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1. Let f be integrable in [ — ir, TΓ] and be periodic with period 2τr, and
let u(p, θ) be the Poisson integral of /. In a recent paper [121 E. Stein has
introduced the function

where 8 = 1 — p. This function provides an estimate of the behaviour of
u(p, ψ) as the point {p, ψ) tends to the point (1, θ) in a "tangential" manner.
Stein has proved that

(i) if / belongs to L p ( - TΓ, TΓ), where 1 <; p < 2, and if 0 < μ < 1 and
λ = 2/ρ, thenυ

f I** ) l / μ Λ*

(1- 1) Mf(θ)dθ\ <>A(ρ9 μ) \f(θ)\vdθ,

(ii) if !/ | P log + | / | is integrable in [— TΓ, if], where l < j / > < 2 , and if
λ = 2/p, then

(1. 2) f * Mi{θ)dθ £ A(p) Γ \Aθ) I" log+ \Aθ) I dθ + A(^),

(iii) if / belongs to Lp(— τr; TΓ), where p > 1, and if λ > sup (1? 2//>), then

(l 3) Γ Mlθ)dθ ^ A(p, λ) Γ |/(^) IVΛ
J-τt J-ic

In [4], I have considered the analogous function

Θ) = sup

where 9? is regular in | s | < 1, and have proved that if ψ belongs to Hk

9

where k > 0, and if λ > 1, then

(1. 4) Γ Lϊ, A( I *> I θ)dθ ̂  A(k, λ) Γ I ^(e ί θ) I *dΛ
J-Tt J-TL

1) We use A(b,c,...) to denote a positive constant depending only on£,c,.. ., not necessarily
the same on any two occurences A by itself will denote a positive absolute constant.
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It is an easy cor sequence of ParsevaΓs theorem that, if the Taylor series
co n

of φ(z)is X>mzm, and if s , ( i l ) = I v 1 > t ' ) then

p ( i -
<i I

LU\φ\; Θ) = 2ττ sup

In this form the function L2)2 has been used by Chow [1] and Sunouchi [13],
In particular, Sunouchi has proved that if φ belongs to H and 0 < μ < 1,
then

(1. 5) [f LU\<P\ I θ)dθ\1'^A(μ)f \φ{eiθ)\dθ,

and that if φ belongs to H \og+H, then

(1. 6) Γ L2,,(I φ I θ)dθ ̂ AΓ \ φ(eιβ) | log+ | <p(ew) \dθ + A.

These are, of course, the analogues of the case p = 1 of (1. 1) and (1. 2) for
the fonction L2ί2(\φ\', θ). Results concerning the analogue of the function
L2,2 in which sn(θ) is replaced by the z-th partial sum of the Fourier series
of an integrable / also occur implicitly in work of Marcinkiewicz [9] and
Zygmund [14].

In this note I consider the function

; θ) = sup V ' Γ
o^p<i ( J_

1/fc

for a function w(ρ, θ) non-negative and subharmonic in the circle p < 1, and
obtain results which contain the inequalities (1. 1) — (1. 6) as particular cases.
More precisely, we show that results of the form of (1. 3) and (1. 4) are
relatively simple consequences of the Hardy-Littlewood maximal theorem. The
results of the form of (1. 1), (1. 2), (i. 5), and (1. 6) are more difficult, and
essentially we follow the method used by Stein. There is, however, a key
result here, namely that which deals with the function Ljc,κ(u; θ) for general
k > 1 in the case in which u is the Poisson integral of a non-negative f such
that either / o r / log+/ is integrable (Theorem 2), and by reducing everything
to this key result we are able to avoid many of the minor complications of
Stein's argument. Finally, in §8 we use our results for Lfcjλ to give a very
direct proof of a theorem on the Cesaro means of power series.

2. For any zv(p, θ) denned and non-negative in the unit circle (and
measurable in θ for each p), we write
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where δ = 1 — p.

Our first result concerning the function Lfc>λ is of the type of (1. 3) and

(1. 4).

