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Let f{x) be an integrable and periodic function with period 2τr, and let
oo

(1) f(x) a0 4- Σ(a« c o s n x + °^ sin nx).
2 n-i

F.T. Wang [4] proved the following theorem:
If 1 < a < 2, and the series

converges, then the Fourier series (1) is summable (i?, exp (log n)a, δ)
almost everywhere, for any positve δ.

In this note we shall give some better results than the above theorem.

THEOREM 1. If 1 < a < oo, and the series

converges, then Fourier series (1) is summable (R, exp (log n)a, S) almost
everywhere for any positive δ.

THEOREM 2. If 0 < a <: 1, and the series

converges, then the Fourier series (1) is summable (R, exp {exp (log nf \, δ),
almost everywhere for any positive δ.

In Theorem 2, if we put a = 1, then the convergency of ^2(a2

n +

implies the (R, en, δ) summability of (1) almost everywhere. Since (R, en, δ)
summation is equivalent to convergence, this case is nothing but the theorem
of Kolmogoroff-Seliverstoff-Plessner. Thus our theorems link the theorem of
Kolmogoroff-Seliverstoff-Plessner and the theorem of Fejer-Lebesgue. Improve-
ment of our results may be difficult.

Our theorems are easy consequences of the following two propositions.

PROPOSITION 1. The Lebesgue constant of (R, An, 1) summation of the
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Fourier series (1) is log (n \n/An) where λ Λ =Λ n — Λ,,_i ^ 0 , provided that

(2) λn z*5 non-decreasing and

(3) λn/Λn Z5 non-increasing.

PROPOSITION 2. Lei *λe Lebesgue constant of the (R, An9 1) summation

of the orthogonal development

(4) Ax)~jlcnφn{x)
n = l

be w(n), then
oo

(5) Σalzv(n) < °°

implies (R,An> l)-summability of the series (4) almost everywhere.

The Lebesgue constant of (R, An, δ)-summability was given by K.Matsu-

moto [3]. But Proposition 1, the special case of his result, is very simple.

For the sake of completeness we give the proof of Proposition 1. The Cesaro

summability case of Prop. 2 was given by S. Kaczmarz [1]. The method of

proof of this proposition is the line of Plessner.

PROOF OF PROPOSITION 1. If we put

fc=o

then An -> oo as «->oo } since λn is non-decreasing. The kernel of (R, An91)-

summability of Fourier series (1) is

and the Lebesgue constant is

te<»)= Γ{Kn(t)\dt= Γn'A"+ Γ
Jθ Jo J\nIAn

= P 4- O

say. The inner sum of Pn is

_ " . / i \ _ Λ . v - l / 1 Λ • I
&n ~~~ / "*k S i n 1 K "Γ " IΓ = = x A ;̂ S1Π AJί ~τ~ / ^ Λ»fc j S1Π1 /2 ~Γ _ it SlΠ fit j

jfc-o

; sin fct-r £^\k cosi
A: = 0 fc = 0

and

+ Λn sin Y
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i An sin nt + An sin—

sin

Since \n/An is non-increasing,

Thus we have

"

-ί T sm

f}

Jo

*nl^n

dt

< 1 Ai λ 1 Γλ»/A'

~~ An Xn An An J o

sin nt
sin (ί/2)

On the other hand, by the partial summation of Abel, we get

since \n is non-decreasing.

Thus we get

PROOF OF PROPOSITION 2. Let us put

and its w-th (i?, An, 1) mean is

•»(*) = ί V ω

and put
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where p=p(x). Then

and put
rb

In = I Vn{x)d
Ja

Applying Holder's inequality we have

where px = p(xi) and p2 = p(x2). Since

we have

J Kpl(xlyt)KP2(x2,t)dt

where r = r(^ j ,^ 2 ) = min.C/K^!),/KΛ?2)). Applying the partial summation suc-

cessively, the above sum equals to

nKn(x!, x2)

Thus we have

n~~ h h ^W{pλ)^
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=AJι

say, where A is a constant and

Λf, = {(xi,x*)\p(.Xι)^P(.Xt)) and Mi=\(xι,x2)\ρ(xι)

t dx,

The other term J x is identical. Thus we get

f sup <, s/S(b-a)\\f\\.

From this,

lim-^1'

exist and are finite, almost everywhere. Since w(n) is Lebesgue constant and

Σ Λnw(n) < oo, then snk(x) converge almost everywhere, for

k ^ w(nk) <k + l,

by Rademacher's argument. The convergence of <rn(χ) is routine argument
(see, Kaczmarz-Steinhaus [2], p.193).

PROOF OF THEOREM I . If we put

Λn = expί(logw)Λ}, (1 < a < oo),

then \n~n-Xlogn)*-1 exp \(logn)%}
and the hypotheses of Propositions 1 and 2 are satisfied. So the Lebesgue con-
stant of (i?, exp I (log ^)Λ}, 1) summation is

w{n) . t o g g g Ό o g ^ W I O o g ^ l = l o g ( l o g n r i
K l ) 0 5 }

— log (log n).
Thus the Fourier series is (i?, exp |(log ft)*}, 1) summable almost every-

where provided that
oo

Σial + bDϊogilogn)
n=2
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converges. We can conclude that (R, exp|log nf}9 1) summability implies
(R> exp {(log rίf \, δ) summability almost everywhere if f(x) € L\ — 7r, 7r),
following the argument of Wang [4]. Thus we get Theorem 1.

PROOF OF THEOREM 2. This is analogous to the above proof. Since

Λn = exp (exp (log nf},

we have

λn = expjexp (log ^)α} exp (log ft)*(log nY~ι n~λ

and

w(n) ~ log I exp (log #)*(log nf~Ύ}

~ (log n)a.

The remaining part of proof is immediate.
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