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In this short note we consider an z-dimensional differentiable manifold of
class C” on which a structure is defined by three tensor fields (generally com-
plex) FY, Ij‘{, F!P, of class C* satisfying one of the following two systems of

1 2 3

-onditions :
System A :

A, : Fl, F} are non trivial and not proportional.
1 2
A,: 1?‘,’1177 = Ap &8, [;’{ 1;4’}‘ = A} 8, where \,, A, are

fixed non zero complex numbers.

A3: {‘glz?.’/c = F:{F;}.

In this case, if we put

1 | F} = F] Fj =— FY,
1 2 2 1 3
then we have
(2) I;"i 13“}”’ =N\ 8,

k 2 K 1 2
F{F}‘=F;}E,=—MFU .l;-‘{Fj: z’ ?Z—le’-‘?.
1 3 1 2 3 2

3 1
System B :

B, : F, F! are non trivial and not proportional.
1 2

B,: FlF; = AN &, F]| F¥ =— A\ 8§}, where A;, A,
11 2 2
are fixed non zero complex numbers.

B3: i]F*_)':_F{E.
2 2 1

1

In this case if we put

1) The Latin indicies 4,7,k------vary from 1 to n.
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(3) {F{ =— FlFj = F},
1 2 2 1 3
then we have
1) 13'«“{ 1:‘3“ =AM\

B == RE =N RE == R =N

We call the structure satisfying system A or system B respectively the
structure A or structure B for convenience sake.

Such structures are said to be integrable if at each point of the manifold,
there exists a complex coordinate system (i. e. 7z independent complex valued
functions of the local coordinates of the points in the neighborhood) in which
the fields lF’, f‘j and 137{ have simultaneously numerical components [1]”.

In the following, after some preparations the conditions for the integra-
bility of structure A and structure B are studied by different ways.

It is evident that structure A contains as special cases the case II (A = 1,
M=MM=—1or M=AM=—1, A]AI=1) and the case IV (Al = M =N\]
= 1), the structure B contains the case I (A} =— 1, A3 = 1) and the case IIIl (\i =
— 1=A or A=\ =1) of a previous note of the present author [3]. In
these cases, all the tensors 11?‘,’», 1;1“’, I;‘{ are real. The results obtained below

hold also fer these cases.
1. In this section we treat the structure A and obtain its integrability
conditions by applying a result in a previous paper of the present author [4].
A manifold is said to be endowed with an 7-#-structnre if there exist r
distributions (differentiable) ’{’, T,...... T of (complex) tangent subspaces such
2 r

that Tp = Tp +...... + T¥direct sum) holds at each point, where 77 is the
1 r
complexification of the tangent space at P and T is the subspace at P belon-
t
ging to the distribution 7' [2] [4]. Then we have
t
THEOREM 1. If the manifold has a structure A, then the manifold is

endowed with a 4-m-structure or with a 3-mw-structure. In the latter situa-
tion, there is the following relation :

- lwm_ 1 oy
AT M T M8

The converse also holds good.

2) Number in bracket refers to the references at the end of the paper.
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PROOF. Let the linear transformation induced by Fj(e¢ =1,2,3) in Ts be
a
denoted as 7¥. The proper subspaces of §§ corresponding to the proper value A,
a 1

and — A, are respectively denoted as T, and T... If we use the adapted basis
of T% [i.e. the basis of which the former 7,(= dim T,) vectors are in T\,
and the other 7,(= dim T:) vectors are in T:-], we have

— E"l 0 — A"l 0
) = "1(0 L) and 7§ = (o An)

as 7%, 7% commute. Here ¥ also represents the corresponding matrix, E,, denotes
1 2 a
the n#, X n, unit matrix, whereas A», denotes a 7z, X 7, matrix. Since §*= A3
2

