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In a previous paper [3]", we have generalized the notion of analytic tensors
and obtained the one of ®-tensors. As a natural developement, we shall deal
with locally product Riemannian spaces. Since such a space is formally analog-
ous to a Kihlerian space, it seems to be interesting to translate well known
theorems in the latter to the former.

We shall devote § 1 to preliminaries. In § 2, we shall obtain an integral
formula for a tensor field in a compact orientable space and give an application
on harmonic tensors. In § 3 another application will be given and we shall see
that in a compact orientable locally product Riemannian space an infinitesimal
projective (or conformal) transformation is necessarily an isometry. In §6 we
shall discuss infinitesimal product-projective transformations which correspond to
holomorphically projective transformations in a Kédhlerian space. Its preliminary
results are given in §4 and §5. In §7 infinitesimal product-conformal trans-
formations are defined and discussed.

The author expresses his hearty thanks to his colleague S. Ishihara who
gave him many valuable suggestions in the course of the preparation of this

paper.
1. Preliminaries. Let us consider an n-dimensional locally product Rie-
mannian space. Then, by definition, there exists a system of coordinate neigh-

borhoods {U,} such that in each U, the line element is given by the form

n

»
1 1) I = 3 gul@) ddz* + Y gula) dztdz,

Ap=1 a,b=p+1

and in U, N U the coordinate transformation (2%, z) — (z", x*') is given by
the form

(1. 2) ¥ = 2V (z"), ¥ = 2¥(2%).

Such a coordinate system (z*, =) will be called a separating coordinate

1) See the Bibliography at the end of the paper.

2) As to the notations and the terminologies, we follow [3]. We agree to use the following
ranges of indices throughout the paper 1=, p,..=p<n, p+1=a,b,..=pitq=n, 1=i,
Jokyey 18,0
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system.
If we define @," by

. 3) wo=( gx)

in each U,, then they define a tensor field and satisfy
(1. 4) o 9, = &",

(1. 5) 9iP; = 9 Pis

(1. 6) viei" =0,

where v; denotes the operator of the Riemannian covariant derivation. (1. 4)
shows that @," assigns an almost-product structure to the space [1], [2], [5],
[6]. (1. 5) means that the Riemannian metric tensor ¢, is pure in the sence
of [3].

Conversely consider an n-dimensional Riemannian space M which admits
a tensor field @,* (¥ §,") satifying (1.4), (1.5) and (1.6). By virtue of (1.4),
the matrix (@,") has = 1 as its proper values. Let us denote by T(P) the
tangent vector space of M at a point P and let E(P) and F(P) be the proper
vector spaces corresponding to the proper values + 1 and — 1 respectively. If
we put dim E(P) = p and dim F(P) = q, then they are constant and it holds
that ¢ = @,” = p — ¢ = n — 2 g. By virtue of (1.6) the field of vector spaces
E(P) (resp. F(P)), P € M, constitutes a p-(resp. ¢-) dimensional involutive
distribution [6]. Consequently there exists a system of coordinate neighborhoods
such that (1. 3) holds good. Since @, is a tensor, coordinate transformations
among the coordinate systems are the type of (1. 2). In such a coordinate
system, (1. 5) is equivalent to ¢., = 0, from which and (1. 6) we have g¢,,.
= g\(z") and ¢, = g.,(z°). Thus the space under consideration is nothing but
the locally product Riemannian space.

Throughout the paper we shall assume that M is an n-dimensional locally
product Riemannian space whose positive definite metric tensor is given by g,
and that p and g are greater than 1.

We shall say that a vector field v' is decomposable®, if its covariant deri-
vative is pure, i.e., § @;" = 0 is valid®. With respect to a separating coordinate

system (2%, z%), it is equivalent to the fact that 9,2" =0 and 9,v =0 are
valid.

A tensor field will be called decomposable if it and its covariant deri-

3) A covariant vector field »; is called decomposable, if #i=¢g'7u, is decomposable. This
is equivalent to the fact that wju; is pure.