THEOREM 1. Let f(θ) be non-negative and periodic with period 2τr,
and be of class Lp( — π, ΊΓ), where p > 1. Let also u(ρ, θ) be the Poisson
integral off(θ) (so that u(ρ, θ) ̂  0). Then, if λ > k ̂  1,

(2. 2) f Zί>λ(«; θ)dθ ^ A(k, p, λ) f fp(θ)dθ.

The proof of Theorem 1 depends on a number of known inequalities
which we state in the form of lemmas. In the case of Lemma 1, we actually
state more than is required for the proof of Theorem 1 the additional results
are used later.

LEMMA 1. Let f(θ) be non-negative and ίntegrable in [— TΓ, 7r] and be
periodic with period 2π, and let

(2. 3) f*(θ) = sup | — [ f(θ + t)dή.

IfO<μ<l, then

(2. 4) I Γ f^(θ)dθ\ μ^A(μ) Γ f(θ)dθ.

Also

(2. 5) Γf*(θ)dθ ^ A Γf(θ) \og+f(θ)dθ + A,

and, for p > 1,

(2. 6) Γ Γ\θ)dθ :g A(p) Γ Γ(θ)dϋ,
*—Tt J-It

whenever the integrals on the right are finite.

These are the Hardy-Littlewood "Real Max" inequalities [5].

LEMMA 2. Let f(θ) be non-negative and integrable in [— ir, ir\ and be
periodic with period 2iτ, let /*(0) be defined by (2. 3), and let

fSθ + f? ,„ dt,
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where S = 1 — p and ω > 1. Then

Liθ) ^ A(ω)f*(θ).

LEMMA 3. Let f(θ) be non-negative and integrable in [— π, π] and be

periodic with period 2π, let u(p, θ) be the Poisson integral of f(θ) (so that

u{ρ, θ) > 0), and let f*(θ) be defined by (2. 3). Then

u(p, θ + t)^Af*(θ)\l-peu\β,

where S = 1 — p.

Both of these lemmas are due essentially to Hardy and Littlewood [6]

(see also [2], Lemma 4).

LEMMA 4. If P(p, t) is the Poisson kernel, and if 1 < a ^ 2, then

r P(p,s-t) A < Aid)

•U \1-Peu\a ^ \1-Peίs\a

This is a particular case of Lemma 2 of [3].

Consider now the proof of Theorem 1. We prove that if u(p, θ) is the

Poisson integral of an integrable / , and if λ > k i> 1, then

L*,χiu; θ)<;A(k, \Y*iθ),

where f* is defined by (2. 3). The inequality (2. 2) follows immediately from

this and (2. 6).

Since L^\ is a decreasing function of λ, we may suppose that λ^S&-f 1.

By Lemma 3,

u I — - — . — u>t ^ A\k)f \θ) δ I —j — dt.
J-ic \1 - peu I λ J - * | 1 — pe" 1 1 + λ "

Also

g A{k, \)f*{θ\

by Lemmas 4 and 2, and this is the required result.

3. The key result for the function LkyK of the type of (1. 1), (1. 2), (1. 5),

and (1. 6) is as follows.

THEOREM 2. Let fiβ) be non-negative and integrable in [— TΓ, TΓ] and
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be periodic with period 2τr9 and let u(ρ, θ) be the Poisson integral of f(θ).
Then

(i) ifθ<μ<land\>k>l9

I f»1t \ Ijμ pit

(3. 1) \j LUu; θ)dθ\ SS A(k, λ, μ)J f(θ)dθ,

(ii) if λ ̂  k > 1, and if f log+ f is integrable,

(3. 2) Γ UΛ(u; θ)dθ ̂  A(k, λ) Γ f(θ) log+ / ( ^ ) ^ + A(k, λ).

