
SOME REMARKS ON ALGEBRAIC GROUPS

EIICHI ABE AND TSUNEO KANNO

(Received April 4, 1959)

0. In the section 1 we give a Galois correspondence between a family
of subfields of the function field of a connected algebraic group G and a
family of algebraic subgroups of G. Generally, if the universal domain is of
characteristic p > 0, any algebraic subalgebras of the Lie algebras of algebraic
groups are />-algebras, but the converse is not true. In the section 2 we give
a necessary and sufficient condition for />-subalgebra of the Lie algebra Q of
G to be algebraic, and we show that a subalgebra is a />-subalgebra if and
only if it is replica closed. If G is affine, the ^-subalgebra generated by one
element of g is not only replica closed but algebraic. We treat />-subalgebras
generated by one element in the section 3. In the section 4 we give some
examples showing that />-subalgebras of Q are not generally algebraic and
that the global analogy of the characterization of algebraic subalgebras does
not hold even if the universal domain is of characteristic 0.

1. Let G be a connected algebraic group defined over an algebraically
closed field k; let ίϊ(G) be the field of rational functions of G; let k(G) be
the subfield of ίl(G) consisting of rational functions defined over k. For any
point p on G, let R* (resp. L*) be the Γ2-automorphism of ίl(G) induced by
the right (resp. left) translation Rp (resp. Lv) of G by />. A subset of k(G)
is called to be right (resp. left) invariant if, for any rational point p over k
on G, i?* (resp. Lζ) maps it into itself. We call a subfield $ of KG) a (H)
subfield of k(G) if the following three conditions are satisfied; (i) 3* contains
k, (ii) $ is right invariant, (iii) KG) is separrably generated over $.

Let H be an algebraic subgroup of G which is defined over k; let kn(G)
be the subfield of k(G) consisting of all / such that L*/ = / for any rational
point p over k on H. Then kH(G) is a (//)-subfield of k(G).τ) We shall denote
kπ(G) by S(H).

Conversely, for any (flΓ)-subf?eld ?? of KG), let H be the algebraic sub-
group of G consisting of all x such that L* f = f for any / € d> Then H is
^-closed and k being algebraically closed, H is defined over k, which we
shall denote by Hffi).

Then we have the following theorem :

1) Cf. The proof of the Theorem 2 of [10]
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THEOREM The correspondences H-*%(H) and % -» H($s) are the inverses

of each other and give one-to-one correspondence between the algebraic

subgroups defined over k of G and the (H)-subfields of k(G). Further H is

normal if and ovly if %(ϊϊ) is left invariant, and H is connected if and

only if $(H) is algebraically closed in k(G).

Let 8 be a (ίf)-subfield of k(G); put $' = %(H(f¥)), then clearly $' con-

tains $. By the proposition 3 of [12], there exist functions /,, fr € 5

such that £? = k(f, , / r ) . Let x be a generic point over k on G; let V

be the locus of (f(x), ,fr(x)) over k on the r-dimensional affine space Sr,

then there exists a generically surjective rational mapping T of G into V such
that τ(χ) = (f(x\ ,fr(x)). But we have that, for generic points x and y

over k on G, x £ H($) y if and only if f(x) = f(y) for any / € f? in fact,
suppose that f(x) = f(y) for any / € f? $ being right in varan t, R%f(x) =
R%f(y) for any rational point £ over ί on G and L* /(^) = L*f(p) since

the points of G that are rational over k are dense in G, L* f = L*f for

any / € £?; hence Z,*-iL£/= L*,-i/ and ^ry"1 € WC??); the coinverse is trivial.
Therefore there exists a generically surjective and genericallv one-to-one
rational mapping τ of the homogeneous space G/H(?r) into V such that

T o φ — T, where <p is the natural mapping of G into G/H(?ί). Let <£>*, T*

and T* be the mappings of the function fields concerned, which are induced

naturally bv φ, T and r, respectivelv, and we have φ* T* jf = r* /* for any

/ € *CTO. From the definitions ??' = * W / G ) = <p*k(G/H(%)) and 3? = τ ^ ( F ) .

Since £(G) is separablv generated over ?S, bv the proposition 3 of [12] and

the proposition 19 of [13^, I7, ?V' is separably generated over ?V. So we have

that k(G/H(W)) is separably generated over T* k(V). But T is generically

one-to-one. Hence k(G/H(%)) = τ*£(F) and 3T = φ*HQ/H{%)) = <p*τ*έ(V)

= T* i(y) = a?.
Conversely, let ίiΓ be an algebraic subgroup of G which is defined over

k; put W = H(%(H)\ then H' rD ί/. Since from what we have seen, %(H(%(H)))

= %(H) and ifê (G) = *nίG). The lemma 2 of [7] shows that Fϊ = H.

