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0. In the section 1 we give a Galois correspondence between a family
of subfields of the function field of a connected algebraic group G and a
family of algebraic subgroups of G. Generally, if the universal domain is of
characteristic p > 0, any algebraic subalgebras of the Lie algebras of algebraic
groups are p-algebras, but the converse is not true. In the section 2 we give
a necessary and sufficient condition for p-subalgebra of the Lie algebra g of
G to be algebraic, and we show that a subalgebra is a p-subalgebra if and
only if it is replica closed. If G is affine, the p-subalgebra generated by one
element of g is not only replica closed but algebraic. We treat p-subalgebras
generated by one element in the section 3. In the section 4 we give some
examples showing that p-subalgebras of g are not generally algebraic and
that the global analogy of the characterization of algebraic subalgebras does
not hold even if the universal domain is of characteristic O.

1. Let G be a connected algebraic group defined over an algebraically
closed field k;let Q(G) be the field of rational functions of G; let A(G) be
the subfield of Q(G) consisting of rational functions defined over k. For any
point p on G, let R} (resp. L}) be the Q-automorphism of Q(G) induced by
the right (resp. left) translation R, (resp. L,) of G by p. A subset of (G)
is called to be right (resp. left) invariant if, for any rational point p over %
on G, Rj(resp. L}) maps it into itself. We call a subfield & of 2G) a (H)-
subfield of E(G) if the following three conditions are satisfied; (i) & contains
k, (ii) & is right invariant, (iii) A4(G) is separrably generated over .

Let H be an algebraic subgroup of G which is defined over k; let 2:AG)
be the subfield of k(G) consisting of all f such that L%f = f for any rational
point p over k on H. Then £,(G)is a (H)-subfield of k(G).” We shall denote
kn(G) by (H).

Conversely, for any (H)-subfield & of k(G), let H be the algebraic sub-
group of G consisting of all x such that L* f= f for any f € &. Then H is
k-closed and % being algebraically closed, - is defined over %, which we
shall denote by H(H).

Then we have the following theorem :

1) Cf. The proof of the Theorem 2 of [10]
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THEOREM The correspondences H— §(H) and § — H(¥) are the inverses
of each other and give one-to-one correspondence between the algebraic
subgroups defined over k of G and the (H)-subfields of ¥ G). Further H is
normal if and only if JF(H) is left invariant, and H is connected if and
only if F(H) is algebraically closed in k(G).

Let & be a (H)-subfield of A(G); put §F = F(H(F)), then clearly F con-
tains . By the proposition 3 of [12], there exist functions fi, ...... freT
such that § = k(f, ...... ,f). Let x be a generic point over 2 on G; let V
be the locus of (fi(x), ... ,f(z)) over & on the rdimensional affine space S,
then there exists a generically surjective rational mapping 7 of G into V such
that 7(z) = (fi(z), --.... , (). But we have that, for generic points x and y
over £ on G, x € H(F) y if and only if f(zx) = f(y) for any £ € & ; in fact,
suppose that f{z) = f(y) for any f€ & ; & being right invarant, R} f(z) =
R} f(y) for any rational point p over £ on G and L} f(p) = L} f(p); since
the points of G that are rational over % are dense in G, L} f= L} f for
any £ € &; hence L¥aL:f = L¥ 1 f and zy~* € H(¥); the coinverse is trivial.
Therefore there exists a generically surjective and generically one-to-one
rational mapping ¥ of the homogeneous space G/H(®) into V such that
Fo@ =, where ¢ is the natural mapping of G into G/H(¥). Let o*, ™
and 7 be the mappings of the function fields concerned, which are induced
naturally bv @, and 7, resvectively, and we have @* « ¥ f = 7" f for any
f € KV). From the definitions ¥ = krw(G) = @*H(G/H(F)) and F = T k(V).
Since A(G) is separably generated over ¥, by the proposition 3 of [12] and
the proposition 19 of [137, T,, & is separably generated over . So we have
that A(G/H(®X)) is separably generated over 7% A(V). But 7 is generically
one-to-one. Hence A(G/H(X)) = T*KV) and §F = @*k(G/H(®)) = o*T (V)
=7 KV)=F.