Since Lfcj\ is a decreasing function of λ, it is enough to prove these
results when λ = k. Further, if the results (3. 1) and (3. 2) hold for any
given k, then they hold also for all larger k. To prove this, we observe that
if r > k, then

L r > ; θ) ̂  A(k, r)f^-kyr(θ)LZ(u; θ)

(this follows immediately from the definition (2. 1) and Lemma 3). Thus if

0 < μ S 1,

Γ L%rdθ ^ A(k, r) Γ f*«r-"lrL?£dθ

t \ (r-fr)/r / «τ£

f*»dθ\ \j L»
Tcjr

by Holder's inequality with indices r/(r — k) and r/k. Using the inequalities
(2. 4) and (2. 5) for / * and the inequalities (3. 1) and (3. 2) for Lk1c9 we
obtain the inequalities (3. 1) and (3. 2) for L r>r, and this proves the statement.

In the proof of Theorem 2, we may now suppose that k is as near 1 as
we please. More precisely, we suppose that 1 < k ̂  4/3.

We prove next that if 1 < k ̂  4/3, then

(3. 3) LUu; θ) S A(k) sup j δ - Γ r

We have

By Holder's inequality with indices l/(k — 1) and 1/(2 — k), and by Lemma 4,

(3 5) Γ C ( P ' g . ^ ^ P(P, s ~ t)dt
L% | i — pe ι ί |*
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. __ A )2-fc

^ A(k)uk-ι(p\ θ + 5)

(since k/(2 — k) ^ 2), and (3. 3) is an immediate consequence of (3. 4) and

(3. 5).

4. Suppose now that 1 < k <^ 4/3, and for any y > 0 let Dy be the set
of 0 in — 7r < 0 < TΓ such that L^ fc(w 0) > y. Then we have

(4. 1) IAI ^-ALk-LΓf(θ)dθ.
y J-TC

Further, there exists a constant c, depending only on k, such that

(4. 2) IAI ^

The inequalities (3. 1) and (3. 2) follow almost immediately from (4. 1)
and (4. 2), respectively. The arguments used in the deduction of (3. 1) and
(3. 2), and also those used in the deduction of (4. 2) from (4. 1), are identical
to those used by Stein [12], and we therefore omit them.

Consider then the proof of (4.1). Here, too, the argument used is similar
to that of Stein, but the restriction to the particular case considered in
Theorem 2 enables us to make certain simplifications, and we therefore give
the proof of (4. 1) in full. We require two further lemmas.

LEMMA 5. Let f(θ) be non-negative and integrable in [— TΓ, TΓ] and be
periodic with period 2τr, let f*(0) be defined by (2. 3), and for any z > 0
let Ez be the set of θ in - ir < θ < TΓ for which f%θ) > z. Then Ez is
open, and

This lemma is due to F. Riesz [11].

LEMMA 6. Let Q be an open set situated in [— TΓ, TΓ], and let P be
its complement relative to this interval. Let P be the set of points θ con-
gruent modulo 2τr to points of P, and for any θ let A(θ) denote the distance
of θ from P. Let also f be non-negative and integrable over [— TΓ, TΓ] and
be periodic with period 2 iτ, and let

= r
\t

f { θ
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where k > 1. Then N(θ) is finite p. p., and

[ N(θ)dθ ^ A(k) Γ f(θ)dθ.

This lemma is due to Marcinkiewicz and Zygmund (see e. g. Stein [12]).
Now let z be a positive number, to be chosen later, and let Ez be the

set of θ in — TΓ < θ < ir such that f*{θ) > z. By Lemma 5, Ez is open. Let
P be the complement of Ez relative to the interval [ — TΓ, TΓ], and let Δ(#) be
the distance function of Lemma 6 corresponding to this set P. Since f*(θ)^ z
when θ belongs to P, we have

(4. 3) Ll*(u; θ) ̂  B,zk + B^'1 Γ -*—j£-±-*Lf(θ + s)ds
J-7C \ S \

for any θ of P, where Bx and B2 are constants depending only on k. For, by
Lemma 3,

0

whenever θ belongs to P, so that, by (3. 3),

(4. 4) Ll,(u; θ) ̂  A(k)z«-i sup \p-1 Γ , ^ + f?|fc ds\

J-* \s\*

and (4. 3) follows from (4. 4) and Lemma 2, since f*(θ) ^ z in P.