If // is normal in G, for / € ??(//), x € H and a rational point /> over
* on G, LiLi f = L% f = ϋ / = L^LJ f = L% f for some .y € R Hence
Ltf ^ f?(H). Conversely if ?ί(H) is left invariant, for x € / ί and a rational

point /> over k on G, L^-i / = L%-χ IΛL%f= Lt-iLt f = f Hence A ^ " 1 ^

//. Since the rational points over k on G are dense in G, i?" is normal in G.

Now suppose that H is connected. If / € k(G) is algebraic over ?r(H\
Lt f is a conjugate of / over $(//) for any x € H. The subset HQ of i ί

consisting of all x such that Lt f = f is an algebraic subgroup of H of

finite index. Since H is connected, Ho == H and / € $ (H). Conversely
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suppose that f$(H) is algebraically closed in k(G). Let Ho be the connected
component of H containing the unit element. Then there exist finite

s

rational points ht over k on H such that H = \^J Hohi is a coset-decompo-
ί = l

sition. Then for / € $(Ho) and h0 € Ho, LΪ&J = LtJ. Thus for h € H, Lt
.<?

gives a permutation of {££/, .,., Ltsf\ and P(X) = Π (X - L* /) is in

[X] such that P(/) = 0. So %(H0) is algebraic over 3<H) and 3(H0) = δ
(//). Thus //π = //.

2. The notations being as in the section 1, let k be an algebraically
closed field of characteristic p > 0 let 35 be the Lie algebra of all deriva-
tions of k(G) which is a Lie algebra over k(G) of dimension n, where n is
the dimension of G; put Γ = k(G)p; for a subfield © of £(G) containing Γ,
let ©(©) be the subalgebra of SD consisting of all D such that Df = 0 for
/ € @, then ©(©) is a /)-subalgebra of Φ. Conversely, for a />-subalgebra ©
of 3), let ©(©) be the subset of k(G) consisting of all / such tha't Df = 0
for all /) € ©, then @(®) is a subfield of jfe(G) containing Γ. The theorem
12 of [6] shows that © -> ®(@) and K -> @(@) are the inverses of each other
and give one-to-one correspondence between the />-subalgebras of 3) and the
subfields of k(G) containing Γ.

Now let qk be the subset of Q consisting of all invariant derivations
defined over k, then &. is a Lie algebra over k, whose scalar extension to ί l
is β. If ξ> is a />-subalgebra of 3), the intersection |) Π 9*- is a />-subalgebra
of gfc. Conversely if ^ is a />-subalgebra of gfr, the scalar extension of Έ)k to
k(G) is a />-subalgebra of 35 by the Hochschild's formula

(/£>)*> = /^Z)p + (/D)p \fD for D € Φ, / € *(G)

and the Jacobson's formula

(D, + D2Y - Aυ + D? + 5(D,,O2) for A , A € Φ,

where s(Dl9 D2) is a polynomial with respect to the bracket operation. Similar-
ly if f) is a />-subalgebra of Q9 the intersection ΐ) Π fife is a p subalgebra of
Qk, and if ί)k is a ^-subalgebra of &, the scalar extension of ϊ)fc to ί l is a
/>-subalgebra of .̂ We call a subalgebra ΐ) of 9 to be defined over k if ΐ) has
a base consisting of invariant derivations defined over k.

Let H be a connected algebraic subgroup of G defined over k; let ΐ) be
the Lie algebra of H; let h X x be a generic point over & on H X G; for
/ € $(/f) we have / ( M = /(.z) and therefore Rt f - Ax) € &Cr) (G) Π mΛ,
where mΛ is the maximal ideal of the local ring of h in Ώ(G). If D € t) is
defined over k9 Dft*f - f(x)) € k{χ) (G) Π mΛ and D[R%f - f(x))(h) = Q.
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But D(mf-f(x))(h) = (DR*xf)(h) = (R*xDf)(h) = (Df)(hx). Since hx is

generic over i on G and Df is denned over k, we have Df = 0. Thus, I)

being denned over k, we obtain that Df = 0 for D <E ί) and / € $(H). Now
put © be the compositum of Γ and $(//), then (£(©) Π 3A- => I)A, where ί)A: =

I) Π 9. By the proposition 1 of [10] the dimension of $(/-/) over k is n — r

if the dimension of H is r. Si ice k(G) is separably generated over $(H)9

the derivation algebra of k(G) over ^(H) which is in fact (£(Θ) itself is r-

dimensional over £(G). Since the elements of gfc which are linearly indepenent

over k are linearly independent over k(G\ we have that the dimension of

©(©) Π 9fc over k is at most r. Thus ©(©) Π S& = \ and the scalar extension

of @(@) fl 8fc to Ω is ί).

