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In pseudo-Kihlerian manifolds, many interesting results concerning con-
travariant or covariant pseudo-analytic vectors are known.” Even though
there were many papers about pseudo-Kihlerian manifolds, but were few
about almost-Kihlerian ones. Recently, M. Apte generalized Bochner’s theorem
to compact almost-Kéhlerian manifolds. His work seems to be very suggestive
for me. In the present paper we shall generalize several theorems in pseudo-
Kihlerian manifolds to almost-Kéhlerian ones. The main results are integral
formulas on vector fields in compact almost-Kihlerian manifolds.

In §1 and §2 we shall prepare identities and lemmas and in §3 and §4 define
almost-analytic vectors which are generalizations of pseudo-analytic vectors.
As applications of integral formulas in §5, we shall obtain several theorems in
§6. In §7, we shall give a decomposition theorem of the Lie algebra of contra-
variant almost-analytic vectors in a compact almost-Kéihler-Einstein manifold.
The canonical connection will be introduced in §8 and in the last section, to
contravariant almost-analytic vectors, we shall generalize Apte’s theorem.

1. Identities. In an z-dimensional real differentiable manifold M with
local coordiantes {z'}, a tensor field @;* such that

(1.1) ol = — &'
is called an almost-complex structure. If an almost-complex structure @,
and a positive definite Riemannian metric tensor ¢;; on M satisfy the relation

(1. 2) grs¢ir¢is = 91

then the pair (@, ¢;;) is called an almost-Hermitian structure. Then, from
(1.1) and (1.2), we get

(1.3) Pijs = — Pijs
where @;; =9, 9,.. To an almost-Hermitian structure (@;’, 9;,), an exterior dif-

1) This paper was prepared in a term when the present author was ordered to study at
Tohoku University. I wish to express my sincere thanks to Prof. S. Sasaki for his en-
couragements during the term.

2) For example, cf. Yano, K.[7], Lichnerowicz, A. {3], Sasaki, S.and K. Yano [5], Yano, K.
and I. Mogi [9].
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ferential form @ = @;,dz’ N\ dx' can be assoicated. An almost-Hermitian -
structure is called an almost-Kihlerian structure, if the associated differential
form @ is closed, and then the manifold M is called an almost-Kihlerian
manifold.

Throughout this paper, by M we shall always mean an #-dimensional
differentiable manifold with a fixed almost-Kihlerian structure (@,’, ¢;,). In
this section, we shall deduce identities which are useful in the later sections.

In our M, the form ¢ being closed, so we have

(1.4) Vi@in + Vipue + Vipr; = 0,
where vy; denotes the operator of covariant derivative with respect to the

Riemannian connection.
On the other hand, since the identity

3 .
VT¢HL = - %ZF VirPoaP p¢hq

is well known?, in our case, we have
(1.5) V'@ = 0.
The Nijenhuis’ tensor N;;” of an almost-complex structure @;* is defined by
N* = 9/(vip — vip) — @ (Vi@ — vipl),
so on taking account of (1.1), (1.3) and (1.4), we find
(1.6) Ni* =29/ (v — vip")
Let R,;" be Riemannian curvature tensor, that is,
Rk}'ih = 8k{7t} - aj{k’:} + (&} {5} — {.'iLr} {%e}
where 9, = 9/0x", and put
and Rj; = R/, Risin = Risi" 9
1.7) R = %"?M Ryerspi
We notice that, in pseudo-Kihlerian manifold, Ri; = R;; holds good.
The Ricci’s identities are given by the following formulas for any vector
field v, and '
ViVi¥s — ViVi¥s = — Ry v,
ViViv' — Vivio' = Ry;'v".
‘Applying to @, the Ricci’s identity, we have
ViVi@i" — ViVi@i" = R — Ry @,

3) Indices z,7,k, - DG, 7S, run over 1, , n. Notations are followed to Yano, K.
[7] except some trivial changes.

4) Schouten, J.A. and K. Yano [6].

