28~a\

% 2 0) = O I ^Λ+I-P-T-Λ m-(P+τ+n+i)i2 Γ/m

s i j δ ^ i ( m _ 52^-δ ^
( Jo

Λ

( 4 12) = o{th-p-τ+1m-(p+τ-h+«-1)l2\ = o(l),

by the same reasoning as in (4. 8).

And at last
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s Ί*(s) VP+T+8+1!2 (st) ds

f s2S+1-« ds\ + o\fs+2 Γ s^*s-« s-
(p+τ+δ+1) t-{p*T+8+1) ds

for S + l - Λ - p - τ

= α(δ - 2τ ~ α)/(l + 2r + a) > 0.

The exponent of t of the second term is

/ ^ + p )
p-τ - 1

+ 2r + a) - 2r(δ + 1) - (δ + 1) + τ(l + 2τ + a)]/(p - r - 1)

for >̂ + T = (δ + 1) (1 4- 2r)/(l + 2τ + a).

Therefore, we get

(4. 13) Xi(*) = o(l) as ί-^0.

On account of (4. 1), (4. 3), (4. 7), (4. 9), (4. 11), (4. 12) and (4. 13) we

have
Λ(ί) = o(l) as t -* 0.

Thus the proof is completed.

5. Proof of Theorem 3. The argument closely resembles that of

Theorem 1. And so, we omit the detailed calculation. Since

δ = p(2τ + μ)/(μ + 2τ + a) + T > T, w e have

(5. 1) S\R) = cRk f tk-ιflt) Vδ+m (t R) dt + o(l) = / + o(l),

say, as R -> °̂ .

(5. 2) / = cRk\ [ + f ί^1

say, where C is a sufficiently large constant and

(5. 3) p = (δ- τ)/(μ + δ + τ ) < 1.

/2 = ci?fc f' ί*"1 /0(ί) VMj2 (tR) dt
JCR-P

= o\Rk~0+kl2+m f t-μ-'-it+nlt dt \, by (1. 14) and (2. 6),
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= O I
_ Q

(5. 4) = O jC- (^+ δ + τ ) | = o(l), by (5. 3).

Now we consider Ix. Let h be the greatest integer less than p. By

{h + l)-times applications of integration by parts, we have

[
h -\CR-P rcir-P

Σ cs R
k+2S φ.+1(t) Vs+Iφ+S (tR) + cRk+'-»+i

 ΨhlM t Fδ+t,,+ft+1 (tR) dt
h

(5. 5) = Σ, κ* + K> s a y

Applying similar method to that of Theorem 1, by (2. 6) and (2. 1), we get

φs(f) = o ( ί - μ + - i + »+M+^+«)^), O ^ i S A ,

^ Λ + i ( ί ) = o ( ί 2 Λ + 2 τ + - + 1 ) .

Hence, we obtain

V ^ J ζ - __ y ^ ^ -gk + 2S 2 J - ( δ + fc/2+* + l/2) ^ - μ 4 - ( S + l ) (p + 2τ + α! + juι)/P HS ^ - ( δ + fc/2+ί hl/2)

0

•s = 0

The exponent of R in the bracket is

T + 5 - δ - /oiO + 1 ) O + 2r + α + μ)/p - (μ + g + r +

5 - δ ^ = ^ — {(5 + 1 ) O + 2τ + α: + μ)/p - 1} + δ - r
/̂  + δ + T

2τ + q + /^)-j> = A* + 2r + Q: < 0

5

μ + 2τ + a + μ, ^ + 2τ

for /o = (δ - τ)/(μ + δ + T) = />/(μ + 2τ + a + />).

Thus we have

(5. 6) 22 Ks = o(l) as
s-0

ΊCJT-P

= o \ K

The exponent of R is
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= T + h - δ - h ~ τ — (r + A - δ + a)

μ + δ + τ

= I (A + T - δ)O + 2τ) - (δ - r)a\/(μ + δ + T)

= \h(μ + 2r) - (δ - τ)(a + 2τ + μ)\/(μ + δ + r)

= \h(μ + 2r)-p(μ + 2τ)}/(μ + δ + T)

= (h-p)(μ + 2τ)/(μ + 8 + τ)< 0,

for S -T = p(μ + 2τ)/(μ + 2τ + a) and A < A

Hence we get

(5. 7) i<:ft = o(l) as R -*• °o.