So far z is at our disposal. Choose now

Dy Π P is contained in the set of θ in which

So far z is at our disposal. Choose now Bγz* = yk. By (4. 3), the set

I s

i. e. is contained in the set of θ in which N(θ) > B3y, where N(θ) is the
function of Lemma 6, and 2?3 is an A(Jz). But, by Lemma 6,

Π P\ ̂  [ Ndθ^ [Ndθ^A(k) Γfdθ.

Since also
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\Ez\ <s_2_ Γfdθ = A^L f fdθ
z J-* y I-*

(by Lemma 5), and

I A , I = \Dy Π P\ + \DV Π Ez\ ^ \Dy Π P\ + \Et\,

this completes the proof of (4. 1), and so of Theorem 2.

5. We pass next to subharmonic functions. Here we have

THEOREM 3. Let zv(p, θ) be non-negative and subharmonic in the unit

circle. Then

(i) if 0 < μ < 1 and λ > k > 1,

(5. 1) ( Γ Lϊ lλ(w; θ)dθ\l1*^ A(k, λ, μ) Urn Γ ™(i?, θ)dθ,

(ii) ι / λ > * > l ,

(5. 2) f7" Lfcλ(w; θ)dθ ̂  A(k, λ) lim Γ «</?, β) log+te;(i?, ^ β + A(k, λ),

(iii) if P>1 and \> k ^ l ,

(5. 3) f' Iί | λ (w; ^ ) ^ ̂  4(*, A λ) lim Γ ^(Λ, θ)dθ,
J-7C R^-J-1t

provided in each case that the limit on the right is finite.

We require a further lemma.

LEMMA 7. Let w(ρ, θ) be subharmonic in the unit circle and satisfy

the relation

(5. 4) Γ w(p, θ)dθ ̂  C
* —A

for p < 1, and for 0 < p ^ R < 1 let uR(p, θ) be the Poisson integral of the

values of w(p, θ) on the circle p = R. Then as R-^l — the function uR(ρ, θ)

converges in the circle p < 1, and uniformly in any circle p ^ r < 1, to a

{finite) harmonic function u*(ρ, θ) such that

p, θ) ̂  **(fc θ)

in p < 1.

This lemma is proved implicitly by Littlewood [7],

Consider now the proof of the theorem. Since w, w log+ w9 and wp (p > 1)
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are subharmonic2), the integrals on the right of (5. 1), (5. 2), and (5. 3) are
increasing functions of JR3), so that the limits on the right of these inequali-
ties always exist. Moreover, if these limits are finite, then the condition (5. 4)
is satisfied, and we may apply the results of Lemma 7.

We observe next that if the conditions of Lemma 7 are satisfied, then,
for any fixed p < 1, uR(Rp, θ) -+u*(p, θ) as JR-* 1 —, uniformly in θ; this is
a simple consequence of the uniformity of the convergence of uR(p, θ) to
u*(p, θ) and of the (uniform) continuity of u*(p, θ). Hence for any fixed p < 1

(5.5) s - r
\l-peιi\

\l-peιt\κ

Now for any function F(R, p) defined in the square 0 ^ i ? < l , 0 ^ p < 1
and such that lim F(R, p) exists for each p, we have

(5. 6) sup {lim F(R, p)} ^ lim inf |sup F(R, p)\.
0Sp<l B^ l- B^l- 0=Sρ<l

Writing VR(P, θ) = uR(Rp, θ\ we thus obtain from (5. 5) and (5. 6) the relation

Lu(a; j θ) <: lim inf LJt>λ(t;Λ; θ)
ze-vi-

for any I > 0 and so, by the extension of Fatou's lemma which involves
limits inferior on both sides of the inequality,

(5. 7) Γ Ll,λ(w; θ)dθ ^ lim inf Γ L{ κ(vR; θ)dθ.