5) For example Yano, K. [7], p. 229
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Transvecting the last equation with ¢*' and using (1.5), we find
V'@, = Ri"@" + R/ @,
where we put @' = @,’9"". On the other hand, @' being skew symmetric
with respect to i and 7, so we have
1

r 1
RHT”¢” = 2 ¢i (Rtjrh - Rr]ih) = 7¢”Rriih'

Hence, it follows that

1

VrVJ‘?’rh = —2—¢ququh + Rjr¢rh,

and from which we obtain

1
(1.8) V'ViPrn = —z—q’mem + R/ @

Operating v* = ¢y, to (1.4), we have
VVi@i = V'V — VVi@i

Hence on taking account of (1.8) we find
(1.9) V'V @i = @ Rpas + Rjr¢ri - Rtr¢rj

The equations (1.8) and (1.9) are important identities in the later sec-
tions.

By a vector field v we always mean a contravariant vector field ', a
covariant vector field v; = ¢g,,v" and a differential form v = v,dz'. So the
word “a vector is closed” means that the corresponding form v is closed.

Let v be any vector field, then from (1.3) and Ricci’s identity we get

1 r
(1.10) PV = — 3 P" Rypqirv
And from (1.8) and (1.10) we obtain
(1. 11) ¢zi'UTVer¢it = - ,vr :L + 'Urer,
(1.12) P9 V;vvi = — v'RY,

where R}, is given by (1.7).
From (1.3) and (1.4) we have
2l (V' )p! = @/V'e" = — 9,/(V'e™ + V@)
Interchanging » and j and the adding the equation thus obtained to the last
equation, we get
(Ve" + Vollp' = — @9, (V'e" + V'o")p,
Consequently, for any vector field v the following equation holds good.
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St

(1.13) vivdv'e" + Vellp! = - @/p, (Vo )v'e" + Ve ).
2. Lemmas. For convenience sake, we shall expose several lemmas

which are well known. By V, we shall always mean an n-dimensional Rie-
mannian manifold.

LEMMA 2.1.%° In a compact, orientable V,, the following integral for-
mulas are valid for any vector field v.

@1 [ 1w = R + Stoldo =,

(2- 2) _/; [(VTVT'Ui + Rrivr)vi + T(‘Z))]do' =0,
where do means the volume element of the V,, and S(v) and T(v) are defined
by
1 s T r_ s T s
(2 3) S('v) = ?(V v —Vv ) (str - Vr'vs) + (V 'Ur) (V vs)’

(2. 4) T<v>=-§<v3v’ + 90) (Vovs + Vo0s) — (V'0,) (V' 0)

respectively.

In a V,, a vector field v is called a Killing vector (or an infinitesimal
isometry) if it satisfies

g) 9ii = Vv + viv; = 0,
where § denotes the operator of Lie differentiation with respect to v'. For
v
Killing vectors, the following theorem is well known.

LEMMA 2.2.” In a compact, orientable V,, a necessary and sufficient
condition for v to be a Killing vector is that

vVVvy + Rv' =0, Vv =0.

In a V,, a vector field v is called a conformal Killing vector (or an in-
finitesimal conformal transformation) if it satisfies '

égn = y,0; + Viv; = 299,

where ¢ is a scalar function. Then as is well known, it holds the following

LEMMA 2.3.® In a compact, orientable V,, a necessary and sufficient
condition in order that v be a conformal Killing vector is that

6) For example, Yano, K. [7], p.278.
7) For example, Yano,K. [7], p.221.
8) Yano,K. [7], p.278.
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n—2

(2' 5) VTVTvi + Rrivr + ViVTvT = O

In a V,, a vector field v is called a projective Killing vector® if it
satisfies

(2.6) ?I:J{?t} = v;viv" + Ryv" = 8" + 8",

v, being a certain vector field. Transvecting (2.6) with ¢!, we get
2.7 v'v, 0" + R M = 29",

By contraction with respect to £ and 7 in (2.6), it follows that
(2.8) Vv = (n + 1),

From (2.7) and (2.8), we have

(2.9) V'V + Ry = . 1vtvrv’

for a projective Killing vector v.
Since an almost-Kihlerian manifold M is an orientable Riemannian
manifold, the above lemmas and arguments are valid for our M.