I (3 : identily transformation), we have A%, = A{ En, A, = A En,. Hence An
and An, corresponds respectively to the linear transformation $§  and ¥ induced
2 2

by &% in Tv and Ti». If 5% and % are non trivial on T4 and T, respectively,
2 2 2
then we denote the proper subspaces of §¥ in T,  corresponding to A, or — A,
2
respectively as Ty, T and the proper subspaces of 5% in T corresponding
2

to A, or — N\, as Ty and T, It is now evident that the manifold is
endowed with a 4-7r-structure defined by the four distributions: Taay, Tams,
Tarzy, and Tqwry. If we denote the projection operations from T§ to Ty,
Tawry, Tarey and Taowy respectively as Py, P,, P; and P,, then we have

(6) S=Pi+ P, + P+ P, {EIXL(P1+P2—P3—P4)
%=x2<P1—Pz+P3_P4) %z—XIXZ(Pl—P2_P3+P4)'

Next, if %i' is trivial on Ti  and %E" is trivial on T4y, then ?f, 7:6 are pro-
portional and this case is excepted. So if %} is trivial on Ty, then Ez is non
trivial on T'-. In this case %23 has only one proper value and its proper
subspace is Ty, itself. Whereas % has two proper subspaces T2y and Ty

in T corresponding to the proper valuer A, and — A,. Thus the manifold is
endowed with a 3-w-structure defined by T, Tay and Tare. Denote the
projection operations from T3 to Ty, Ta», and Tarw respectively as Py, P,
and P;, then we have

(7) S =P, + P, + P, %z)"l(P1—P2_P3)’

1

%:X2(PL+P2—P3),7

2 3

:"‘X‘XZ(PI_PQ'*‘Pa).

w
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From which we have

® Lo Ly L g=y

A AT M, 8
ie. LRl p_ 1 pm_y
Ny 2 MoLOAN,

Conversely, if the manifold is endowed with a 4-7-structure and the proj-
ection operations from 7% to the four subspaces induced in T% by the distri-
butions are denoted as P,, P,, P; and P,, then the tensor fields corresponding
to the linear transformations 75 in (6) define a structure A. In case the manifold

is endowed with a 3-sr-structure, the tensor fields corresponding to the linear

transformation §§ in (7) define a structure A for which the relation (8) holds.

Let the tensor associated to the m-structure is denoted as F! and the

linear transformation induced by F! in T3 be denoted as %= . If a 4-w-
structure corresponds to the considered structure A, then we have

9) %ZX(P1+"’?P2+“’%P3+“’1P4)

where A is a non zero complex number and @, is a fourth power root of
unity. If we solve P’s from (6) and put them in (9) we have

A

A 2
10 = o) F + (1 + &) F — —
{10 ‘ 2x LR SRt ]
i e Fl=-2(1+e)F + W)F — —_ F.
2N 3 22, 2 2A A, 3
From which we have
an §=2 1t e)F - ),
2 27\._, 2
B= Xt e)F (1 + ) (1 + o)
f le : 2hg VY zx e '
2
where F = %? and C} ? denotes respectively the linear transformation induced

by F’“ F! F%and F F¢F'°F,’C From (10) and (11) we can solve C‘f, % §-’

and express them as linear combinations of j§ = ‘}, 3 and CE
If a 3-wr-structure corresponds to the structure A, then we have

(12) %= NP, + “’sz + @, P),

where A is any non zero complex number and @, is a cubic power root of
unity. Solving P’s from (7) and put them in the above expression (12) we
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A Aw Aw;
13) §= - F
1) 5 2\ g 2, q 2A ), g

2
e Fl=_L Fl— Mgy A oy
S Y ST YT LS W Wl

From which we have moreover

2 2

(14) 8=

X(Dl ).2(01
- +
o, ] N, 0] N, 5>

where % is defined by the same way as above. From (8),(13) and (14) we can
solve °§, % and C? expressing them as linear combinations of <, %} and %

Now let us conS1der the relation between the integrability of the structure
A and that of corresponding sr-structure.