4) £ denotes the operator of Lie derivation with 1espect to vt
v
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vative are both pure. Hence a tensor &" is decomposable if &°% =& =0,
&+ = EM(x") and &,” = £,%(2") are valid in a separating coordinate system. In
particular, ¢;; is decomposable.

Let R,", Ry = R,;;” and R = R;;¢’* be the Riemannian curvature tensor,
the Ricci tensor and the scalar curvature formed from ¢, respectively. Then
the following lemma has been known [3].

LEMMA 1. The Riemannian curvature tensor and its succesive covariant
derivatives are decomposable.

The following identity is well known

a7 v,R = 2 v,R;.
Since we have known that y,R;; is pure by virtue of Lemma 1, the iden-
tity :
(1. 8) V,R* = 9/v.R
is obtained, where we have put R* = @R, .

2. An integral formula. In this section we shall only consider a compact
orientable space M. Let &, =&, ..., © be a tensor field and define

E‘(’l) = ?‘r--"l = Elp..‘igr¢ilr’
a;(;)(f) = (¢errE(i) - sz?t))¢jl
= vfw — 2;'v.Eh-

If &) is pure, then a;4)(€) = 0 means that &;, is decomposable, i.e., v.&,
is pure.
Denoting the square of a;:(€) by a*(€), we obtain easily

V' (2:0E") = (Van)E" + (1/2) a(§),
from which and Green’s theorem we have

THEOREM 1. In a compact orientable space M, the integral formula
f[(VTVTE(t) — @"'v,v.EiEY + (1/2) a*é)]ds =0
ar

is valid for a tensor field &., where do means the volume element of M.

COROLLARY. In a compact orientable space M, a necessary and sufficient
condition in order that a pure tensor ;, is decomposable is that

5) The tensor ®j; is a Riemannian metric tensor whose inverse is given by @/i=9,%.. The
scalar R* is nothing but the scalar curvature with respect to the Riemannian metric
P ji.

6) In this section, p does not mean the dimension of E(P).
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v Vo = ¢"v.v-
On the other hand we have known [7] that in a compact orientable Rie-
mannian space a skew-symmetric tensor &; is harmonic when and only when
it satisfies that

V4
2 1) VV.Eo —2 R E v + ZRlllkNEip...r,us...h =0.
k=1 1>k

Now let &, be a pure harmonic tensor, then &, is a skew-symmetric pure
tensor [3]. Since we can see that &}, also satisfies the equation of the same

form as (2. 1), we have

LEMMA 2. In a compact orientable space M, if a pure tensor €y is
harmonic, then so is Ef,.

If &, is pure harmonic, then it holds that
» »
sz(t) = Zkafrp.‘.r...il, VLEZ) =Zka ?;...l...il-
k=1 k=1

Hence we have

»

»
¢”VthE(*L‘) = @'y, {Z Vi,‘fﬁ,...e...i,:' = V- [Z Vt,,(¢1"§7,, ..t.A.n)}

k=1 k=1

»
= Vr [Z V'IcE"p'-~7'--~'l:| = VTVTEU)'
k=1

Thus we get

THEOREM 2. In a compact orientable space M, a pure harmonic tensor
is decomposable.

3. Infinitesimal transformations. As a corollary of Theorem 1, we have

THEOREM 3. In a compact orientable space M, the integral formula
[(V'V,vi — @"v,vl) v* + (1/2) a*(v)] do =0
nr

is valid for a wvector field v'.

In this section we shall give some applications of this theorem. Let us
consider a vector field »* and put

" = %f}ht} = y,viv" + R,;"v".

Taking account of the purity of R,;", if we transvect the last equation with
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'@, then we have
P"@i'ty" = @''v;vio™ + R
Hence we find
(GABY) 9t — 9"/t = Vv — @'y va"

Now consider an infinitesimal projective transformation v, then it satisfies
by definition

(3. 2) tnh = pjaih + szjh,

where p; is a certain vector.
Substituting this into (3. 1) it follows that

3. 3) Vv = 9 vy,
which and Theorem 3 show that v’ is decomposable, i. e., it satisfes £ @, = 0.
On the other hand, since the identity ’
fv/Vj%h - Vj%ﬂ’zh =t,'p) — ti'p,"
holds good, we have
t'pl =t
from which and (3.2) we obtain p,=0. Thus

THEOREM 4°. In a compact orientable space M, an infinitesimal pro-
Jective transformation is necessarily an isometry.