For a vector field v we define v by
(2.10) v, = ‘v, 77 = 9"v, = — @,'v,
then we have

Vr;i = (V7¢it)vt + ¢itVT'vt9
and

Vv = Vv + 2 o)) v + 9V v
Substituting (1.9) in the right hand side of the last equation, we get

VTVr"l‘;z = (¢Mquu + Rir¢n - R/‘Pn)vt

+ 2(Ve)WVo + @/V Vv,
from which we find
(2.11) (VTV'I"?); - Rn'UT)';E = (V'v,v; + R0 )0
- — 2R} + 2(y'v) (Vr?’u)?pi'vp-
On the other hand, by virtue of (1.2) and (1.4), we find
2V Pu = ViPu T ViPri — ViPri»
so (2,11) can be written as
(2.12) .(VTVr“?;i — R,o' 0 = (VTVT‘Ut + R, v )0’
+ VUV, @i + Vipr)ps'v”

9) Yano, K. [7], p.133.
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— {2R%Y + Vrvt(ui‘prt)‘i’pi}'vp-
Hence, if the equation
(2.13) VT‘Ut(VﬂPn + Vi@)e,'v” =0
holds, by virtue of (2.12) and lemma 2.1, we get the following

LEMMA 2.4. In a compact, almost-Kahlerian manifold M, if the equa-
tion (2.13) holds, the integral formula

L[5+ Raw' — (2R3 + v (@i 1" + S@)de =0
is valid, where S(;) is given by
@4 S@)= ('Y ~ v (w3~ v.5) + (TG,

~

Uy = ¢it‘0r
3. Contravariant almost-analytic vectors. In this section, we shall
generalize a notion of contravariant pseudo-analytic vectors'® in pseudo-
Kihlerian manifold to an almost-Kihlerian manifold M.
In our manifold M, we shall say that a vector field v is contravariant
almost-analytic (or analytic) if it satisfies

(3.1) EOIJ ' =v'v,9 — @ v,v' + @'y = 0.
In the next section, we shall define a covariant almost-analytic vector,
but by analytic vectors we shall always mean contravariant almost-analytic

vectors.
Let v be an analytic vector, then from (3.1), we have
(38.2) VVPs = @5V + 9V
from which, by virtue of (1.4), we find
(3.3) Vi0; — Viv; = — @i (V,ve + Vivs).

These three equations are equivalent to each other.
From (3.3) we obtain

THEOREM 3.1. In an almost-Kahlerian manifold, a necessary and suffi-
cient condition in order that an analytic vector v be a Killing vector is that
the vector v is closed, where v, = @'v,.

From (3. 2), for an analytic vector v it holds that

(VO WVrps +0' V'V — @, V'V, 0 — (Vo )vivr — @/ vV, = 0.
Transvecting the last equation with @,' we get

10) Yano, K. [7], p. 236.
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V'V + @0V — @,/ 9 Vv + VU (Vien + Vr@s)@s'v” = 0.
On taking account of (1.11) and (1.12), the above equation can be written
in the following form,

(3.4) V'V + Ry + VU (Ve + Veps)est = 0.
On the other hand, from (3. 2) we have
(3.5) Vv — 9'e, Vs = — v(Vipide;
Hence for an analytic vector v we obtain, from (1.13) and (3. 5),
(3.6) viodvie" + vel)p =0,

because the right hand side of (3.5) is skew symmetric with respect to j and
r. Consequently we find

(3.7 V'V + Ry =0 v
for any analytic vector field v. The equation (3.7) can be obtained in the
following way, also. For an analytic vector, we have § @, = 0. Hence from

(1.6) it holds that

%* ;EJ N, = ¢jl<uf) V1¢ih - 1;flVi¢zh)-
On the other hand, the following formula holds good,

?Vz¢tn =W % @" + . ?’{m - " %”i}
between Lie differentiation and covariant derivative.'® Hence, it follows that
%%Njih = ¢jl¢ir %m} + %1{’11}
Transvecting the last equation with ¢’* and taking account of skew symmetry
of N,*, we get
gji i;){;"t} = O}

from which we get again the equation (3.7).

4. Covariant almost-analytic vectors. In a pseudo-Kihlerian manifold,

a vector field v is called a covariant pseudo-analytic vector'® if it satisfies

®/'Vviv, — @' v,v; = 0.
If the manifold is compact, any covariant pseudo-analytic vector coincides
with a harmonic vector.!” And the following theorem is well known.'”

12) Yano,K. [7], p.16.

13) Yano, K. [7], p.235.

14) Yano, K. [7], p. 236.