Conversely, let H be an algebraic subgroun of G which is defined over
k; put H = H(F(H)), then H O H. Since from what we have seen, S(H(F(H)))
= F(H) and En(G) = kxG). The Jlemma 2 of [7] shows that H = H.

If H is normal in G, for f € & (H), x € H and a rational point p over
kon G, LXL} f=1L;. f=1L}, f=L}L} f= L} f for some y € H. Hence
Ly f € §(H). Conversely if §F(H) is left invariant, for x € H and a rational
point p over k on G, L¥.,1 Ff= L L¥LYf= Li.L} f=f. Hence prp™' €
H. Since the rational points over %2 on G are dense in G, H is normal in G.

Now suppose that H is connected. If £ € EG) is algebraic over F(H),
L% f is a conjugate of f over }(H) for any z € H. The subset H, of H
consisting of all z such that L* f=f is an algebraic subgroup of H of
finite index. Since H is connected, H, = H and f € & (H). Conversely
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suppose that F(H) is algebraically closed in A(G). Let H, be the connected
component of H containing the unit element. Then there exist finite

s
rational points h; over £ on H such that H = U Hyh, is a coset-decompo-

i=1

sition. Then for £ € &(H,) and hy € H,, Ly f = Lk f. Thus for h € H, L
gives a permutation of {L} f, ..., Lt f} and P(X) = Il (X — L% #) is in F(H)
i=1

[X] such that P(f) = 0. So {(H,) is algebraic over FH) and F(H,) =F
(H). Thus H, = H.

2. The notations being as in the section 1, let 2 be an algebraically
closed field of characteristic p > 0 ; let D be the Lie algebra of all deriva-
tions of A(G) which is a Lie algebra over k(G) of dimension 7, where 7 is
the dimension of G; put I' = k(G)"; for a subfield & of k(G) containing T,
let (&) be the subalgebra of ® consisting of all D such that Df = 0 for
f € &, then E(®) is a p-subalgebra of D. Conversely, for a p-subalgebra €
of D, let S(€) be the subset of AG) consisting of all f such that Df =0
for all D € €, then &(€) is a subfield of E(G) containing T. The theorem
12 of [6] shows that & — E(8) and & — &(€) are the inverses of each other
and give one-to-one correspondence between the p-subalgebras of D and the
subfields of £(G) containing T

Now let g, be the subset of ¢ consisting of all invariant derivations
defined over %, then g, is a Lie algebra over %, whose scalar extension to Q
is . If  is a p-subalgebra of D, the intersection § N g is a p-subalgebra
of 8;. Conversely if B, is a p-subalgebra of g;, the scalar extension of i to
k(G) is a p-subalgebra of D by the Hochschild’s formula

(DY = f°D” + (fDY" " fD for De D, £ € KG)
and the Jacobson’s formula
(D, + D))’ = D! + D! + s(D,,D,) for D, D, € D,

where s(D,, D,) is a polynomial with respect to the bracket operation. Similar-
ly if ) is a p-subalgebra of g, the intersection §) N g is a p-subalgebra of
8r, and if §, is a p-subalgebra of g;, the scalar extension of §; to Q is a
p-subalgebra of g. We call a subalgebra §) of g to be defined over & if [) has
a base covsisting of invariant derivations defined over Z.

Let H be a connected algebraic subgroup of G defined over k; let ) be
the Lie algebra of H; let A X x be a generic point over & on H X G; for
f € &H) we have flhx) = f(x) and therefore R% f— f(x) € k(x)(G) N m,,
where m, is the maximal ideal of the local ring of & in Q(G). If D& § is
defined over %, DR:f — flzx)) € kz)(G) N m, and DREf — f(x))(h) = 0.
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But IR f — fx)) (k) = (DR: f) (h) = (RIDf) (h) = (Df) (hz). Since hx is
generic over £ on G and Df is defined over %k, we have Df = 0. Thus, [
being defined over %, we obtain that Df = 0 for D € [) and £ € F(F). Now
put © be the compositum of I' and &(L1), then E(&) N g, D ,, where b, =
) N g. By the proposition 1 of [10] the dimension of (/) over k is n — r
if the dimension of H is . Siice k(G) is separably generated over F(H),
the derivation algebra of k(G) over F(H) which is in fact (&) itself is 7-
dimensional over A(G). Since the elements of g; which are linearly indepenent
over k are linearly independent over %(G), we have that the dimension of
E(®) N g, over k& is at most . Thus &(3) N gx = b, and the scalar extension
of €(&) N gx to Q is b.

