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In a previous paper [3]]), we have generalized the notion of analytic tensors

and obtained the one of Φ-tensors. As a natural developement, we shall deal

with locally product Riemannian spaces. Since such a space is formally analog-

ous to a Kahlerian space, it seems to be interesting to translate well known

theorems in the latter to the former.

We shall devote § 1 to preliminaries. In § 2, we shall obtain an integral

formula for a tensor field in a compact orientable space and give an application

on harmonic tensors. In § 3 another application will be given and we shall see

that in a compact orientable locally product Riemannian space an infinitesimal

projective (or conformal) transformation is necessarily an isometry. In § 6 we

shall discuss infinitesimal product-projective transformations which correspond to

holomorphically projective transformations in a Kahlerian space. Its preliminary

results are given in § 4 and § 5. In § 7 infinitesimal product-conformal trans-

formations are defined and discussed.

The author expresses his hearty thanks to his colleague S. Ishihara who

gave him many valuable suggestions in the course of the preparation of this

paper.

1. Preliminaries. Let us consider an ^-dimensional locally product Rie-

mannian space. Then, by definition, there exists a system of coordinate neigh-

borhoods \UΛ\ such that in each UΛ the line element is given by the form

(1. 1) ds* = Σ 9Λ*V) dx^dx^ + Σ 9alx) dχadx\

and in Ua Π Uβ the coordinate transformation (xλ, χa) -> (xy, xa') is given by

the form

(1. 2) xy = xλ\xή9 xaf = xa'(xb).

Such a coordinate system (xκ, xa) will be called a separating coordinate

1) See the Bibliography at the end of the paper.
2) As to the notations and the terminologies, we follow [3]. We agree to use the following

ranges of indices throughout the paper l^λ, μ, ...^p<n, ρ+l^a,b, ...^p+q = n, l̂ Γ/,
j,k,..., r,s, ...-^n.
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shows that φ* assigns an almost-product structure to the space [1], [2], [5],
[6]. (1. 5) means that the Riemannian metric tensor gH is pure in the sence
of [3].

Conversely consider an n-dimensional Riemannian space M which admits
a tensor field φt

h ( 4= δt

Λ) satif ying (l. 4), (1. 5) and (1. 6). By virtue of (1. 4),
the matrix (φ*) has ± 1 as its proper values. Let us denote by T(P) the
tangent vector space of M at a point P and let E(P) and F(P) be the proper
vector spaces corresponding to the proper values + 1 and — 1 respectively. If
we put dim E(P) = p and dim F(P) = q, then they are constant and it holds
that φ Ξ= φr

r = p — q = n — 2 q. By virtue of (1. 6) the field of vector spaces
E(P) (resp. F(P))9 P € M, constitutes a />-(resp. q-) dimensional involutive
distribution [6]. Consequently there exists a system of coordinate neighborhoods
such that (1. 3) holds good. Since φ^ is a tensor, coordinate transformations
among the coordinateΓsystems are the type of (1. 2). In such a coordinate
system, (1. 5) is equivalent to gΛa = 0, from which and (1. 6) we have gkμ

— 9κμ{.xv) and gab = gab(zc) Thus the space under consideration is nothing but
the locally product Riemannian space.

Throughout the paper we shall assume that M is an w-dimensional locally
product Riemannian space whose positive definite metric tensor is given by gH

and that p and q are greater than 1.
We shall say that a vector field vι is decomposable^, if its covariant deri-

vative is pure, i.e., f) φ/1 = 0 is valid4). With respect to a separating coordinate
V

system (xκ, χa), it is equivalent to the fact that dλv
a = 0 and dav

λ = 0 are
valid.

A tensor field will be called decomposable if it and its covariant deri-

3) A covariant vector field uι is called decomposable, if u{ = g!rur is decomposable. This
is equivalent to the fact that ^7jui is pure.

4) £ denotes the operator of Lie derivation with respect to v*.
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vative are both pure. Hence a tensor ξ^ is decomposable if ξκ

a = ξa

λ = 0,
£λμ = ζ\μ(^v) and ξa

b = fα

6(.zc) are valid in a separating coordinate system. In
particular, gjt is decomposable.

Let Rjcji1, Rji = Λrjί
r and R = Rjig}i be the Riemannian curvature tensor,

the Ricci tensor and the scalar curvature formed from g}i respectively. Then
the following lemma has been known [3].

LEMMA 1. The Riemannian curvature tensor and its succesive covariant
derivatives are decomposable.

The following identity is well known

(1. 7) VJR = 2 Vr#/

Since we have known that V Af *s pure by virtue of Lemma 1, the iden-
tity

(1. 8) VjR* = φfVrR

is obtained, where we have put R* = φrtRrt

b).