15) Sasaki, S. and K. Yano [5].
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In a compact pseudo-Kihlertan manifold, the inner product of a contrava-
riant pseudo-analytic vector and a covariant pseudo-analytic vector is cons-
tant over the manifold.

In this section we shall define a covariant almost-analytic vector in
almost-Kihlerian manifolds so that an analogous theorem holds good if the
manifold is compact.

In the first place, we shall prove the following Lemma which is a gene-

ralization of Liouvilles theorem in the theory of functions of a complex
variable.

LEMMA 4.1. In a compact almost-Kihlerian manifold M, if scalar
functions f and g satisfy the equation
(4‘- 1) sz = ¢iTV79:
then the functions are both constant over the M.

PROOF. From (4.1) we have v'v,f = ¢"'v,v,9 = 0, from which it follows
that

v(f) = v'vi () = 2 (VV.S)
Hence, by Green’s theorem we get y,f = 0. q.e. d.
Let u be a vector field and v be an analytic vector and put g =u,v". Thea
4.2) ®V.g = ¢ET(V‘ruz)‘Ul + @, (v, 0w,
Since v is an analytic vector, by virtue of (2.1), we have
PV =v'v.0! + @'V
Substituting this into, (4. 2), we get

4.3) ?/'v.9 = @, uv v + (wv,e + @' vu)v.
Next we put f = @,'uv’, then it follows that
(4.4) vif = @, uviv + vileu)v'.

Comparing (4.3) with (4.4), if the vector « satisfies the equation

vile,w) = wv.9' + ¢./'vu,,

i.e.
(4’ 5) Vi(¢jrur) = urVJ‘¢iT + ¢trVruj9
we find that the functions f and ¢ defined above satisfy (4.1).
We call u satisfying (4.5) a covariant almost-analytic vector (or a covariant
analytic vector).

This vector is a generalization of a covariant pseudo-analytic vector in a
pseudo-Kihlerian manifold.

By the above definition and Lemma 4.1 we have the following
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THEOREM 4. 2. In a compact, almost-Kihlerian manifold, the inner
product of an analytic vector and a covariant analytic vector is constant
over M.

We shall deform the equation (4.5) which gives the definition of a
covariant analytic vector. From (4.5), we have
ur(_ ViPir + Vz’(pjr) = ¢irV7uJ‘ - ¢irV1ur-
On taking account of (1.4) we find

(4.6) U'V,Pi = @iVt — i Vit
As the left hand side is skew symmetric with respect to j and i, we get
(4- 7) uTVT¢ii = - ¢J’TV7‘ui + ¢71:Vjur-

We call our attention to the similarity of (3.2) and (4.7).
On the otherhand, from (4.5) we have

vi@iu,) = vip u,) — @' Viu, + @ v.u;,
from which we find

(4.8) vitt; — Vi = 9 (Vott; — Vi)
The equations (4.5), (4.6), (4.7) and (4.8) are equivalent to each other.
Transvecting (4.5) with ¢, the equation

4.9) viu, =0

holds good for a covariant analytic vector ». From (4.8) and (4.9), we have
THEOREM 4.3. In an almost-Kihlerian manifold M, if a covariant

analytic vector u is closed, then u is harmonic.

In general, v is not necessarily a harmonic resp. analytic vector even
though v is a harmonic resp. analytic vector, Lut akout covariant analytic
vectors we have the following

THEOREM 4. 4. In an almost-Kihlerian manifold M, if a vector field
« is a covariant analytic vector, then w is covariant analytic.
PROOF. We put v, = #; = @;'u,, then v, = — u,. From (4.8) we have
Viv; — ViU = — ?iT(Vr';; - Vj;;r)-
Transvecting the last equation with ¢,’, we find
P (Viv; — Vivy) = Vz;j -~ V0. q.e.d
From (4.8), we have evidently the following
THEOREM 4.5. In an almost-Kihlerian manifold M, if wvector fields

u and u are both closed, then u is a covariant analytic vector.
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Transvecting (4.7) with @, it follows that
uT(VT¢ji)¢lj = - (¢1j¢jT + SljajT)VTui
The left hand side is skew symmetric with respect to 7 and Z, so find

THEOREM 4.6. In an almost-Kahlerian manifold M, if a covariant
analytic vector is closed, then we have
uTV7¢J‘i =0.
In §6, we shall prove that a covariant analytic vector is always closed

if the manifold M is compact.
If a vector field v is at the same time analytic and covariant analytic,
then we have v;v; = 0, by virtue of (3.2) and (4.7). Hence

THEOREM 4.7.'9 In an almost-Kahlerian manifold M, if an analytic
vector is at the same time covariant analytic, then it is a parallel vector

fleld.