Conversely let ) be a p-su algebra of g defined over £ for which there
exists a (H)-subfield & of A(G) such that for D € g to be D € ) it is nece-
ssary and sufficient Df = 0 for £ € §. Then from the theorem and what we
have known it is easily seen that §) is the Lie algebra of H(%).

Thus we obtain a proposition which gives a method to take algebraic
subalgepra of g from non-algebraic p-subalgebras of g;

PROPOSITION 1 Let § be a p-subalgebra of § defined over k. Then ) is
algebraic if and only if S((H N §)*9) is the compositum of T' and some
(H)-subfield & of k(G), and then V) is the Lie algebra of H(F), where (§ N
8" is the scalar extension of Y N 8 to k(G).

We shall give an example of non algebraic p-subalgebra of g in the
section 4.

Further,for an algebraic p-subalgebra §) of g, there exist generally infinite-
ly many subgroups of G whose Lie algebras are the same 0. For example,
let G be the group of all diagonal matrices in GL(2,Q), where Q is of
characteristic » > 0, then the subgroups H, consisting of the diagonal mat-
rices (z, 2¢°), = € Q* have the same Lie algebra consisting of the diagonal
matrices (a,0), a € Q where s =10,1,2, ...... . As a corollary to the proposi-
tion 1, we have

COROLLARY Let H, and H, be algebraic subgroups of G defined over
k. Then the Lie algebras of H, and H, are same if and only if F(H)T =
F(HLT, where §(H)T means the compositum of U and F(H,) for i =1, 2.

A subalgebra § of g is called an r-subalgebra of g if §) contains all repli-
cas of any elements of itself.” From the definition, for any D of g, D" is a
replica of D. Hence any r-subalgebras of g are p-subalgebras of g. Converse-
ly if ) is a p-subalgebra of g defined over %, the intersection §, = § N g, and

2) Cf. the section 1 of [7]
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its scalar extension §5® to A(G) are p-subalgebras of g, and D respectively.
From what we have seen it follows that G(€(H8?)) N g, = 0. Let D, ......
D,D,..... ,D; be a base for g, such that D, ...... ,D, is a base for Y, ; let

D=3% aD, + > B,D;< g for some a;,8; € &. Then if Df=0 for any f
i=1 Jj=1
€ &(6x9), D is contained in %) ; in fact, there exist v,, ... , ¥ € Q such that
t

s

Vig covnnn ,7. are linearly independent over k and Y 8,D; = >_ v;Di for some
=1 j=1

Dj € kD + ...... +kD;; if £ € S(059), then Df = > a,D,f + > B;D;f =
> 4;D) £=0 and therefore v; =0 for j such that Dj f==0, #(G) and Q
being linearly disjoint over k ; since for Dj there exists f; € S(hi) such

that D] f; 4= 0, we have D= >_ a,D,. Any D € ) annihilating ©(0i'®’), we

1=1
have that § consists of all elements of g annihilating &(§%¥) and that {) is an
r-subalgebra of g. Thus we obtain

PROPOSITION 2 A subalgebra V) of § is a p-subalgebra if and only if |)
is an r-subalgebra.

In the next section we shall show directly this fact in the case of alge-
braic groups of matrices.

3. In this section we use the definitions by Chevalley. Let %2 be an
algebraically closed field of characteristic p > 0. For X € gl(n, k) let p(X)
be the p-subalgebra generated by X and let r(X) be the r-subalgebra gene-
rated by X. Then we have

PROPOSITION 3 For any X € gl(n, k), ¥(X) = t(X) and this subalgebra
is algebsaic.

