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1. Introduction. In the preceding paper (Sunouchi-Watari [7]), we have
determined the class of saturation for various methods of summation in the
theory of Fourier series. In this note we shall prove Fourier integral analogues
with necessary modification. = But we need somewhat complicated arguments
because of the non-existence of the Fourier transform for the class L*(p > 2)
and the pointwise indetermination of the transform even if it exists.

Suppose now that a singular integral operator with kernel k(z)

(1) Tde)= Tdt; f) = 72% f_ TRt + Wk (%) du

exists. In the following line, the norm means (C) or L?(» = 1) norm. If there
are a positive non-decreasing function @(£€) and a class of functions & such that

19) ||Te) — f@®l = O{p(€)} as &€ — 0 implies that f(¢) is an invariant
eiement of the operator TE(t' )y

2°) | Tde) — f@)l = Olp®)} implies f(2) € &,

(3°) For every f € R we have |T«¢) — f(#)]| = O{p®)},
then it is said that the singular integral operator (1) having the kernel k(¢) is
saturated with the order @(¢) and the class .

Our problem is to determine the order @(&) and the class & of saturation.
Recently P.L. Butzer [2] has solved the saturation problem for some singular
integral operators from the general theory of semi-groups. But many popular
singular integral operators don’t make semi-groups. @We shall give here a
direct method to determine the class of saturation for the general operators
of singular integrals and supply proofs of some conjectures of Butzer.

We suppose that the kernel k(¢) has a continuous function K(u) as its
Fourier transform. Moreover we suppose that for some positive functions

P) (@) 0 as €—> + 0) and Y(u), we have

@ fim 1B = b e+ 0)
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for all . Roughly speaking, we shall see that this @) is the order of satura-
tion and Y(u) determines the class of saturation.

2. The case f(t) € L”(— o0, ) (1 < p < 2). Since f(¢) € L?(— oo, o).
(1 < p=<2), there is a Fourier transform F(«) such as

1 « —iut j—
e f_mf(t)e i (p=1)

Fu) = lim—L— [ "Foe dt (1< p=2)
Ended \/271’ —-a -

Flu) =

where 1/p + 1/q = 1.
By the convolution theorem,

Tt) = Q% [~ Flkube du,

—oco

where this integral is assumed to exist.
First we consider the proposition (1°).
Since the formal Fourier inversion of f(¢) — Tt) is

\/_12_;: f_i { 1— K(uf‘)} Fu) ™ dt,

the Fejér’s integral of this is

2 sin? %(x— t)

LD = Te@) = [ 170 = T} — 2 —

_ :\(1— ’XL’) F(w)(1 — K(ué)le™ de.

From Jensen’s inequality, we have
oL Te(2) — FON = [ Te) — £

Applying Fatou’s lemma and noticing (2), we get
A

if (1—M) Fw) ¥ () & du
-A

A
The uniqueness theorem of trigonometrical integral (Cooper [3]) yields

Flu)¥(u) = 0, a.e.

and Y(«) <=0 implies F(z) =0, a.e. That is f(£) =0, a.e.
By the same argument the hypothesis

1T(s) — fOll = Ole(®)}

= o(1).
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implies

= O(1).

sup
A

f_:( ‘;1) F) ¥ () e™ du

If p=1, by Cramer’s theorem [4], F(u)¥(u) is representable by the
Fourier-Stieltjes integral of a function of bounded variation. Especially if
Y(u) = u" (k= a positive integer), then f“ () € BV(— o0, o) and Y (u)= |u|*,
then ?"‘"’(t) € BV(— o0, o0) when £k is odd integer.

If 1 <p=<2, then by a theorem of Offord [6], if we put

50 = = [ (1= 1) R vy e au
then, there is a function ¢(¢) € L?(— oo, o) such that
(p)
lim g(2) = 9(2).
When Y(u) = «*, or |u|*, then f*(¢) € L".
3. The case f(¢) € L” (— o0, 0),(2 < p < ) and the case C(— oo, ),

In this case we will assume

F@/(1 + [¢]) € L(— oo, o0).

