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Let f{z) be an integrable and periodic function with period 27, and let

@ flo)~ %ao + Y (@ncos nx + busin nx).

n=1
F.T. Wang [4] proved the following theorem :
If 1 <a <2, and the series

> (a’ + bi)(log n)*~!

converges, then the Fourier series (1) is summable (R, exp (log )% 8)
almost everywhere, for any positve 3.
In this note we shall give some better results than the above theorem.

THEOREM 1. If 1 < a < oo, and the series

oo

> (as + b)) {log (log n)}

n=2
converges, then Fourier series (1) is summable (R, exp (log n)%, 8) almost
everywhere for any positive 8.

THEOREM 2. If 0 < a =1, and the series

2 (an + b2) (log n)*

converges, then the Fourier series (1) is summable (R, exp{exp (log n)*}, 8),
almost everywhere for any positive 8.

In Theorem 2, if we put a = 1, then the convergency of > (a% + &;)logn

n=2
implies the (R, e", 8) summability of (1) almost everywhere. Since (R,e",8)
summation is equivalent to convergence, this case is nothing but the theorem
of Kolmogoroff-Seliverstoff-Plessner. Thus our theorems link the theorem of
Kolmogoroff-Seliverstoff-Plessner and the theorem of Fejér-Lebesgue. Improve-
ment of our results may be difficult.

Our theorems are easy consequences of the following two propositions.

PROPOSITION 1. The Lebesgue constant of (R, A,,1) summation of the
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Fourier series (1) is log (n \./A,) where N,=A,—A._. =0, provided that
(2) A\, is non-decreasing and
B) NJ/A, is non-increasing.

PROPOSITION 2. Let the Lebesgue constant of the (R, A,, 1) summation
of the orthogonal development

@ A&~ copnla)
be w(n), then
(5) iaiw(n) < o

n=2
implies (R,\,, 1)-summability of the series (4) almost everywhere.

The Lebesgue constant of (R, A,, 8)-summability was given by K.Matsu-
moto [3]. But Proposition 1, the special case of his result, is very simple.
For the sake of completeness we give the proof of Proposition 1. The Cesaro
summability case of Prop. 2 was given by S.Kaczmarz [1]. The method of
proof of this proposition is the line of Plessner.

PROOF OF PROPOSITION 1. If we put

lec = A, A =0
k=0

then A, = o as n — oo, since A, is non-decreasing. The kernel of (R, A,,1)-
summability of Fourier series (1) is

1 1
K, (t) = TAsin(/2) kZ=o A sin (k + E)t

and the Lebesgue constant is

w(n)= f | Ku(e) dt = f L f T
0 0 AnlAn

= P'ﬂ: + Q'ﬂ’
say. The inner sum of P, is

n n k
S =D A\ sin<k+ %)t =ZM sin kt+ th{sin<k+ %)t—sin kt}
k=0

k=0 n=9

n ) n 1 . t
=D Aesinkt+ D N\ cos(Zk + = )t sin—
k=0 k=0 2 2

and

| Sa| =

n
4
> Agsin kt‘ + A, sin_
k=0 2
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n—1

.t . .
=2 A sin - jcos (& + l)tll + A, sinnt + A, sm—;
k=0

n-1
.t . .
Ssin oD Ay + A,sinnt + A,,sm—t—
23 2
Since \,/A, is non-increasing,

Ay SN A2
ZAk— mY N A=

k=0 xn k=0 A X"

Thus we have

Mibn 1 [ty AnlAn 1
SR A PP R R W F

< 1 A, _,___f‘""‘" sin nt A
A, N A, A sin (¢/2)
A,
~los(7 )
og A

n

On the other hand, by the partial summation of Abel, we get

Z)\k sm(k-l- ) O< Ay >,

k=0 z

since A, is non-decreasing.

Q.= /A:An 2A 511n(t/2){ Z)»ksm(k + ‘;—> }dt

—./ . A 81n(t/2) ( >d”_0<z’; L:A” ‘ft oQ).

Thus we get

w(n)-—log( ?’n >

PROOF OF PROPOSITION 2. Let us put

A2) ~ X anpa(e)

n=1

and its z-th (R, A,, 1) mean is
b
ou(z) = [ 0) K, t)dt

and put

a'lc(x) g p(x)

1§k§n 5/ w(k) N/ 'w(P)

alz) =

sin nt AnlAn
‘dt + f dt
0

323
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where p=p(z). Then

v.(z)= f ) K"(x"fidt

and put

b
I, = f vazx)dx

— f’ f f(tz )K,,(x,t) dzdt

= ’ p(x, t)

Applying Holder’s inequality we have

g [lr@raf || 5D dafa

2 i bl_gm(xl’t) _Igﬁz(xz’t)
<A f f el et i dudt

where p, = p(x,) and p, = p(xg) Since
Ko 0= (1- 42 ) o el 0)

n=(

we have

13
f Km(xu t)Km(xm t)dt

=3 (1-48)(1- 2 ) puedmnten

where r = r(z,, x,) = min.(p(x,), p(x.)). Applying the partial summation suc-
cessively, the above sum equals to

r

1 1 2A,
2= (a2 R P G

n=1
r

ZA,, Kp A Kn(x1:x2)

n=1

+ { — (;le, + Alm >+ AplApg }A K (x4, x3).

Thus we have

b ab » 2)‘
E<A [ )
',; -[1, w(Pl)’\/‘ZU(pz) g 'A'PlAp2 AnKn(xl,.Tg)
1 24,
{ <AP1 ) A-plA. }ArKr(xl: xz):ldxldx2
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=A’[fm +Af M2=AJ1+AJ2

say, where A is a constant and
M, = {(z,, z2) | p(x) = p(x2)} and M= {(zy, z2) | p(x1) < pzx2)}-
»n 2

1= || s i

ada w(p Lo A% "

+{2 4+ 2n } ,,,]K,,,(x,,xz)l]dxx dz,

Ny | Kn(znzs) |

=Ll
S T +w<p,>]dxl
= 2(b—a).

The other term J, is identical. Thus we get

f 742) | 10 < VBE= DA

1=n J w(n)

)]dxl

From this,
lim =2 "(x)

n>en/ 10 () (n)

exist and are finite, almost everywhere. Since w(z) is Lebesgue constant and
> asw(n) < oo, then s,(zx) converge almost everywhere, for

R wln) <k+1,
by Rademacher’s argument. The convergence of o,(x) is routine argument
(see, Kaczmarz-Steinhaus [2], p.193).

PROOF OF THEOREM 1. If we put
A, = exp{(logn)*}, (1 < a < o),

then A, ~ 7z '(logn)*~! exp {(log n)*}
and the hypotheses of Propositions 1 and 2 are satisfied. So the Lebesgue con-
stant of (R, exp{(log #)*}, 1) summation is

nen"'(log n)* 'exp {(log n)*}
exp {(log )"}
~ log (log 7).
Thus the Fourier series is (R, exp {(log #)*}, 1) summable almost every-
where provided that
> (an + b}) log (log n)

n=2

= log(log n)*™*

w(n) =log
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converges. We can conclude that (R, expilogn)*}, 1) summability implies
(R, exp{(log #)*}, 8) summability almost everywhere if flx) € L — m, =),
following the argument of Wang [4]. Thus we get Theorem 1.
PROOF OF THEOREM 2. This is analogous to the above proof. Since
A, = exp {exp (log n)"},

we have

A, = expiexp (log 7)*} *exp (log #)*(log #)*'en™*
and

w(n) ~ log{exp (log 7)*(log 7)*~"}

~ (log n)*.

The remaining part of proof is immediate.
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