2. An integral formula. In this section we shall only consider a compact
orientable space M. Let f(ί) = ξlp...tι

 6) be a tensor field and define

If f (o is pure, then aj^iξ) = 0 means that £(o is decomposable, i. e., Vif (*)
is pure.

Denoting the square of aJ(iy(ξ) by α2(^), we obtain easily

V'(βκof(l)) = (v'βKo)?0 + (1/2) α2(|),

from which and Green's theorem we have

THEOREM I. In a compact orientable space M, the integral formula

ί
J3r

ξ(ί) + (1/2) α 2( |)]Jσ = 0

is valid for a tensor field ξ^9 where d<τ means the volume element of M.

COROLLARY. In a compact orientable space M, a necessary and sufficient

condition in order that a pure tensor f ( ί) is decomposable is that

5) The tensor Φμ is a Riemannian metric tensor whose inverse is given by φ^—9γ grK The
scalar R* is nothing but the scalar curvature with respect to the Riemannian metric

6) In this section, p does not mean the dimension of E(P).
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On the other hand we have known [7] that in a compact orientable Rie-
mannian space a skew-symmetric tensor £(o is harmonic when and only when
it satisfies that

(2. 1) v'Vrfc.) -£&/&,...,...«, + Σ W.n. . . . . .« , = 0.

Now let f(ί) be a pure harmonic tensor, then f*0 is a skew-symmetric pure
tensor [3]. Since we can see that ξ*t) also satisfies the equation of the same
form as (2. 1), we have

LEMMA 2. In a compact orientable space M, if a pure tensor | ( ί ) is

harmonic, then so is £*>•

If ζ{i) is pure harmonic, then it holds that

Hence we have

^ Vr Σ V ' A ' 1! = VΓVrf(O

Thus we get

THEOREM 2. In a compact orientable space M, a pure harmonic tensor
is decomposable.

3. Infinitesimal transformations. As a corollary of Theorem 1, we have

THEOREM 3. In a compact orientable space M, the integral formula

f [(VrVr*i - 9>rtVrVtVΪ) vι + (1/2) a%v)] dσ = 0

is valid for a vector field v\

In this section we shall give some applications of this theorem. Let us
consider a vector field vι and put

tjih = ί){ *«} = VNiV1' + Rrji
hVr.

Taking account of the purity of Rrji\ if we transvect the last equation with
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<P3i<Ph\ then we have

φ"φh

ιtH

h = φHVjViV*1 + RrV.

Hence we find

(3. 1) g>%h ~ ψnψX: = VVrVh - φn

Now consider an infinitesimal projective transformation v\ then it satisfies
by definition

(3 2) tjt" = Pi8t

h + A«Λ

where pt is a certain vector.
Substituting this into (3. 1) it follows that

(3 3) VVrV" = φrtVrVtV*\

which and Theorem 3 show that vι is decomposable, i. e., it satisfies £, φ/1 = 0.
V

On the other hand, since the identity

holds good, we have

tfrψi = tjiT<Prh,

from which and (3.2) we obtain /ot = O. Thus

THEOREM 47). In a compact orientable space M, an infinitesimal pro-
jective transformation is necessarily an isometry.

COROLLARY. In a compact orientable space M, a Killing vector is
deco mposable.

In the next place we consider an infinitesimal conformal transformation
vι. It satisfies by definition

(3. 4) t9ji = VW + ViV5 = 2pgH,

where p is a scalar, from which we have

(3. 5) ht - ?K + PiK - Ph9π, PJ = BjP.

Hence taking account of (3. 1) it follows that

(3. 6) VrV,^i - <pnVrVtvt = - npi + φpt

On the other hand, from (3. 4) we have

χrrv
r = np, Vrf*r = ΨP-

7) Cf. Tashiro, Y. [4].
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Hence it holds that

- n piV* = - (ViVrVr>*

= (n pf -
(3. 7)

n ρϊvι =

Substituting (3. 6) and (3. 7) into the integral formula in Theorem 3, we obtain

f [(»« - *>V + (1/2) αV)] <fr = 0,

which shows that p = 0. Consequently we have

THEOREM 5. In a compact orientable M, an infinitesimal conformal

transformation is necessarily an isometry.

4. Separately Einstein spaces. If the Ricci tensor of our space M

satisfies the relation

(4. 1) RH = a g3i + b <pji9

then we shall call the space a separately Einstein space. If we make use of a

separating coordinate system (xκ, xa), then (4. 1) becomes

Rχμ = {a + b)gλμ,9 Rxc = 0, Rce = (a - b)gce.

Let us consider such a space, then from (4. 1) we have

(4. 2) R= na + φb, R* = φ a + n b,

from which it holds that

a = cCoR + βoR*, b = ctoR* + βoR,

where we have put

a0 = n/(n* - φ2\ β0 = - <p/(n2 ~ φ2),

If we substitute (4. 2) into (1. 8), then we have

n(bj — ψjrar) = φ(φ/br — aό)9

where aό = 3sa and b5 = d3b. Transvecting this with ψi\ then it follows

<p(bi — <Pirar) = n{ψibr — at).