Let z be a covariant analytic vector, then from (4.7) we have

V'V + @ 'u Ve + 9/ 9"V + VU (Ve + Vie)e = 0.
On taking account of (1.11) and (1. 12), we find
(4.10) V'Vau, + Ryu” — Ry + v (Vi@ + Vr¢ji)¢’zi = 0.

5. Integral formulas. In the present section, we shall prove some
formulas on vector fields in a compact almost-Kihlerian manifold.

Consider a vector field v in an almost-Kéihlerian manifold M and define
tensors a(v);, and &(v);, by
(5- 1) a('v)jk = (:vf) ¢il)¢u;

= v (V.2 )pu — @i (V0 )pu — Vivs

and

(5.2) b))y = (v'v, 9 + @,'viv" + @/ v, v )pu
= vT(VT¢Jl)¢lk + ¢5T(V1‘vl)¢lk — ViU

respectively.

We notice that a(v);;, = 0 resp. b(v);, = 0 is equivalent to the fact that
the vector field v is analytic resp. covariant analytic.
In the following we denote a;, resp. b;, instead of a(v);. resp. &(v);; for
simplicity. We shall put
a*(v) = a;a’, b*(v) = by b’*
and compute these. By definition (4.1) we have
a*(v) = [V (V.2 Ypu — @' (v, 0 )pu — Vv X

16) For pseudo-K&hlerian case, see Yano, K. [7], p.238.
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(v, )@y — " (Vo))" — v'o*],
whose right hand member is the sum of the following nine terms A,,

Ay oo, , Cs.

A, = V(v,@ )" (Vi@ ), = — 20" (V,9” )V i@y,
A, = — vV (v, 9 )pup”(v,v")p,)* = —v' (V,0,)9" v’
A, = — 'UT(Vr¢jl)¢szj'Uk = A,,

&
I

— @ (v,0")puv'(v,@"")p,* = A,
B, = ¢/ (v.vYoup”(v,o")p," = (V0" )v,vs,
B; = 9,/ (v,v")puv't* = — 9" 9" (v,v)v0
C, = — V’'(vie")p, Ve = A,
C, = ¢j8(Vs'Up)¢kaka = B,
Cs = (Vv)v'v* = B,.
Hence a*(v) = A, + 44, + 2B, + 2B;, so we obtain the following formula :

1 s T j 7 j8
(5- 3) 7“2('0) = —9vv (Vs¢]p)VJ'¢ﬂr — 2v (Vrg’ip)‘p] stp

- ¢Tj¢lk(Vr'Uz)Vj'vk + (Vj'Uk)Vj'Uk-
For b6%(v), on taking account of the similarity of (5.1) and (5.2), we

have
bz(‘v) = Al + 232 - 233,

from which we see that
1 o
(5.4) o b(v) = — vV (V@ )Vipor
+ "o (v, v)vivr + (Viv)vio'.

In the next place we shall compute y’aj, which is the sum of the fol-
lowing six terms ay, ......... » Qe-

a, = (V' V.9 Yo, = _(Vj'vr)¢ler¢zk,
a, = v (V'Vi@)pu = V'R — v' Ry

a; = v (V.2 WP,

a, = — @, (Vv vp ) = — v'RY,
as — — (Vrvl)¢jTVj¢lk = (Vjvr)¢lel¢rk’
ay = — V'Vivi

Consequently, by virtue of
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a, + a5 = (V') 'vip,
a,+a,=—vR,,
we have
(5.5) V'a;, = — (Vv + v'Rp) + V' (V.0 )0V + (V0 @' Vipne
For v’bj., using the above notation, we have
Vb, =a, + a, + a; — a, — a; + a,.
As the relations
a, —a, =20 Ry — v'Ry
a, — as = — (V)@ (V,pu + ViPri)
hold good, it follows that
(5.6) Vb = — (V'V,ve + v'Rp) + 20 R + v (V,0, )V Pu
— (V') (Vo + Vi@ri)
We next substitute (5.1) and (5.5) in the equation
vi(aud®) = v*va; + anv’v”,
then we get
(5.7 vias*) = — (V'V,or + V'R0 + 0" (v,0,)Vipu
+ 2(v'v )es'v' v, + @ 9" (V,v)V vk
— (V) v'v".
From (5.3) and (5.7), we get