Conversely let ϊ) be a />-su algebra of 9 defined over k for which there

exists a (H)-subfield 5 of k(G) such that for D € g to be D € ΐ) it is nece-

ssary and sufficient Df = 0 for / € $. Then from the theorem and what we

have known it is easily seen that ΐ) is the Lie algebra of //($).

Thus we obtain a proposition which gives a method to take algebraic

subalgepra of Q from non-algebraic />-subalgebras of Q;

PROPOSITION 1 Let ^ be a p-subalgebra of 9 defined over k. Then ί) is

algebraic if and only if @((ΐ) Π Qic)HG)) is the co?npositum of Γ and some

(H)-subfield $ of k(G), and then ΐ) is the Lie algebra of H($$)9 where (ί) Π

Qk)
HG) is the scalar extension of ΐ) Π 9* to k(G).

We shall give an example of non algebraic />-subalgebra of g in the

section 4.

Further,for an algebraic />-subalgebra ΐ) of g, there exist generally infinite-

ly many subgroups of G whose Lie algebras are the same ί). For example,

let G be the group of all diagonal matrices in GL{2, ί2), where Ω is of

characteristic p > 0, then the subgroups Hs consisting of the diagonal mat-

rices (z, ZPS)9 z € ΩΓ have the same Lie algebra consisting of the diagonal

matrices (a, 0), a € ί l where s = 0, 1, 2, As a corollary to the proposi-

tion 1, we have

COROLLARY Let H1 and H2 be algebraic subgroups of G defined over

k. Then the Lie algebras of Hλ and H2 are same if and only if %{H^)Y =

?f(H2)T> where ^{H^Y means the compositum of Γ and LS(Ht) for i — 1, 2.

A subalgebra ΐ) of 9 is called an r-subalgebra of g if ΐ) contains all repli-

cas of any elements of itself.2) From the definition, for any D of g, Σf is a

replica of D. Hence any r-subalgebras of g are />-subalgebras of g. Converse-

ly if ί) is a />-subalgebra of g defined over k9 the intersection ΐ)k — ί) Π 9̂  and

2) Cf. the section 1 of [7].
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its scalar extension ψG) to k(G) are />-subalgebras of Qk and Φ respectively.

From what we have seen it follows that @(@(ήϊ(G!))) ΓΊ 9* = §t Let A ,
DryD'l9 ,Ds be a base for gΛ such that Dl9 9Dr is a base for I}* let

£> = Σ <*iA + Σ &Aί € s f o r s o m e <**> &i € ° τ h e n i f Df=z° f o r

€ @(ήϊ(fi!))> ΰ i s contained in ΐ) in fact, there exist yl9 ,yt € Ω, such that
s t

yl9 9yt are linearly independent over k and Y^βjD) = Σ ^ ^ f° r s o m e

j = l .7 = 1

Z); € £A' + +)feD; if / e ©(WG)), then Z)/ = Σ <*ιDJ + Σ A D ' / =
Σ Ύ J O ) ' / = 0 and therefore 7; = 0 for j such that D'j'f^O, k(G) and O

being linearly disjoint over k since for D) there exists fj € @(ΐ)£(e:)) such

that D'j'f) 4= 0, we have D = Σ Λ ί A Any D € ΐ) annihilating @(^(Gί)), we

have that ή consists of all elements of g annihilating ®(ήϊ(fi!)) and that ϊ) is an

r-subalgebra of Q. Thus we obtain

PROPOSITION 2 A subalgebra ^ of Q is a ρ-subalgebra if and only if ϊ)

is an r-subalgebra.

In the next section we shall show directly this fact in the case of alge-

braic groups of matrices.

3. In this section we use the definitions by Chevalley. Let k be an

algebraically closed field of characteristic p > 0. For X € gί(w, k) let P(X)

be the ^-subalgebra generated by X and let r(X) be the r-subalgebra gene-

rated by X. Then we have

PROPOSITION 3 For any X € $(n9k\ p(X) = t(X) tfflJ Mw subalgebra
is algebsaic.