Thus from the last two equations we get

(4. 3) a, = φ[br.

On the other hand, if we substitute (4. 1) and (4. 2) into (1. 7), then we
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obtain (n — 4)a^ + φbj = 0, from which we get, taking account of (4. 3),
a3 — 0 provided that p and q are different from 2. Therefore we have

THEOREM 6. In a separately Einstein space, the scalar curvature is
constant if p and q are different from 2.

5. Spaces of serarately constant curvature. Let us consider an arbitrary
but fixed point P in our space M. In this section we shall restrict our attention
to the tangent space T(P) and write E = E{P) and F = F(P).

We shall assume that the dimensions p and q are greater than 2.
In the first place we have

LEMMA 3. If a1 € E and bι € F, then it holds that

b = 0.

This follows from the facts that Rkjih is pure and dbh is hybrid [3].

As a trivial consequence, we obtain the following

THEOREM 7. The sectional curvature determined by a1£ E and bι € F
vanishes.

A vector uι is uniquely decomposed in the form

(5. 1) uι = α* + b\ a1 € E, bι € F.

Let vι be another vector and put

(5. 2) vι = r1' -f s\ r1 € E, sι € F.

If wτe put R(u, v) = Rjcjih uκvjufv\ then we have by means of Lemma 3

(5. 3) R(u, v) = R{a, r) + R(b, s).

Now we assume that the sectional curvature of 2-planes in E and the one
of 2-planes in F have values λ and μ> respectively which are independent of
the direction of 2-planes.

From the assumption and (5. 3), we get

R(μ, v) = λ[αV2 - (*, r)2] + μ[b*s* - (b, sYl

where

a2 == ata\ (a, r) = atr
ι

9 etc.

By virtue of (5. 1) and (5. 2), the last equation is written in the following
form

(5. 4) R(u, v) = (1/4) (λ + μ) [uV + («*, u) (v\ v) - (u, v)* - («* v)*]

+ (1/4) (λ - μ) [(«* uW + (t>* v)u* - 2(«, v) (u*, v)]
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= (A rmh + B rtjuWvW,

where

(5. 5) rkJih = gkigjh —gjtgkh +<pki<pJh-<Pn<pkh,

rΐjih = rmtφh\

A = (1/4) (λ +μ), B = (1/4) (λ - μ).

It is evident that rmh is a pure tensor and satisfies

= 0.

Since (5. 4) holds good for any u1 and v\ we have

(5. 6) Rkjlh = A rkjih + B r*k}h.

Conversely, if the Riemannian curvature tensor takes the form (5. β), A

and B being scalars, then we can prove that the sectional curvature of 2-planes

in E (resp. F) has a value which is independent of the direction.

We call the space satisfying (5,6) at any point of M a space of separately

constant curvature.

THEOREM 8. If the sectional curvature of 2-planes in E and the one

of 2-planes in F have values which are independent of the direction res-

pectively at any point, p and q being greater than 2, then the space is of

separately constant curvature. The converse is also true.

From (5. 6) we have Rμ = a gjt + b φn, where

a = - (n - 2) A - φ B, b = - (n - 2) B - φ A.

Hence a space of separately constant curvature is separately Einsteinian. From

Theorem 7 we get

THEOREM 9. In a space of separately constant curvature (p9 q > 2), the

scalar curvature R is constant.

6. Infinitesimal product-projective transformations. We can easily

obtain the following

LEMMA 4. A vector field vt — dtf is decomposable if there exists a

scalar function g such that dtf= <Pirdrg.

We shall call a vector field vι an infinitesimal product-pro jective trans-

formation or, for brevity, a JPP-transformation, if it satisfies8)

8) More generally, we may consider a transformation such that
t Jih = σβih + (Tib/1 + i)jφih + piφjh.

Ii vι under consideration is decomposable, then we have σi = ύ*.
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(β. l) t/ = P%
h + prs; + PiΨi

h + PiΨ;\

where pi is a vector and p* = φ?pr.
In this case we shall call p% the associated vector of v*.
Let vι be a PP-transf ormation, then we know easily that (3. 3) holds good.

Hence

THEOREM lO. In a compact orientable space M, an infinitesimal pro-
duct-projective transformation is decomposable.

If we take account of the purity of Rkji'\ then we can obtain

THEOREM l l . If vι is an infinitesimal product-pro jective transforma-
tion whose associated vector is pi9 then so is v*1 and its associated vector is

pr.

Let us consider a PP-transformation v\ then from (β. 1) we have

rVr = (n 4- 2) P*j + φpj9 VjVrV*r = (n + 2) ft + φpj.