By definition, an 7-7-structure defined by 7 distributions T'(t= 1,...... ,7)is
said to be integrable if at each point of the manifold there is a complex coor-
dinate system(i. e. # independent complex valued functions of class C* 2%,...... ,2" of

local coordinates) such that the subspace T is represented as dz% = 0, i.e. d2' = 0
t

except d2™ where a, varies from n,+...... +n,+1to n+...... +n, (n, =
dim T)t=1,...... , [2] [4]. Then we have
t

THEOREM 2. A structure A on the differentiable manifold is zntegrable
if and only if the corresponding m-structure is integrable.

PROOF. Suppose the considered structure A is integrable, then there exists
a complex coordinate system in which FJ, F} and F] have simultaneously num-
1 2 3

erical components. If the corresponding #r-structure is a 4-7-structure, we can
obtain a new coordinate system zf (each zf is a linear combination of the old
ones with constant coefficients) in which the three tensor fields are expressed
as follows:

T Es 0 \ —_ ’_Es 0
(15) (lj‘t) = 7\'1 _Et > (Iz‘;) - 7\'2 Et »
0 —E, 0 —E,
E,

(f‘:):_)\q)\z _%Eto s

0 E,
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where E, denotes the 7 X 7 unit matrix, r =dim Tawy, s =dim Taury, t =
dim Ty, u =dim Tavpn and #, =r+ s, n, =t + u, n, + n, = n. From
(10) and (15) we have

E,
N — o} E, 0
(16) #=ry "B g O
o, E,

form a basis of the subs-

From the above expression it is evident that

4
pace T, i.e. T is expressed by dz® = 0. Thus the 4-7-structure is integrable.
t t

Conversely if the correspondi..g 4-7-structure is integrable, in the coordinate
system in which T is expressed by dz"t = 0, we have (16) and consequently
t

(F), (F)), (F}) have simultaneouly numerical components as these tensors can
1 2 3

be expressed as linear combinations of (8!), (FY), (fz?‘[’) and (I?"'{) with constant
coefficients.

If the corrsponding m-structure is a 3-7r-sturcture, then there is a coordinate
system (2f) in which

En, 0 Ex, 0
(17) (th) =N ‘_Et ), (F«,) = Ny EL s
! 0 WA 0 —E,

E, 0
(F{):_ XL)‘Z( —E, )
8 0 E,

Putting there expressions in (13) we have

En 0
(18) (FH) =2 wlE, ) .
0 " oE,

Then the remaining reasoning is the same as in the case of 4-7r-structure. Q.

E. D.

It is shown in [4] that if the manifold is analytic and both the real and
imaginary parts of F| are real analytic functions of the local coordinates, then
the ar-structure is integrable if and only if the torsion tensor of the #r-strucutre
vanishes identically.

For 4-m-structure, the torsion tensor of the sr-structure is the following :

. 1 3 o« 2 1 B 3
(19) i =" |73 2 ME fo+ ¢ Nk [
a=1
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1 1 3 2 12 1
-% +7—@m+Nmm
where

(20) M"" = ?F‘,‘é + & FY} Jm =0y Fi' — 9q Fy,

ab a b b a
N?XZF‘;H'FF?FL )lc_FIFq
Putting (10) and (11) in (19), we have by simple calculation the following :

21 = — M
(21) Tk 1 ]2)&( 1) fm
1 2
+ ——(1 - —— (1 -
, zm&( DM [ + zx%x::j( “)

(N%%+N%%+NW%L
12 3 23 1 13 2

where
fh=0F— 2. F}
(22) My = 8§ Fi + 8. F), 1Y?Z={"§'F}5+F’}f‘§.

It is evident that the Nijenhuis tensor N (F) of Fj is a constant multiple
a a

of M3 fm. Since tj is a tensor, it follows that the following M (F, F, {) is
a a
also a tensor :

3
+(F” +F”Fq) {8,,F'" 8QF'”)
+(F112;'“+Ij"{"q) (31:{""‘ 3:;{"”)-

For the 3-m-structure the torsion tensor of the #r-structure is as follows :

20  G= yV{ZZMfw% Crfa + CRFA).

Before transforming this formula, we first obtain some relations to be
used later :