Let X = S + JV be the canonical decomposition, i. e. S is semi-simple
and N is nilpotent such that NS = 5ΛΓ. Since Xp< = 5p ί + Np\ we have P(X) =

p(S) + p(N)3). But by the theorem 5 of [3], for X' € gl(«, *) to be a replica
of X it is necessary and sufficient that S and JV' are replicas of S and iV,
respectively, where X' = <S' -f iV' is the canonical decomposition of X"'. Hence
we have r(X) = r(5) + r(iV). Thus to show p(Z) = t{X) it is sufficient to
show it for the case where X is semisimple or nilpotent. The well known
theorem4) of Chevalley and Tuan shows p(X) = x(X) for the nilpotent case.
If X is a semi-simple S, we may suppose that S is diag. (cc19 , cέn) for some

3) Cf. the proof of the theorem 2 of [5].
4) Cf. [11].
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Ui € k. Let k0 be the prime field of k; let £i,£2, , £«, be a base of k
I

over k0, then 5 = X) ξjSj for some ^ = diag. (a)ί9 , oίjn) for <Xn € £ .

It is easily seen that τ(S) is the vector space spanned by Su ,St over

k; in fact, for B = diag. (/?1? . . . . , /9n), we may suppose that B — Σ %fii f ° r

some JB; = diag.OSj!, , /3jn) for /βjt € fe; ^ is a replica of S if and only
I

if i3 is a linear specialization of *ί>, i. e. ]P z ^ = 0 for integers n5 such that

2^ n.fiij = 0 i. e. 5Z ̂ Λ« ~ 0 for integers TZj such that X] ftjtfji = 0 thus B
J=ι j=ι j=i

is a replica of 5 if and only if B is contained in the vector space spanned by
I I

Slf ,St. Hence 5pi = Σ f ? SJl = Σ f f ^ i m P l i e s & ^ r ( @ ) a n d

Let m be the integer such that S, Sp, , Spm~x are linearly independent

over k and Spm is linearly dependent upon S, Sp, , S^"1 over k, then we

have dimt>(S) = m. Let fv(x) = ^ p m + /Si^" 1 + + βmx € k[x\ such
that /p(5) = 0, then βmψ0, and /p(5) = diag. (Λfo), , Λ(rtn)) = 0

implies /pCΛj) = 0, 1 ̂  j ^ n. But as /βm =f= 0, by the theorem 6 of [9], the

set of all roots of fv(x) in k is a vector space of dimension m over k0, and
z

therefore the elements aό = Σ ct^i, 1 ̂  j ^ n, generate a vector space whose
ί = l

dimension over k0 is at most m. So, put A = (Λtj)i^ gι,igfgn, and we have

rank A ^ m. Thus dim t(5) ^ dim p(S) and r(5) = p(5).

Now we shall show that p(X) is algebraic. Let X = S + N and S =

ΣζjSj as above. The subgroup of GL(n,k) consisting of all diag. (ί*'1,

ία ίΛ) for t € &* is a connected algebraic group GC^ ) of dimension 1 whose

Lie algebra is kSό Put G(S) = Π G(S5\ then G(5) is the connected com-

mutative algebraic group of dimension m whose Lie algebra is p(S). Let q

be the integer such that NQ = 0 and iVα~1=f=O; let r be the maximal integer

such that pr < q let Uo, Ur be indeterminates. Then we have exp

(UoN+UiN' + +UrN»r) = ΣE*(To, , Tr) N\ where T t is the coef-

ficient of Npί m this series and Eh(T0, , Tr) is a polynomial of T ,

Tr with coefficients in the p-adic integer ring.5) Putting E(T09 ,Tr; N) =

5) Cf. the lemma 6 of [5].
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exp (UoN + + UrN
pr), let G(N) be the set of all E(t0, ,tr; N) for

tι € k, then it is known that G(N) is a connected algebraic group of dimen-
sion r -f 1 whose Lie algebra is p(Nf\ Let G(X) be the connected algebraic
group generated by G(S) and G(N). N being supposed to be in βί(/z, &0)>
= ΛΉ implies that SjiV = JVSJ# Hence from the definitions of G(S) and
it follows that G(S) and G(N) are elementwise commutative and therefore
G(X) = G(S)G(N). But G(S) Π G(Λ0 = {/|, where / is the unit matrix.
Thus G(X) is the direct product of G(S) and G(N) and dim G(X) = m + r
+ 1. Let βC3O be the Lie algebra of G(X), then β(X) 3 p(5) and β(X) 3
P(N). Compairing the dimensions, we have β(X) = p(5) + P(Λ0 Thus we
have β(X) = p(X).