Applying now the results of Theorems 1 and 2 to the function
VF\P,Θ) = uR(Rp, θ) in the circle p < 1, making R-* 1 —, and using (5. 7),
we obtain immediately the results of Theorem 3.

6. It is not difficult now to extend the results of Theorem 3 to other
indices.

THEOREM 4. Let w(ρ, θ) be non-negative and subharmonic in the unit
circle. Then

(i) if 1 ^ p < k, 0 < μ < 1, and λ ;> k/ρ,

2) See, for example, Rado [10], § 3.13.
3) See, for example, Rado [10], § 2.4.
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j Γ Lΐ%zv; θ)dθ\Uμ^ A(k, A λ, μ) lim Γ w\R, θ)dθ,

(ii) if 1 ^ p < k and X ̂  k/p,

Γ : fit

LZtκ(w; θ)dθ S A(k, p, X) lim I zvp(R, θ) log+ w(R, θ)dθ + A(k,ρ, X),
(iii) if k ^ I, p > 1, and λ > sup (1, k/p),

r% n-rt

I Liyλ(w; θ)dθ ̂  A(k, p, λ) lim ί wp(R, θ)dd,

provided in each case that the limit on the right is finite.

We observe first that wp is subharmonic whenever w is subharmonic
and p 2̂  1, and that

Hence, by the inequalities (5.1) and (5. 2) applied to wv, with r in place of k,

I Γ L$λ(w; θ)dθ\lltί^ A(r9 λ, μ) lim Γ wp(R, θ)dθ

and

Γ LJr λ(w; <9)Ĵ  ̂  ^l(r, λ) lim Γ w%R, θ) log+ ze;(i?, 0)rfβ + A(r, λ)

for X > r > 1. If in these we write k = pr, we obtain immediately the results
(i) and (ii) of Theorem 4.

To obtain the result of (iii), we apply the inequality (5. 3), with r in
place of k and q in place of A t o the function w\ where I i> 1. This gives

Γ L{J|λ(τe;; 0)i0 ^ A(q, r, λ) lim Γ wlq{Ry θ)dθ

for # > 1 and λ > r 2^ 1. Writing Ir = k, Iq = A we obtain from this the
inequality

(6. 1) Γ L£>λ(zt>; θ)dθ ^ A(k, A ^ λ) lim

for & j> 1, /> > 1, ^ > 1, and λ > qk/p S 1. Here g is at our disposal subject
only to the condition q > 1. If now k/p < 1, we choose q = p/k, and then
(6. 1) holds for λ > 1. On the other hand, if λ > k/p > 1, we choose q so
that both q > 1 and λ > qk/p, and then again (6. 1) holds. Thus (6.1) holds
for λ > sup (1, k/p), and this is the required result.
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7. There are similar results for harmonic functions and regular func-

tions. These are as follows.

THEOREM 5. Let fiβ) be integrable in [— 7Γ, TΓ] and be periodic with
period 2τr, and let u(p, θ) be the Poisson integral of f(θ). Then

(i) if 1 <Ξ/> < k, 0 <μ < 1, and λ > k/p, and iff belongs to Lp(~ TΓ, TΓ),

\f LΐU\u\; θ)dθ\l'μ^ A(k, p, X, μ)J* \f(θ)\pdβ,

(ii) if l^ρ< k and λ ^ k/p, and if \f\p log+ | / | is integrable,

Γ L2,λ(\u\; θ)dθ S A(k, p, λ) Γ \f{θ)\plog+ |/(^)Idθ + A(k,P, λ),
J-lt J-Tt

(iii) if k>l, ρ> 1, and λ > sup (l, k/p), and iff belongs to Lp(~ TΓ, TΓ),

Γ Lϊ,λ(l«l θ)dθ ̂  A(Jfe, A λ) Γ 1/(6^)1^.