Let X =S + N be the canonical decomposition, i.e. S is semi-simple
and N is nilpotent such that NS = SN. Since X* = S” + N?, we have p(X)=
p(S)+p(N)?. But by the theorem 5 of [3], for X & gl(n, k) to be a replica
of X it is necessary and sufficient that 5" and N’ are replicas of S and N,
respectively, where X' = 8" 4+ N’ is the canonical decomposition of X'. Hence
we have t(X) = 1(S) + t(N). Thus to show P(X) = r(X) it is sufficient to
show it for the case where X is semisimple or nilpotent. The well known
theorem? of Chevalley and Tuan shows p(X) = £(X) for the nilpotent case.
If X is a semi-simple S, we may suppose that S is diag. (a,....-. , a,) for some

3) Cf. the proof of the theorem 2 of [5].
4) Cf. [111.
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&; € k. Let k) be the prime field of k; let €,&,, ...... S e be a base of %
l

over ky, then S = > &S, for some ;= diag. (a,,...... ,a;,) for a, € k.

Jj=1
It is easily seen that 1(S) is the vector space spanned by S, ...... , S, over

k; in fact, for B = diag. (8, .. .. ,B.), we may suppose that B = > _ &B; for

j=1
some B; = diag.(8jy, --.--. , By for B;, € ky; B is a replica of S if and only
l

if B is a linear specialization of S,i.e. > #;8, = 0 for integers n; such that
j=1

l 1 1

> ona;=01ie Y nB; =0 for integers n; such that > n,a; = 0; thus B
j=1 j=1 j=1

is a replica of S if and only if B is contained in the vector space spanned by

1(S).

Let m be the integer such that S, S%,...... , S""" are linearly independent
over k and S is linearly dependent upon S, S%,...... , S""" over k, then we
have dimp(S) = m. Let fi(z)= 2" + Bz"™ " + ...... + Bnx € kx] such

that f,(S) = 0, then B, =0, and f,(S) = diag. (fila)), -..... , fay) =0
implies fy(a@;) =0, 1 < j =< n. But as 8, =50, by the theorem 6 of [9], the
set of all roots of f,(x) in %k is a vector space of dimension m over ko, and

therefore the elements a; = >_ a,,;&, 1 < j < n, generate a vector space whose
i=1

= =2%1=/=2

rank A < m. Thus dim ©(S) < dim p(S) and ©(S) = p(.S).
Now we shall show that p(X) is algebraic. Let X =S+ N and S =

l

> &,S; as above. The subgroup of GL(n, k) consisting of all diag. (z*,......
j=1

t") for t € k* is a connected algebraic group G(S;) of dimension 1 whose

Lie algebra is £S;+ Put G(S) = I G(S;), then G(S) is the connected com-
-1
mutative algebraic group of dimension m whose Lie algebra is p(S). Let ¢

be the integer such that N’ = 0 and N% 1==0; let » be the maximal integer

such that p" < g ; let U,,...... U, be indeterminates. Then we have exp
q-1
(UN + UN” + ...... + U,N?") =3 E(Ty,......, T,) N*, where T} is the coef-

h=0
ficient of N? in this series and E(7T, ...... ,T,) is a polynomial of T, ......

T, with coefficients in the p-adic integer ring.” Putting E(Ty, ... ... ,T,; N) =

5) Cf. the lemma 6 of [5].
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exp (UN + ...... + U,N"), let G(N) be the set of all E(z, -..... ,tr; N) for
t, € k, then it is known that G(NV) is a connected algebraic group of dimen-
sion 7 + 1 whose Lie algebra is W(N)”. Let G(X) be the connected algebraic
group generated by G(S) and G(N). N being supposed to be in gl(s, k), SV
= NS implies that S;N = NS,. Hence from the definitions of G(S)and G(N)
it follows that G(S) and G(NN) are elementwise commutative and therefore
G(X) = G(S)G(N). But G(S) N G(N) = {I}, where I is the unit matrix.
Thus G(X) is the direct product of G(S) and G(N) and dim G(X)=m + r
+1. Let g(X) be the Lie algebra of G(X), then ¢(X) 2 b(S) and g(X) D
P(N). Compairing the dimensions, we have g(X) = p(S) + p(IN). Thus we
have g(X) = p(X).