Next we have, in the similar way as (3. 11),
- C R -

Jo

+ ^ i + 2 r + a + P - i ) ( a + τ + i + » ) Γ

Jo

We may write the first term as

+ I )s φP(s) V*+*,2+p(sR) ds = Lj + L2, say.
0 J1//? /

by (3. 12), as R -* oo. By (3. 13)
L2 = oj^^-δ-p(^-δ+α)j = o ( 1 ) a s ^ _^ ^

for (p + r - S)/(p + T - δ + a) == />/(/> + Λ + 2τ + /x) = p.

The second term is, by (3. 14),

for h + T - δ - ρ[h + T + a - δ) < (/> + T - δχi - p) - Λ/>

= /^ . tf + 2τ + /* - ^^ = 0
Λ + 2τ + )Lt ^ + α + 2τ + yu ^ , _ ] - α + 2τ + Afc

Hence we obtain

(5. 8) ^ = o(l) as R -> oo.

Summing up (5. 1), (5. 2), (5. 4), (5. 5), (5. 6), (5. 7) and (5. 8) we have

S8(R) = o(l) as R-+oo9

which is the required.

6. Proof of Theorem 4. By the same reasoning as in Theorem 3, we

omit the detailed calculation. We know that
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(a l) Λ0)~cΣ An vί,+ (,_2 ) / 2(Λί).

Let us put m — [£ t]~p, where

(6. 2) p = 2{ρ + τ)/(/> + μ - T - 1) > 0, because ^ + μ - τ - 1

= (1 + 2τ - μ) (δ + 1)/(1 + 2τ + tf-μ) + μ - 2 τ - l

= (1 + 2r - ^)(δ + /̂  - 2τ - Λ)/(1 + 2τ + a - μ) > 0,

and S is sufficiently small positive number.

Then, by hypothesis (2. 8), we get

- τ Γ

Jm + 1

(6.3) = O ( 6 ^ ) = o(l), $y(6. 2)

Since ^ + μ — T — 1 > 0, the " ~ " in (6. 1) can be replaced by equality.
If h is the greatest integer less than δ, then by partial integration

(h + 1) times, we get

[ Sh+\R)Rΐh+* Vp+T+M:i (Rt) dR

(6. 4) = Σ say.

For t = O(i?), by hypothesis, we have

\s\(R + t)^} - s{R^)\ s Σ 1̂ .1 = Σ Wn.... I

ί r β + ί

= O I J α:

Therefore we obtain,by Lemma,

Sr(R) =

that is,
δ r + ( δ " r ) ( τ + 1 / 2 - / χ / 2 ) + M 1 - « J / 2 ) - α / 2 } I
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= nΓj?δ+Ί{r{28~2τ+1+fJ'~a)+8( 1+2τ~fx')~a] *]

Moreover, it is easy to see that

1 \K) — O\K ).

Hence we get
h h

\f) = = / f O\t ΐϊl ~ ' α - μ α - j

h

? = 0

The exponent of t in the bracket is

δ — 2τ— CL-\-μ

(S + !)(/> + τ + r)
δ - 2τ - a + μ

= |(2τ + a + 1 - μ)(ρ + r)- 8(1 + 2τ- μ) + a}/(8-2τ-a + μ)

= {(δ + l ) ( l + 2τ-/>ι) —δ(l + 2τ— ^) + α } / ( δ - 2 τ - a + μ)

= (1 + 2τ - μ + α:)/^ 1 ^ δ - 2τ - α) > 0.,

for p-\-τ=(l-\-2τ—μ)(8 + 1)/(1 + 2τ + a — μ) and /o = 2(δ + l)/(δ —2τ-

Thus we have

(6. 5) Σ Ψr(t) — o(l) as t -> 0.

By the same reasoning as in (4. 8) we have,

The exponent of t is

p + μ — r — 1

(6.6) =(l + 2τ-/t)(8-A)/(/> + A»-τ- l )>0, for δ > h.

Thus we get

(6. 7) *ft+i(ί) = o(l) as ί-»0.
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By the similar calculation to that of Theorem 2, we obtain
1/*

+ / 15 Ί*(s) V * Λn(st)ds
J0 Jljt

i Γ"lsTs(s)ds f R V,,,τ+3,
JQ J v"ί»

8 + 1 - ρ~τ - PΛJL
/

(H l α
> + /* — T — 1

l ) - ( / > + τ)C/χ-2r-α

In addition, by (6. 6), we have

A + l-/>-τ-/o(A + l - Λ - / > - τ)/2 > 0.

Hence^ we have

(6. 3) V<*) = o(l) as ί -^ 0.

From (6. 1), (6. 3), (6. 4), (6. 5), (6. 7) and (6. 8) we obtain

fp(t) = o(l) as ί-*0,

which is the required.
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