THEOREM 6. Let φ(z) be regular in \z\ < 1. Then

(i) if 0 < p < k, 0 < μ < 1, and λ ^ k/p, and if φ belongs to Hp,

\f L^(\φ\; θ)dθ\1!μ^ A(k, P, λ, μ)J* |^(O|W,

(ii) if 0 < p < k and λ ^ k/p, and ifφ belongs to Hp log+ H,

Γ Lϊ,λ( \φ\; θ)dθ ̂  A(k, P, λ) Γ I ^(^ ; θ ) Ip log+ I ^ ( ^ θ ) I dθ + A(A, A λ),

(iii) if k > 0, p > 0, and λ > sup (1, *//>), and if φ belongs to H%\

Γ LU\φ\; θ)dθ ^ A(k, p, λ) Γ i φ(eiθ)\pdθ.
J—tt J -it

The cases k = 2 of the results of Theorem 5 are slightly stronger than
the results of Stein listed in § 1, since Mκ(θ) ^ A(X)L2,x(\u\ θ).

Here Theorem 5 is an immediate consequence of Theorem 4. Alternati-
vely, it may be deduced directly from Theorems 1 and 2 using an argument
similar to that used in deducing Theorem 4 from Theorem 3, for, by Jensen's
inequality, \u\p does not exceed the Poisson integral of \f\p for p > 1.

Theorem 6 follows easily from Theorem 3 by an argument similar to
that used in deducing Theorem 4 from Theorem 3 (for | φ \p is subharmonic
for every p > 0).

9. Cesaro means of power series. We give finally a new proof of
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the following theorem of Stein, Zygπiund, and others (for references, see
Stein [12]).

THEOREM 7. Let φ(z) be regular in\z\<l, let φ(z) = Σcnz
n, and let

u
oo

σ%(θ) be the n-th (C9ά) mean of the series Σcne
m. Then

o

(i) if 0 < p < 1, 0 < μ < 1 and a > 1/ρ - 1, and if φ belongs to Hp,
( I** )ιlμ pit

(8. 1) | j |sup \σtθ)\\μPdθ\ ^A(p, a, μ)f \φ{eid)\*dθ,

(ii) if 0 < p < 1 and a > 1/ρ - 1, and if φ belongs to Hp Iog+H,

(8. 2) Γ I sup |αj(ff)| | ^ ^ A(A α) f* | ^ i 0 ) | p log+ \φ(eίθ)\dθ 4-

(iii) ifp>0 and a > sup (0, 1/p — 1); αnίί //" φ belongs to Hp,

(8. 3) Γ |sup |σ3(ff)| }*dθ <; A(p, a) Γ \<p(ei9)\pdθ.

It is familiar that

for \z\ < 1, where

m = ("* + i) (••••••) (a + *) ( n > oχ £? = i.

Hence

Z7Γ J^TC (̂ 1 — /3^ )

and so

(8. 5)

for /o<l. Multiplying both sides of (8.5) by (1 — p)", taking p = l —1/(Λ +
on the left, and using the fact that E% ~ A(ά)nΛ for α > — 1, we obtain

sup\σ%(θ)\ £ A(a) sup Iδ- Γ I ^ ^ ^ L

; (9)
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for a > — 1, and the theorem follows immediately from this and Theorem 6.

9. The proof of Theorem 7 given above shows that the inequalities
(8. 1)—(8. 3) do not depend on the presence of the oscillating factor e~nίι in
the integral formula (8. 4). In this respect they are similar to the case
0 < p 5j 1 of the inequaltiy which replaces (8. 3) in the limiting case
a = sup (0, 1/p — 1), namely

(9- 1) Γ W Ί 'f* '̂ )\9dθ S A(p, a, β) Γ
J-ic{ *** \ logV + 1) n I-*

which holds for a = 1/ρ ~ 1 and β = 1/ρ (see [4]). The case p > 1 of (9. 1),
which holds for a = 0, β = 1/ρ, or a = 0, β = (p — ί)/p according as
1 < p <Ξ 2 or /> > 2 (Littlewood and Paley [8]), would thus appear to be
the most delicate of all these inequalities for Cesaro means, for all the
known proofs of this case require some consideration of the oscillating
factor in (8. 4).
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