Since any algebraic subalgebras of gl(#, k) are p-subalgebras, this proposi-
tion shows that for X € gl(n, £) there exists the minimal algebraic subalgebra
of gl(n, k) containing X. But it is not generally true that for X € gl(x, &)
there exists the minimal algebraic subgroup of GL(n, k) whose Lie algebra
contains X.

4. We wish to show an example of an algebraic group whose Lie algebra
contains a p-subalgebra which is not algebraic.

Let G be the group of Chevalley constructed from a simple Lie algebra
g of the type (A,), /> 3, over the universal domain Q whose characteristic
p is a divisor of / + 1. By the theorem 2 and the corollary 1 to proposition
7 of [8], G is a connected algebraic group of dimension 7, where n = I(I + 2)
is the dimension of g.

Let H,, ...... , H,, X,, r roots, be a canonical base of g, from which G is
constructed”; let go, §o be the tensor product of Q and the additive group
generated by (H,, ...... » Hyy X,, r roots), (H, ...... , H)) respectively. go is the

Lie aegebra over Q, and we denote also by H;, X, etc. for 1oX) H;, 1o
X, etc. ; let Hq be the connected algebraic subgroup of G consisting of the
automorphisms A(x) of @o such that H,—» H,, 1=<i=1), X,—xn X,
where x are homomorphisms of the additive group generated by the roots
into Q*; let 9,, o be the 1-dimensional connected algebraic subgroup of Da
consisting of the elements A(x, .), where X,,.(s) = 2", z € Q*; let X, o be
the 1-dimensional connected algebraic subgroup of G consisting of the auto-
morphisms z,(¢), ¢ € Q, of go, which are obtained from the automorphisms
of g of the form exp # ad X,, ¢ being the complex numbers, by reducing
them mod p. Since y,o = Qead X, and Y, o = Q-ad H, are the Lie algebras
of ¥, 0 and 9,,o respectively®, we may identify them with the subalgebra of

6) Cf. the section 6 of [5].
7) Cf. § 1 of [8]
8) Cf. the proof of the propositions 2 and 3 of [1].
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the Lie algebra g of G and that of the Lie algebra § of g respectively.

Let ay, ...... ,a, be a fundamental system of roots of A,; put a;; =
a(H,,), then, ad l)o being generated by ad H, (1 = i = [), the dimension of
ad ), is equal to the rank of the matrix (a;;), where a;; is the class of the
integer @;; modulo p. Since det (a;;) =7 + 1 = 0 modulo p and any principal
minor of degree [ — 1 of (ay;) is /= 0 modulo p, we have dim ad o =/ —
1. Therefore the center of g, being contained in 0, it is 1 dimensional and
dim ad g =dim ¢ — 1 =72 — 1. We have [X,0, £s.0] C Lriso if 7+ 5 is a
root, [£.o, Ls.0]l = {0} if 7 + s is not a root and [Zr.0s 5-r,0] = Dy0.  Since
ad 8o is generated by algebraic subgroups g, the Jacobson’s formula shows
that ad gq is a p-subalgebra of g. By the proposition 2 of [1], ad go is
simple. Thus ad g, is simple p-subalgebra of dimension n — 1 of the Lie
algebra of G.

Suppose that ad g, were algebraic. Let G  be an algebraic subgroup of
G, whose Lie algebra is ad go. Then G’ is semi-simple and has no non-trivial
connected normal algebraic subgroup. Therefore the dimension of G' must
be equal to the dimension of some simple Lie algebra over the complex
number field.” But it is impossible for some / (for example /=4), since dim
G’ = n — 1. Thus the p-subalgebra ad g, is not algebraic.

Now we shall give an example showing that the global analogy of the
characterization of algebraic subalgebras does not hold even if the character-
istic of the universal domain is 0.

Let G be GL(1,Q); let H be the subgroup of G consisting of all elem-
ents of finite order ; then, since for x € H there exists a positive integer r
such that 2" =1, the minimal algebraic subgroup of G containing x is
contained in the algebraic subgroup of G consisting of all y such that y" =1;
hence H is closed with respect to ‘‘s-s-replica operation”; but it is easily
seen that H is not algebraic.

9) Cf. Exposé XVII Proposition 1,2 and Exposé XIX of 4.
10) Cf. 2 §8, p. 48.
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