From (8) we have
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1 1 1
25 - q T T = 0
( ) ),2 m ),l fpl xlxz fl"l
and
P — _1__ e 1 q
(26) "= N e BNl Ik + —— 7\2 C
1 " 1
i + —— N¥ — N7,
A, =T A, B A B
in which we have put
27) I = &8 &, C% = Fj Fi.
We can also reduce the following formula from (8).
1 1 .
28 21 = — M5 — — Mj; — M.
(28) 5 A TR o, 3
On the other hand from the definition (22) we have
(29) Aﬁf’rl M})IZ =2 7\'2 1Jh + 2 Cflkll

2 ik
Mflkl M1k - 2 X ]1kl + 22 %’6‘1’ 3M11"1 Mﬂc — 2 ):1 7&; hlcv + 2 Cflkl’
and
.3 nq —
M,m M thl M}'k’ =— Mji, + Nj,,q,

(30) M71k1 Mﬂc — Mm.:l m - 7\7 11k1 + Nhkp

_ _ 2
thl ch - Mh 1 ﬂc ==N Mhlcl + N;lkl

Multiplying (28) by J}ﬁfkl, and sum up with respect to j,k we have

(31) 2 M7, = L - mkl + Nflkl - ’l‘ (2 A Iqukl + 2 %ol)
1 A, 3 A 1

1

- 7\17\'2 ( A Mlkl + le"’l)

Similarly

(32) 2 M;?k] - T(Z )F hl‘x + 2 lekl) - 1 (_

2

5%, + Nik)

- (= 23 Mg, + N
1k1 hk1/s
MM 2
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2 Mty = - (= N My + Nff) — <= (= X M, + NI,
3 )"2 1 )‘1

@NNIG, + 2C3).
vz 3
Substitute (13) and (14) in (24), then make use of the above relations
(25), (26), (31) and (32), we get

mo_ 1 (g1 amaem 1 preagm
tllc 16 {3<7\€ 1i/c_}fm‘l‘ )\3 21»];111"1' )»17\.» fm)
+ (N fm+N "L'I'quf;;)j’

Xl XI 12

From the above preparation, we have the following :

THEOREM 3. Assume that the manifold is of class C° and both the
real and imaginary parts of each of the tensors Fl‘,-’, F, 1:" of the structure

A are analytic functions of the local coordinates. Then the structure A is
integrable if and only if all the Nijenhuis tensors Ny (1F ), Ny (F), Ni(F)
2 3

and the tensor My (F, F, f‘) vanish identically.
1 2
PROOF. From (10) and (13) it follows that both the real and imaginary

part of the tensor F/ associated to the sr-structure corresponding to the consid-
ered structure A are also analytic functions of the local coordinates.

If the structure A is integrable, then the corresponding r-structure is
integrable, so all of the Nijenhuis tensors Njp (IF ), Ni(F), Njp (I;"), and the
2

torsion tensor of the corresponding #r-structure vanish identically. Hence from
(21) and (23) it follows that M% (F, 121", f‘) must also vanish identically
1

Conversely, if all the Nijenhuis tensors Nj. (F), Ny (F), N} (3F) and the tensor
1 2
My (F, F, 3F) vanish identically, then the torsion tensor of the corresponding
1 2

mr-structure (21) or (33) vanishes identically, so the #r-structure and hence also

the structure A is integrable.
2. In this section we digress to the (F, F)-connection of the manifold
1 2

having structure A. By definition a (F, F)-connection of the manifold with a
1 2

structure A (or B) is a linear connection which makes all the tensors F, F]

1 2

and F} covariant constant [1]. A linear connection on a manifold with #-stru-

3
cture is called a sr-connection if the coanection makes the tensor F] associated
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to the 7r-structure covariant constant [2] [4]. Then from (10), (11), (13), (14)
and the fact that &, 8’,% can also be expressed as the linear combinations with
1 2

a
constant coefficients of § and §’s (@ = 1, 2, 3 for 4-w-structure, whereas g =
1, 2 for 3-wr-structure), it follows that a linear connection on the manifold with
the structure A is a (F, F)-connection if and only if the connection is the -
T 2

connection with respect to the corresponding #-structure. On the other hand it
is shown that on the manifold with a #-structure, there exists a connection

having the torsion tensor of the z-structure as its torsion tensor [4]. Thus we
have

THEOREM 4. Oz the manifold with a structure A, there exists a (F,F)-
1 2
connection which is symmetric if the structure is integrable.