COROLLARY. In a compact orientable space M, a Killing wvector is
decomposable.

In the next place we consider an infinitesimal conformal transformation
v'. It satisfies by definition

(3. 4) :fgg,, = v,u; + Viv; = 2pG,
where p is a scalar, from which we have

(3. 5) tu' = pA" + pd" — P'0, P =0
Hence taking account of (3. 1) it follows that

3. 6) V'V — @'Vl = — np+ @pl

On the other hand, from (3.4) we have
V.U =np, VY = @p.

7) Cf. Tashiro, Y. [4].
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Hence it holds that
—np = — (wuvy,v' )0
=@ p) - vi(v'v,0"),
npiv' = (@,'v,v,0" )"
= v(v*'v,v") — n pp*.
Substituting (3.6) and (3.7) into the integral fofmula in Theorem 3, we obtain

3.7

f [(* — @?)p* + (1/2) a*(v)] do = 0,

which shows that p = 0. Consequently we have

THEOREM 5. In a compact orientable M, an infinitesimal conformal
transformation is necessairily an isometry.

4. Separately Einstein spaces. If the Ricci tensor of our space M
satisfies the relation

(4-- 1) Rjt =a gﬂ + b Pty

then we shall call the space a separately Einstein space. If we make use of a
separating coordinate system (x*, z“), then (4. 1) becomes

R\, =(a+ 8).,,, Re=0, R.,=(a-—Db)g..
Let us consider such a space, then from (4. 1) we have
4. 2) R=na+ @b, R¥=g@a+nb,
from which it holds that
a=a,R + BoR*, b= a,R* + ByR,
where we have put
ay=n/(n* — @°), By=—o/(n’ =%,
If we substitute (4. 2) into (1. 8), then we have
n(b; — @,'a,) = p(@,'b, — ay),
where a; = 9;a and b; = 9;b. Transvecting this with @, then it follows
ob, — @,/a,) = n(@,b, — a;).
Thus from the last two equations we get
4. 3) a; = @;'b,.
On the other hand, if we substitute (4. 1) and (4. 2) into (1. 7), then we
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obtain (n — 4)a; + @b; = 0, from which we get, taking account of (4. 3),
a; = 0 provided that p and ¢ are different from 2. Therefore we have

THEOREM 6. In a separately Einstein space, the scalar curvature is
constant if p and q are different from 2.

5. Spaces of serarately constant curvature. Let us consider an arbitrary
but fixed point P in our space M. In this section we shall restrict our attention
to the tangent space T(P) and write E = E(P) and F = F(P).

We shall assume that the dimensions p and g are greater than 2.

In the first place we have

LEMMA 3. If @' € E and b' € F, then it holds that
Ryjina'd" = 0.
This follows from the facts that Ry, is pure and a'd" is hybrid [3].
As a trivial consequence, we obtain the following

THEOREM 7. The sectional curvature determined by a' € E and b' € F
vanishes.

A vector #' is uniquely decomposed in the form

(5. 1) Ww=a +?b, a€E becPF

Let v* be another vector and put

(5. 2) v=7r+s', 7 €E seF.

If we put Rz, v) = Ry, u*v'u'v", then we have by means of Lemma 3
(5. 3) R(u, v) = R(a, r) + R, s).

Now we assume that the sectional curvature of 2-planes in E and the one
of 2-planes in F have values A and u respactively which are independent of
the direction of 2-planes.

From the assumption and (5. 3), we get

R(u, v) = Na®’r® — (a, r)*] + p[b’s® — (b, s)*],
where ‘
a® = aa, (a, r)= a7, etc.

