ON ALMOST COMPLEX SYMPLECTIC MANIFOLDS AND AFFINE CONNECTIONS WITH RESTRICTED HOMOGENEOUS HOLONOMY GROUP $\boldsymbol{S p}(\boldsymbol{n}, \boldsymbol{C})$

Hidekiyo Wakakuwa

(Received Jure 11, 1959)

The purpose of this paper is at first to characterize a $4 n$-dimensional affinely connected manifold (with or without torsion) whose restricted homogeneous holonomy group is the real representation of the complex symplectic group $S p$ (n, C) or one of its subgroups. And conversely, we discuss to introduce in a $4 n$-dimensional manifold an affine connection (with or without torsion) whose restricted homogeneous holonomy group is the real representation of $S p(n, C)$ or one of its subgroups.

The almost complex symplectic manifold is equivalent to an almost quaternion manifold (§3), but the natural affine connection (§4) in an almost complex symplectic manifold is different from the natural affine connection ($(\boldsymbol{\phi}, \psi)$-connection by Obata's terminology, [5]) in an almost quaternion manifold ${ }^{2}$. They coincide if and only if the affine connection is a metric connection (with or without torsion) with respect to a related Riemannian metric (§3, Definition).

1. Preliminary remarks. Let $C_{2 n}$ be a complex $2 n$-dimensional linear space. Complex symplectic group $S p(n, C)$ in $C_{2 n}$ is the subgroup of $G L(2 n, C)$ leaving invariant a bilinear form $z^{s} \wedge w^{s+n}=z^{s} w^{s+n}-z^{s+n} w^{s}{ }^{3)}$ where (z^{α}) and $\left(w^{\alpha}\right)(\alpha=1, \ldots \ldots, 2 n)$ are vectors in $C_{2 n}$. Therefore if $M_{2 n}$ is a complex ($2 n, 2 n$)-matrix giving a transformation of $S p(n, C)$, then $M_{2 n} J_{2 n}{ }^{t} M_{2 n}=J_{2 n}$, where ${ }^{t} M_{2 n}$ denotes the transpose of $M_{2 n}$ and $J_{2 n}$ is a matrix such as $J=$ $\left(\begin{array}{cc}0 & E_{n} \\ -E_{n} & 0\end{array}\right)^{4)}$. Conversely if $M_{2 n}$ satisfies the above relation, then it is a matrix giving a transformation of $S p(n, C)$.

Next, we consider the real representation of $S p(n, C)$ in a real $4 n$-dimensional real linear space $R^{4 n}$.

Put $\mathfrak{M}=\left(\begin{array}{cc}M_{2 n} & 0 \\ 0 & \frac{M_{2 n}}{2}\end{array}\right)$, where $\bar{M}_{2 n}$ denotes the complex conjugate of $M_{2 n}$,

[^0]then \mathfrak{M} satisfies
\[

\mathfrak{M}^{-1}\left($$
\begin{array}{cc}
-i E_{2 n} & 0 \tag{1.1}\\
0 & i E_{2 n}
\end{array}
$$\right) \mathfrak{M}=\left($$
\begin{array}{cc}
-i E_{2 n} & 0 \\
0 & i E_{2 n}
\end{array}
$$\right), \quad\left(i^{2}=-1\right)
\]

and

$$
\mathfrak{M}\left(\begin{array}{ll}
J_{2 n} & 0 \tag{1.2}\\
0 & J_{2 n}
\end{array}\right)^{t} \mathfrak{M}=\left(\begin{array}{ll}
J_{2 n} & 0 \\
0 & J_{2 n}
\end{array}\right) .
$$

If we perform a complex transformation to the matrix \mathfrak{M} by a complex regular matrix of the form $\tau=\left(\begin{array}{cc}C & 0 \\ 0 & \bar{C}\end{array}\right)$, then we obtain $\mathfrak{M}^{\prime}=\tau^{-1} \mathfrak{M} \tau=$ $\left(\begin{array}{cc}M_{2 n}^{\prime} & 0 \\ 0 & \overline{M_{2 n}^{\prime}}\end{array}\right)$ and the matrix $\left(\begin{array}{cc}J_{2 n} & 0 \\ 0 & J_{2 n}\end{array}\right)$ is transformed into an anti-symmetric regular complex matrix of the form $\left(\begin{array}{cc}\sigma_{2 n} & 0 \\ 0 & \bar{\sigma}_{2 n}\end{array}\right)\left({ }^{t} \sigma_{2 n}=-\sigma_{2 n}\right)$. And \mathfrak{M}^{\prime} satisfies

$$
{ }^{t} \mathfrak{M}^{\prime}\left(\begin{array}{cc}
\sigma_{2 n} & 0 \tag{1.3}\\
0 & \sigma_{2 n}
\end{array}\right) \mathfrak{M}^{\prime}=\left(\begin{array}{cc}
\sigma_{2 n} & 0 \\
0 & \sigma_{2 n}
\end{array}\right) .
$$

Conversely, we can normalize this matrix \mathfrak{M}^{\prime} to a complex matrix $\mathfrak{M}=$ $\left(\begin{array}{cc}M_{2 n} & 0 \\ 0 & \bar{M}_{2 n}\end{array}\right)$ satisfying (1.2) by a suitable complex transformation.

Therefore, with respect to complex bases, a transformation \mathfrak{M}^{\prime} belonging to the real representation of $G L(2 n, C)$ gives a transformation of the real representation of $S p(n, C)$ if and only if it satisfies (1.3) where $\sigma_{2 n}$ is an antisymmetric regular complex matrix.