(.8) %“’(v) + vi(ap®) = — (Vv + V'RV

Hence, by Green’s theorem, we obtain the following

THEOREM 5.1.'" In a compact almost-Kihlerian manifold M, the integ
ral formula

5.9) [ @9 + VR + 5 a2(@) |do = 0

is valid for any vector field v, where

a*(v) = aya’™, a; = (%}W)%k-

We next substitute (5.2) and (5.6) in
V(850") = v*Vby + b 0"
and obtain the formula
(5.10) V(b)) = — (V'v,vr + V'R )V + RY v'0F

17) For pseudo-Kéhlerian case, see Yano, K. [7], p.278, Lichnerowicz, A. [3].
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+ v (v, )WWipu — 2Avv e (V,9u)v"
— @ 9" (v,v)Vvr — (Viv)V'v".
Hence from (5.4) and (5. 10), it follows that

) 1
(5. 11) V](bjk'vk) + 2 bz(‘v) = - (VTVrvi. + 'UTer)'Ui

+ Riw'v' — 2v' (v, @)@ 0"
On the other hand, (2.11) holds good for any vector field v. Hence sub-
tructing (5.11) from (2.11) and dividing by 2, we have
1, e o~ o~
(5.12) 7{ (V'V,vi = v'Ryi)v* — v](bjkv")}
= (V'v,o, + VR, 0" — 2 R: 00" + v (Vipn

o1
+ V@)@ vt + 7, 0%(v).

If we apply Lemma 2.1 to v, we have in compact M

f L(V'V0 = Rywv'de = — fMS(v) do,
so integrating (5.12) we obtain the following

THEOREM 5. 2. In a compact almost-Kihlerian manifold M, the integ-
ral formula

f l[[(V'Vr'vi + R0 — 2R5 VW + vV (vien + vepi)e

+ % b*(v) + %S(?f)} do =0
is valid for any wvector field v, where
b¥(v) = b, v = @iv,
by = (Vv + @,'Viv" + @/ v 0 )pu,

. 1 s =~ -~ ~ T s
S(v) =5 (V'Y = V') (V,v: — Vov,) + (V'2) (V')

6. Theorems. In this section we shall consider a compact almost-Kihler-
ian manifold M and obtain several theorems. In §3, we have proved that an
analytic vector v satisfies the equation (3.7) i.e.

(6- 1) VTVrvi + Rn"Ur = 0.

In a compact manifold, we know from Theorem 5.1 that (6.1) is also
sufficient for the analyticity of v.
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THEOREM 6. 1.'® In a compact almost-Kaihlerian manifold, a necessary
and sufficient condition in order that a vector v be an analytic vector is
that

vv,w + Rav =0.
By virtue of Lemma 2.2, it follows the following

COROLLARY.'” In a compact almost-Kihlerian manifold, any Killing
vector is an analytic vector.

COROLLARY.2” In a compact almost-Kihlerian manifold, a necessary and
sufficient condition in order that an analytic vector v be a Killing wvector is
T
v.v = 0.

Consider an analytic vector v, then from (3.6), (6.1) and Theorem 5. 2,
we get
o 1 1~
f (RYv™v") do =f [—bQ(v) + 7b('v)Jd0' =0.
i M 4 2
Hence we have, on taking account of Theorem 4.7,

THEOREM 6. 2. In a compact almost-Kahlerian manifold M, the integ-
ral

Jw) = [ (Rewro) do

is positive or zero for any analytic wvector v. If J(v) =0 for an analytic
vector v, then the vector v is a parallel vector field.

Now suppose that the manifold M is a space of constant curvature,
that is

R
n(n—1)°
holds good. Then we have R}, = — 2kg;;, from which it follows the following

Rlcjth = k(gkiS;L - gﬂSZ), where k= —

COROLLARY.?Y In a compact almost-Kihlerian manifold of constant
curvature, there does not exist a non-trivial analytic vector field if R <O0.