By virtue of (5. 1) and (5. 2), the last equation is written in the following
form

(5. 4)  R(u,v) =1/ N+ p)[w*0® + (&%, u) (v, v) — (4, v) — (&%, v)"]
+ @1/ A = w[@*, wv* + (05, v)u* — 2(u, v) (u*, v)]
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= (A Tkjin + B r:ﬁ/;)u'cvjuivh,
where
(5. 5) Tujn = Judsn — 95Gin T PriPin — PjiPrns

ron = rkjit¢ht,

A=01Q/)N+mw, B=Q1/4HN—p.

It is evident that 7y, is a pure tensor and satisfies
rapn =0, Tjin = Tinkj»
Tikjin = 0.

Since (5. 4) holds good for any #‘ and v', we have
(5- 6) Rkjih =A Twiin T B r:J‘h-

Conversely, if th= Riemannian curvature tensor takes the form (5. 6), A
and B being scalars, then we can prove that the sectional curvature of 2-planes
in E (resp. F') has a value which is independent of the direction.

We call the space satisfying (5,6) at any point of M a space of separately
constant curvature.

THEOREM 8. If the sectional curvature of 2-planes in E and the one
of 2-planes in F have values which are independent of the direction res-
pectively at any point, p and q being greater than 2, then the space is of
separately constant curvature. The converse is also true.

From (5. 6) we have R, = ag;; + b @;;, where
a=—(n—2)A— @B, b=—(n—-2)B— ¢ A.
Hence a space of separately constant curvature is separately Einsteinian. From
Theorem 7 we get

THEOREM 9. In a space of separately constant curvature (p, q >2), the
scalar curvature R is constant.

6. Infinitesimal product-projective transformations. We can easily
obtain thz following

LEMMA 4. A wvector field v, = 3, f is decomposable if there exists a
scalar function ¢ such that 9, f = @,'9,9.

We shall call a vector field v an infinitesimal product-projective trans-
formation or, for brevity, a PP-transformation, if it satisfies®

8) More generally, we may consider a trarsformation such that
tyt=o B+ o+ pip+ o0 s".

I. v¢ under consideration is decomposable, then we have o,=0v*

I
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6. 1) i = p33" + P8 + ppl + P,

where p; is a vector and pf = @,’p,.

In this case we shall call p, the associated vector of v'.

Let v' be a PP-transformation, then we know easily that (3. 3) holds good.
Hence

THEOREM 10. In a compact orientable space M, an infinitesimal pro-
duct-projective transformation is decomposable.

If we take account of the purity of R;;", then we can obtain

THEOREM 11. If v' is an infinitesimal product-projective transforma-
tion whose associated vector is p;, then so is v*'and its associated vector is
P*

Let us consider a PP-transformation v, then from (6. 1) we have

vt =@+ 2)p + ep;,  vvt =(nt+ 2)p; + @pl

The left hand members are gradient, so we have that p, and pf are gradient.

If we put p, = 9,p and pf = 9,p*, where p and p* are scalars, then we have

2% = @,"0,p, which and Lemma 4 show that p, and pf are decomposable.
Substituting (6. 1) into the identity

3(5/ Ry = vty — Vjtkih:

we get
(6. 2) £ Ry = 8'vip! — 8Vl + @)'ViPi — @' ViP
from which it follows that
(6. 3) f; Ry = — @v,p — (n — 2)v,el.
Now we assume that v’ under consideration is decomposable, then it holds
that
(6. 4) £ Ri= - (n=2)v,p. - pviel.
From (6. 3) and (6. 4) we have
(6. 5) % Uj = — ViPs
where
(6. 6) U; = BiR; + aR},

6.7 a=0-2/{n-27-9", B =-9/ln—-27-9¢%
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From (6. 2) and (6. 5) we obtain
£ P kjih =0,

where we have put
(6~ 8) ijth = Rkjth + U:isjh - U;‘Skh + Uu¢jh - Uji¢kh’

which will be called the product-projective curvature tensor.
If we substitute (6. 6) into (6. 8), then P,;" is also written as follows

Pk,uh = leh + a, ngth - Rjtslch + R:¢jh - R;‘¢kh}
+ /31 gR:iSjn - R;:alcn + Rkt‘]’jh = Rjt¢kh§‘
The following theorem is a consequence by some calculations.