The left hand members are gradient, so we have that ρt and p* are gradient.
If we put pi = dLp and p* = diP*, where p and p* are scalars, then we have

°̂  = φJdrP, which and Lemma 4 show that pt and p* are decomposable.
Substituting (6. 1) into the identity

we get

(6. 2) t Rkjl

h = δ
V

from which it follows that

(6. 3) £, Rn = - φVjPi -in-
V

Now we assume that vι under consideration is decomposable, then it holds

that

(6. 4) £ *Ji = - (* - 2)
V

From (β. 3) and (6. 4) we have

(6. 5) t UH = -
V

where

(6. 6) U,t = A^i +

(6.7) «I = («-2)/ί(n-2) i !-9' 2 i, A = - *»/{(» - 2)2 -
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From (6. 2) and (6. 5) we obtain

£ Put* = 0,
V

where we have put

(6. 8) Pkjί

h = Rkji

h + Uΐtf - UIK" + Ukiφjh - Ujtφk

k,

which will be called the product-projective curvature tensor.
If we substitute (6. 6) into (6. 8), then Pkji

Λ is also written as follows

The following theorem is a consequence by some calculations.

THEOREM 12. In order that the product-projective curvature tensor Pkji

h

vanishes at any point, it is necessary and sufficient that the space under
consideration is of separately constant curvature.

7. Infinitesimal product-conformal transformations. We call a vector
field v1 an infinitemisal product-conformal transformation or, for brevity, a
PC-transformation, if it satisfies

(7. 1) £ 9H = 2(pgJt + σφjt),
V

where p and σ and scalar functions such that

(7. 2) 3iP =• φi

rdra.

With respect to a separating coordinate system, (7. 1) and (7. 2) are written
as follows

t 9κμ = 2 0 + σ)gx £ gAa = 0, £ gab = 2(β - σ)gab9

v υ v

da(p+<r) = 0, dΛ(p-σ) = 0.

By virtue of Lemma 4 and (7. 2), the vectors ρt = dtp and σ, = 3tσ are
decomposable.

If we take account of the identity

Vic £ 9n - £ Vkdji = tjgri + tu

r gjr,
V V

then we have

tnh = Pβih + PiSf - phgn + σjψi

h + σiψd

h - σhφH.

From the last equation we can see that vι satisfies (3. 3). Thus

THEOREM 13. In a compact orientable space M, an infinitesimal pro-
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duct-conformal tansformation is decomposable.

For a PC-transformation, the following equations are valid.

—

isRjt = - {n - 4)Vjft - <PViσi -
V

£ R}

h = - (n - 4dVjPh ~ <PVi<rh -
V

LR = - 2[(n - 2)x + φy + pR + <τR*l
V

where we have put x = y r/) r, y = Vr°"r

(7. 3) p f c j i

Λ =

which is pure.
In the following we shall assume that v* is decomposable PC-transforma-

tion and p and q are greater than 2.
We shall obtain a tensor which is invariant under such transformations.
Since we have £, φ^ = 0 by the assumption, it follows that

£ φit = 2(pφjt + σg3l), £ φ* = -2(pφ" + σgn),
V V

£R% = - (fl - 4)V;^ - φVjpi - xφH - ygii9
V

£ R? = - (n - 4)vX - 9>V^ft ~ xφ,h ~ y

£ Λ* = - 2[(» - 2)y + 9>x + pΛ* + o-R].
V

If rΛj i

Λ is the tensor defined by (5. 5), then we have

t rm

h = 2{prkH

h

Now we define a tensor skji

h by

(7. 4 ) 5 t J i * = S/4i?fci + ^/Λ^ +

— 8k

hRjt — <p*;lR*i —

then it is pure, as known by the similarity between (7. 3) and (7. 4). Thus we

get

£ * * / ^ - Ά * - (n - A)pm

h -2x rm

h - 2y r*kji\
V

$ 5 ί / = - (« - 4 K / - ^/>Wί

ft - 2;y rw ι* - 2 a: rί j (

Λ.
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From these equations we get

t CJ1 = 0,
V

where Ckji

h is defined by

h
kjiC h
kji —

and

U = UHg" = βxR + a,R*, U* = W = a,R + β>R*,

α, = (« - 4)/{(« - 4)2 - <p2}, βt = - φ/\{n - 4)3 -

We shall call Cw t* the product-conformal curvature tensor.
It is written also in the following form

<VA = Rm + ccΛsw - ίaiR + βiR*>J' - {a.R* +

+ AJ5Ϊ/ - {axR + β^yt/ - (atR* + βιR)rk)t

h\.

After some complicated calculations we get the following

THEOREM 14. In a space of separately constant curvature, the producί-
conformal curvature tensor vanishes at any point.
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