Let v be a conformal Killing vector, then from Lemma 2.3 we have

n—2

f V'V + v'Rupv' do = — f v'viv,v do.
s n M

18) For pseudo-K#hlerian case, Yano,K. [7], p.280.

19) Apte, M. [11.

20) For pseudo-K#hlerian case, Yano, K. [7], p.281

21) We remark that there does not exist a compact almost-Kidhlerian manifold of constant
curvature with R> 0. cf. Yano, K. and S. Bochner, [8], p. 80.
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On the other hand, integrating
V{v'v,v") = v'viv,v" + (Viv')v,v"
over M, we get
(6- 2) - fyvivinvr do = _[M(Vr‘vr)2 do.
Hence, the equation
n—2
f (VrVr'Ui + Rrivr)vi do = _f (Vrvr)2 da'
s n s

holds good. Therefore by virtue of Theorem 5.1, we obtain

fﬂ[ : ; : (v, vy + % aﬂ('u)} do =0,

from which, taking account of Lemma 2.2, we find the following

THEOREM 6.3.°% In a compact almost-Kihlerian manifold M, any
conformal Killing vector is a Killing vector if n > 2 and an analytic vector
for n= 2.

Let v te a projective Killing vector, then the equation (2.9) i.e.

. r 2 r
V'V + Ruv” = — =7 Viv,v

holds. Hence by virture of Theorem 5.1 and (6.2), we have the following
integral formula

2 1
i1 [ @y do =5 [ @) do.

Thereby we get

THEOREM 6. 4. In a compact almost-Kihlerian manifold, if an analytic
vector is at the same time a projective Killing vector, then it is a Killing
vector.

In a compact pseudo-Kihlerian manifold, if v is harmonic, then v is also
harmonic. In our case, the same argument does not hold.

A covariant analytic vector v satisfies
(6.3) V'V.vi + Ruv' — REiv" + v (V0. + V@)@ = 0,
by virtue of (4.10). Conversely, in compact M, if a vector field v satisfies (6. 3),
Theorem (5. 2) asserts that 6%(v) = 0 and S(v) = 0. 5(v) means that the vector

v is covariant analytic and S(v) =0 means that the vector v is harmonic.

Then from Theorem 4.4, since v is also a covariant analytic vector, the

22) For Kihlerian case, Lichnerowicz, A. [3].
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same argument is applicable to v, so v is also harmonic. Consequently
we find

THEOREM 6.5. In a compact almost-Kahlerian manifold, a necessary
and sufficient condition in order that a vector field v be covariant analytic
is that v satisfies (6.3).

THEOREM 6.6. In a compact almost-Kahlerian manifold, a necessary
and sufficient condition in order that a vector v be covariant analytic

is that v and v are both harmonic.

7. Lie algebra of analytic vectors in a compact almost-Kahler-
Einstein manifold. In this section we shall consider a compact almost-
Kihler-Einstein manifold M and give a theorem on the Lie algebra of
analytic vectors on M. This theorem corresponds to Matsushima’s theorem?®
in a compact Kihler-Einstein manifold and similar to Lichnerowicz’ theorem?*
on the Lie alge ra of conformal Killing vectors in a compact Einstein
manifold.

As M is an Einstein manifold, it holds that

R = ¢y, c=—_

We shall assume that ¢==0. In this case, (6.1) reduces to
(7.1) v'v,v + cv = 0,
from which we have
VV.Vv: + 2cviv;, = 0,
or if we put f = v'v;, we have

(7.2) V'V + 2¢f = 0.
If a scalar function f is a solution of (7. 2), the equation
(7.3) V'V, Vif + cvif =0

is valid. Hence the gradient v,f of f = v;v’ for an analytic vector v is also
an analytic vector.
Now we put

1
(7.4) b =v + Toc v.fs f=v

then from (7.2) we have v'p, = 0. Hence by virtue of the Corollary of
Theorem 6.1, p; is a Killing vector. From (7. 4), we have

23) Matsushima, Y. [4] Yano, K. [7]. p.285.
24) Lichnerowicz, A. [2]. Yano,K. [7], p.276.
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1
(7.5) v =Py — 20 v.f.