THEOREM 12. In order that the product-projective curvature tensor Py;"
vanishes at amy point, it is necessary and sufficient that the space wunder
consideration is of separately constant curvature.

7. Infinitesimal product-conformal transformations. We call a vector
field v' an infinitemisal product-conformal transformation or, for brevity, a
PC-transformation, if it satisfies

(7. 1) ii/ 91 = 2(PYs + o@y),

where p and o and scalar functions such that
(7. 2) o = @/ 0,0.

With respect to a separating coordinate system, (7. 1) and (7. 2) are written
as follows

£v/ I = 2(P + 0')9,\,“ QE;/ Gia = 0, %/ Jar = 2(P - o-)gaba
aa( P+ 0‘) = 0’ a\(P - 0') = 0.

By virtue of Lemma 4 and (7. 2), the vectors p, = 9;,p and oy = 9,0 are
decomposable.
If we take account of the identity

Vi £J 95 — BE/ Vidis = tes 9ri + tii Girs
then we have
ti" = p8" + piajh - Phgjt + ‘7;¢zh + °'i¢jh — a'py.
From the last equation we can see that v’ satisfies (3. 3). Thus

THEOREM 13. In a compact orientable space M, an infinitesimal pro-
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duct-conformal tansformation is decomposable.

For a PC-transformation, the following equations are valid.

£9" =—2py" + op”),

if; Risi" = ey’

é:')v R = —(n—4v,pi — PV — 205 — yPyis

LR =~ (n— v — pve" — 28" -y, — 2PR" + oR}"),
&R =-2[(n—2)x+ @y + pR + oR*].

where we have put = = vy,0’, ¥y = v,6’ and
(7. 3) P = 8"ViPs + @"Vi0i + 9uViP" + PuVie”
— & ViPe — @V.0 — 9uViP" — PuVio,

which is pure.
In the following we shall assume that v’ is decomposable PC-transforma-

tion and p and g are greater than 2.
We shall obtain a tensor which is invariant under such transformations.

Since we have £ @, = 0 by the assumption, it follows that
dﬁ; P = 2(P@; + 0950), %, @’ = —2pp" + a9"),
5:‘7 Ry = —(n — 4)v,0; — @V, — 2Pjs — Y55
£ R®
£ R* = = 2[(n - 2)y + @z + pR* + oR].

~(n — v,e" — pv,p" — 29" — ¥8" — 2pR}* + oRM),

If ;" is the tensor defined by (5. 5), then we have

d‘%/ rlc}in = Z(Prkjih + orii").

Now we define a tensor s;," by

(7- 4-) Sk“h = SJ’LRM -+ ¢th/:l + gkith -+ ¢mR‘7h

*h

— &Ry — @R}, — 9uR" — @uRY,
then it is pure, as known by the similarity between (7.3) and (7. 4). Thus we
get

h h h h *x h
£ Skji &= — ¢P:jt —(n— 4)ij¢ —2xr — 2y 7Tkn
v

h *x h h h *x h
f,s:ﬁ = —(n—pk" — PPrii — 2y Tsi” — 2 7%y
v
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From these equations we get
£ ijih =0,
v

where C,;;" is defined by
Cisi" = Ry + ausizi + Basty”
— (@, U* + ByU)ry" — (U + B.U*)rey"
and
U=U9" =B8R+ a,R%, U*=U}¢" = a,R + B,R*,
a,=n—4)/in—47 —9*, B.=—o/{n—47 — ¢*.
We shall call C;;" the product-conformal curvature tensor. '
It is written also in the following form
Cui' = Ry + ablsi — (auR + B R — (aR* + B R)7%,"}
+ B.isti" — (auR + B, R*)rt," — (aR* + B,R)r,"}.
After some complicated calculations we get the following

THEOREM 14. In a space of separately constant curvature, the product-
conformal curvature tensor vanishes at any point.
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