Of course f(t) € L”(— oo, o) implies this. Instead of the Fourier transform
of f(t), we may take the first transform of Bochner-Hahn (Bochner [1] and
Titchmarsh [8]). We define

£ -t f(t)(e'““ 1)
Fu) = [L f} dt-i-\/'”[ - dt.
Since &F(u) is absolutely continuous in every finite interval, we can define
F(u) = & (u).

Then the Fejér’s integral of f(¢) — T¢(¢) is the same form in the ordinary
case and we have

f’:(l— |—;il> F(u) ¥(u) €™ du

= o(1)

under the assumption ||T«t) — f(2)|| = o{@&)} and

f_ < '—%') F) %) e dul| = 0(1)

sup
A

under the assumption ||T(¢) — f(¢)]] = O{@(é)}.
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Using the same theorems as in the above case, we can conclude respec-
tively that

f@& =0, a.e.

and

1(1’;;1 —1=f)‘ <1—|~u—|> F(u) ¥(u) é™ du, (2<p<oco, p=oco for the case C)
A—>eo »\/2'71' —A A ’ ’

exists.

If the norm is L’-norm and Y(k) = #* or |u|*, then f® ()€ L"(2<p< o)
and if the norm is C-norm and Y¥(x) = «*, then f®(t)€ L=, and if Y(k)=|u|*
where % = odd integer, then f®(¢) € L™

Thus we have complete solutions of the problems (1°) and (2°). For the
proof of (3’), we can use the so-called singular integral method and there
are many avaiable results.

4. Determination of the class of saturation for various singular
integral operators. In this section we apply the above general theory to
the special singularintegral operators. Since the proof of (3°) is routine argu-
ment, we omit it.

(a) Fejer’s singular integral.

This is

s = [ e[ g

Since

1 sin (£/2)7? 1
k(t)_Mﬁ[ e } and K@) =1— |u|,

(&) = & and Y{u) = |u| respectively. When we take the C-norm, the class

of saturation is the functions | f(l)f?(t) € L=} and the order is & and the
invariant element is o. We denote it by

Sat [F(®)l = (fO)[F(®) € L=; &; o
Analogously we get
Sat [Ft)lw = (ADIF @ € L% & o}, (p>1)
Sat [F(0)l = [fD[F(&) € BV; & ol.

(b) Poisson-Cauchy’s singular integral.

Pt f) = % I %‘l du.
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Since k(t) = 2 1 a4 K(u) = e ™
o 1+12°

we have

o(&) =& ¥(u) = |ul.

The saturation is the same as the Fejér’s integral.
(¢) The generalized Gauss-Weierstrass singular integral. This is

. — ? _1_ < -|u/g|P
Tt f)-——mw)) : f_&f(t-l-u)e WE 2y (p > 0).

If p=1, this is Picard’s singular integral and p =2, this is Gauss-Weierstrass
singular integral.

Si = & 27 p -
ince E(t) ST(1/) e
we have
_ P Tl —tur g, P =
K= - -
(u) oT(1/p) _me e 'dt T(/p) j{: e Y cos ut dt
| ~ 2 I(1/p) _ T(3/p) wl
I(1/p) ? 2p

for small z (Hardy [5], p. 282). So
1 — k(uf) ~Cu* &
and
@(§) = & and Y(u) = u’.
Sat [T{)le= {f®)|f@®) € L~; &; ol,
Sat [Td)w = (S| f'@) € L”; &; 0}, (p>1)
Sat [T«e)]: = {f[)|f () € BV ; & o}.

Some of these are conjectures of Butzer [2].
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Added in proof. During the present paper was printing, there have appe-
ared following two papers, “Sur le role de la transformation de Fourier dans
quelques problémes d’approximation” by P.L.Butzer, Comptes Rendus Paris,
249 (1959), 2467-2469, and “Saturation sur un groupe abélien localement comp-
act”, by H.Buchwater, Comptes Rendus Paris 250 (1960), 808-810. These papers
include the result in the article 2 of the present paper. But this case (L* (1 =
P = 2)-appoximation) is treated essentialy in the same way to the Fourier series
case. L” (p > 2)-case and C-case of the present paper are new.