Conversely, if p; is a Killing vector and f is a solution of (7.2). then
the vector v defined by (7.5) is an analytic vector. We shall denote by L
resp. L, the Lie algebra of analytic resp. Killing vectors and by L, the
vector space of the gradient of solutions of (7.2). Then the above argument
asserts that L = L, + L,, where + means a direct sum. After some simple
calculation, we have the relation

[Ll’ L2] c L25 [L2> LQ] < L1~
Hence we get the following

THEOREM 7. 1. In a compact almost-Kihler-Einstein (R ==0) manifold
M, the direct sum
L=1L +1L,
is valid, where L resp. L, is the Lie algebra of analytic resp. Killing vectors
on M and L, is the vector space consisting of the gradient of solutions of
R
V'V.f + 2¢f =0, c= .
In this decomposition, the relations
[L,, L,] < L,, [L,, L,]C L,
hold.
Now let v be an analytic vector in a compact almost-Kihlerian manifold
M. Then v satisfies the equation
v'v.v; + R.v" = 0.
Hence we get easily

1
o V'VAviv') = (v,:) (V?') — Ryv'0".

Integrating the last eqation over M, we have
THEOREM 7.2.  In a compact almost-Kihlerian manifold M, the integral

f (R,v"™0") do
M
is positive or zero for an analytic vector wv.

COROLLARY. In a compact almost-Kihler-Einstein manifold with scalar
curvature R <0, there does not exist a non-trivial analytic vector.

From this corollary we have again the corollary of Theorem 6. 2.
We remark here the following facts. In theorems in this section the one
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which plays the essential role is not the almost-complex structure but the
equation (7.1).

8. Canonical connection. In an almost-Hermitian manifold, if we put
1 ”
8.1) %=1 1’: b — —2"%th% s

then tensors ¢; and @,' are both covariantly constant with respect to the
affine connection I'}. There are many affine connections with this property,
but we shall call T} defined by (8. 1) the canonical connection. In this section
we shall calculate the curvature tensor of the canonical connection and
obtain certain identities which are useful in the next section. Consider the
canonical connection (8.1) in our almost-Kdhlerian manifold and denote by
K,," the curvature tensor. If we put

1
Ly = — 7¢pth¢tp
and substitute in the identity
Kk}th = Rkjih + thnh — Vit + tlcrhtjir - tjrhtkir,
then we find, after some calculation,
1 r 1 r r
(8.2) K= o (Ris" — Ry @i’ ") — T{(Vk¢rh)Vi¢i — (V2" )Vip }

Transvecting (8. 2) with @,’, we get

) 1
(8.3) K" on' = Riy'@' — 7(Vk¢rh) (v, )@n’s
from which it follows that
1
(8.4) K = R — 1 (Vi@odv.i@™
where

1 i
K = 9 Koo' od 9.
Now we put '
Ty = — (Vip:") (Vi@ en's
and shall calculate 7,,v* for any vector feld v. On taking account of (1.4)
we have

- (Vk¢rh)vk = (Vr¢nk - Vh‘l’rk)'vk

= Vr;h - Vh:;r + ¢’r1th'U'C - ¢’ner'Uk-
Hence it holds that

Tjk'vk = (Vr‘?;h - Vh';r) (Vj¢pr)¢hp + Z(Vp'vq)Vﬂ’pq'
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Let v ke an analytic vector, then by virtue of (3.3), we have

(V,vn — V10r) (Vipr )" = — v,0"(viv, + V,v,) = 0.
Therefore, for an analytic vector v we have the following formulas
1
(8.5) - v*Ki = v* R} + 9 Vo (Vi@rd)p;'

9. A generalization of Apte’s theorem. Let v Le an analytic vector in
a compact almost-Kihlerian manifold M. Then, from (3.6) and lemma 2.4
we have

[ [rtwo + v w0 oot | do = [ 5@ ao.
M a

On taking account of (8.5), we find
f( ') do =f S(;) do.
M M

If S(;) = 0 holds, then v is harmonic, tecause of (2.14). And in this case,
v is a Killing vector by virtue of (3.3). Hence we obtain the following
theorem which is a generalization of Apte’s theorem.

THEOREM 9. 1.2¥ In a compact almost-Kihlerian manifold, the integral

I(v) = f (Kiwhv) do

is positive or zero for an analytic vector. If I(v) = 0 for an analytic vector,

then the vector v is a Killing vector and ¥ is harmonic.
From the above theorem and (8.4), we have Theorem 6.2, again.
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