Since any algebraic subalgebras of Qί(n, k) are />-subalgebras, this proposi-
tion shows that for X € βl(n, Λ) there exists the minimal algebraic subalgebra
of Ql(n, k) containing X. But it is not generally true that for X € Qί(n9 k)
there exists the minimal algebraic subgroup of GL(n, k) whose Lie algebra
contains X.

4. We wish to show an example of an algebraic group whose Lie algebra
contains a p-subalgebra which is not algebraic.

Let G be the group of Chevalley constructed from a simple Lie algebra
β of the type (At), / > 3, over the universal domain O whose characteristic
p is a divisor of I -f 1. By the theorem 2 and the corollary 1 to proposition
7 of [8], G is a connected algebraic group of dimension n, where n ~ 1(1 + 2)
is the dimension of β.

Let Hl9 9Hι>Xr, r roots, be a canonical base of β, from which G is
constructed7); let βΩ, ί)Ω be the tensor product of ί l and the additive group
generated by (H19 %Hl9Xr9r roots), (Hl9 , Ht) respectively. βΩ is the
Lie aegebra over β, and we denote also by Hu Xr etc. for 1Ω & Hi9 1Ω ®
Xr etc. let | ) Ω be the connected algebraic subgroup of G consisting of the
automorphisms h(χ) of βΩ such that Hi -* Hi9 (1 ^ i ^ /), Xr -> xfcr) Xr9

where % are homomorphisms of the additive group generated by the roots
into β*; let ξ)r, Ω be the 1-dimensional connected algebraic subgroup of |)Ω
consisting of the elements A(χr,z), where χr9Z(s) = zr{H*\ z € Ωr let 3£r,Ω be
the 1-dimensional connected algebraic subgroup of G consisting of the auto-
morphisms xr(t\ t € β, of βπ, which are obtained from the automorphisms
of β of the form exp t ad Xr9 t being the complex numbers, by reducing
them mod p. Since j r i O = β ad Xr and ϊj r )Ω = β ad Hr are the Lie algebras
of £ r , Ω and | ) r ) Ω respectively8^ we may identify them with the subalgebra of

6) Cf. the section 6 of [5].
7) Cf. § 1 of [8].
8) Cf. the proof of the propositions 2 and 3 of [1],
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the Lie algebra 9 of G and that of the Lie algebra ΐ) of £>Ω respectively.

Let au ,at be a fundamental system of roots of At put cίi5 =

ai(Haj\ then, ad ί)Ω being generated by ad Hai(l ^ i ^ /), the dimension of

ad I)Ω is equal to the rank of the matrix (an), where cίi5 is the class of the

integer CL^ modulo p. Since det {oίi5) — I + 1 = 0 modulo p and any principal

minor of degree I — 1 of {ai5) is / Φ 0 modulo p, we have dim ad ήΩ = I —

1. Therefore the center of $Ω being contained in £)Ω, it is 1 dimensional and

dim ad 8 = dim Q — 1 = n — 1. We have [$ r i 0 , j β ι 0 ] C g r+s,Ω if r + s is a

root, [jr.r, Sβ.o]= l θ | if r + s is not a root and [$r,o, £-r,n]£Ξ ήr.o Since

ad βΩ is generated by algebraic subgroups j r , Ω , the Jacobson's formula shows

that ad gΩ is a />-subalgebra of Q. By the proposition 2 of [1], ad gΩ is

simple. Thus ad gΩ is simple />-subalgebra of dimension n — 1 of the Lie

algebra of G.

Suppose that ad βΩ were algebraic. Let G be an algebraic subgroup of

G, whose Lie algebra is ad βΩ. Then G is semi-simple and has no non-trivial

connected normal algebraic subgroup. Therefore the dimension of G must

be equal to the dimension of some simple Lie algebra over the complex

number field.9) But it is impossible for some / (for example / = 4), since dim

G' = n — 1. Thus the />-subalgebra ad βΩ is not algebraic.

Now we shall give an example showing that the global analogy of the

characterization of algebraic subalgebras does not hold even if the character-

istic of the universal domain is 0.10)

Let G be GL(l , ί l ) ; let H be the subgroup of G consisting of all elem-

ents of finite order then, since for x € H there exists a positive integer r
such that xr — 1, the minimal algebraic subgroup of G containing x is
contained in the algebraic subgroup of G consisting of all y such that yτ = 1

hence H is closed with respect to "s-s-replica operation"; but it is easily

seen that H is not algebraic.

9) Cf. Expose XVII Proposition 1,2 and Expose XIX of 4.
10) Cf. 2 §8, p. 48.
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