3. Finally we consider a manifold with a structur B. For this case, we
have in place of theorem 1 the following :

THEOREM 5. If the manifold has a structure B, then it is of even
dimensional (n = 2m) and there exist two complementary distributions of
m dimensional subspaces T', T  (i.e. Té= T + Tp: direct sum) and a
system of isomorphisms S of class C=: Sp: Tr»—> Tp. The converse also holds
good.

PROOF. Using the notations as in theorem 1, & has the following form
1

with respect to the adapted basis in T5:

A En, ()
34 = ( )
84) 7= —2\En,
By B; it follows that § is then represented as follows :
2
0 Fg.
35 = ( 2 ) ’
(35) 5=(m "
where a, 8 = 1,...... n; oaf, B =mn, + 1,...... , m, + n, = n. Since § is non

2

singular, from (35) we have n, = n, = m.

Now let v € Ty, then §v = \,v, hence i}i}'v = E}i’{’v =— g?()ulv) =—\,

1 2 2 2
&v, that is Fv € T,.. Since & is non singular and dim 7T, =dim T,., it
2 2 2
follows that & is an isomorphism from T, onto T,..
2

Conversely, assume that the manifold is of even dimensional (z = 2m) and
that there exist two complementary distributions of m dimensional subspaces
T, T, and a field of differentiable isomorphisms S: Sp: T,:» — T,r. Denote
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the projection operations from T5to T,» and T)prespectively as P, and P,.
Then define

(36) i?v = M(Pv — Pu),
Fv=NSPv — NS'Pyo,
2

where v € T A, and A, be any two fixed non zero complex numbers. Then

we have

37 i?”'o = Nuv.

Since SP, v € T, ST'P,v € T, it follows from (36) that

(38) P, ;8'0 = N,SP,v, P, z%v =— A, S"1P,v.
Hence

CLE(?'U) = N\ SP 1(?‘0) — NS 2(?'0) =— NP, v — MP,v,

that is

(39) F'v =— Nv

2
Moreover, since

gP]_v = )QSPI'U = Pg?ﬁ"() e Tl”, %sz - XZS-lpz’U = Plgv 6 Tl"

we have
‘{?{Zv = {?(?ZP,'() + %}ng) = hl?ngv — XlifPl'v,

%;f%;f'v = §(X1P{v — M Pv) = AP — 7&1§;§Pz‘v,
2

therefore, we get

(40) : %}%23"‘0 - 72 ?’Ev.
f we put
@ =1

then we have
(42)  FF=—-FF=NF, FF=—3F =— M. Q. E. D.
Let the proper subspaces corresponding to the proper values i\, and — ),
of & be denoted respectively as T,  and T,-, then $§ restricted to T, is an
2 1

isomorphism between T, and T... Because, & is non singular and if z € T,
1

we have %zu = Az and i}(l%u) =— 'i:r(z%u) =— ilF(iMu) =— ixz?”u, thus %?u
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€ T,. Moreover, any two of T, T+, T,, T, are complementary to each
other. For if v € Ty, it follows P,y =0, Pv=v and §v € Ty.. If v € Ty,
2

also holds, then Fv = #\,v, hence v € T~ and consequently v = 0.

From the above, it is evident that the results of #-structure can not be

applied to the structure B. For this case quite similar reasoning as in the case
of the integrability of quaternion structure treated by Obata [1] can be applied
and one can get an analoguous theorem to the Theorem 5.1 of Obata’s paper.
We do not go in detail in this matter.

In concluding, I express my sincere thanks to Prof. S. Sasaki for his kind

guidance and valuable suggestions.

(11
[2]
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(4l
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