Suppose a complex matrix

$$
I_{4 n}=\frac{1}{\sqrt{2}}\left(\begin{array}{rr}
E_{2 n} & E_{2 n} \\
-i E_{2 n} & i E_{2 n}
\end{array}\right),\left(I_{4 n}^{-1}=\frac{1}{\sqrt{2}}\left(\begin{array}{rr}
E_{2 n} & i E_{2 n} \\
E_{2 n} & -i E_{2 n}
\end{array}\right)\right),
$$

then we have

$$
M \equiv I_{4 n} \mathfrak{M} I_{4 n}^{-1}=\left(\begin{array}{rr}
H_{2 n} & -K_{2 n} \\
K_{2 n} & H_{2 n}
\end{array}\right)
$$

where $M_{2 n}=H_{2 n}+i K_{2 n}, H_{2 n}$ and $K_{2 n}$ being real matrices of degree $2 n$ and M gives a transformation of the real representation of $S p(n, C)$ with respect to real bases. We also have real matrices $\stackrel{(1)}{F}$ and $\stackrel{(2)}{F}$:

$$
\begin{align*}
& \stackrel{(1)}{F} \equiv I_{4 n}\left(\begin{array}{cc}
-i E_{2 n} & 0 \\
0 & i E_{2 n}
\end{array}\right) I_{4 n}^{-1}=\left(\begin{array}{cc}
0 & E_{2 n} \\
-E_{2 n} & 0
\end{array}\right), \tag{1.4}\\
& \stackrel{(2)}{F} \equiv I_{4 n}\left(\begin{array}{cc}
J_{2 n} & 0 \\
0 & J_{2 n}
\end{array}\right)^{t} I_{4 n}=\left(\begin{array}{cc}
J_{2 n} & 0 \\
0 & -J_{2 n}
\end{array}\right) . \tag{1.5}
\end{align*}
$$

These $\stackrel{(1)}{F}$ and $\stackrel{(2)}{F}$ satisfy

$$
\begin{equation*}
\left.{\stackrel{(1)}{F^{2}}}^{\prime}=-E_{4 n}, \stackrel{(2)}{t}\right)_{F}=-\stackrel{(2)}{F},{ }^{t}(\stackrel{(1)}{F} \stackrel{(2)}{F})=-\left(\stackrel{(1)}{F}_{F}^{F}\right) \tag{1.6}
\end{equation*}
$$

and on account of (1.1), (1.2), we see that

$$
\begin{equation*}
M^{-1} \stackrel{(1)}{F} M=\stackrel{(1)}{F},{ }^{t} M \stackrel{(2)}{F} M=\stackrel{(2)}{F} . \tag{1.7}
\end{equation*}
$$

Conversely, if a transformation M in a real $4 n$-dimensional linear space $R^{4 \imath}$ transforms $\stackrel{(1)}{F}, \stackrel{(2)}{F}$ of (1.4), (1.5) by (1.7), then we can introduce complex bases in $R_{4 n}$ in which M takes the form \mathfrak{M} since M leaves invariant the $\stackrel{(1)}{F}$, and we can easily see that the transformation M belongs to the real representation of $S p(n, C)$.
2. Characterizations. Let $A_{4 n}$ be an affinely connected manifold (with or without torsion) of class C^{2} whose restricted homogeneous holonomy group h^{0} is the real representation of $S p(n, C)$ or one of its subgroups. At first, assume that $A_{4 n}$ be simply connected.

If we attach a suitable frame $\left[R_{0}\right]$ at a point O of $A_{4 n}$, then the restricted homogeneous holonomy group $h^{9}(O)$ at O transforms the two matrices $\stackrel{(1)}{F}, \stackrel{(2)}{F}$ with components (1.4), (1.5) according to (1.7). And we attach to each point P of $A_{4 n}$ a frame obtained from [R_{0}] by a parallel translation along an arbitrary but fixed curve joining O to P. Then we have frames of reference on $A_{4 n}$ and we see that there exist tensor fields $\stackrel{(1)}{F}, \stackrel{(1)}{F}$ whose components are given by (1.4), (1.5) respectively with respect to the frames of reference under consideration. We remark that $\stackrel{(1)}{F}$ is of type $(1,1)$ and $\stackrel{(2)}{F}$ is of type $(0,2)$, that is,

$$
\stackrel{(1)}{F}=\left(\stackrel{(1)}{F}_{i}^{h}\right), \stackrel{(2)}{F}=\left(\stackrel{(2)}{F}_{i h}\right)^{5)} .
$$

These two tensor fields are of maximal rank $4 n$ and of null covariant derivative by virtue of (1.7).

With respect to general frames of reference, especially with respect to natural frames of reference, we see that there exist two tensor fields ${ }^{(1)}=\left(F_{i}^{(1)}\right)$, $\stackrel{(2)}{F}=\left(\stackrel{(2)}{F}_{i n}\right)$ satisfying

$$
\begin{equation*}
\stackrel{(1)}{F_{i}^{a}} \stackrel{(1)}{F}_{a}^{n}=-\delta_{i}^{h}, \quad \stackrel{(2)}{F_{i h}}=-\stackrel{(1)}{F_{n t}}, \quad \stackrel{(1)}{F_{i}^{a}}{ }^{a} \stackrel{(2)}{F_{a h}}=-\stackrel{(1)}{F_{h}}{ }^{a} \stackrel{(2)}{F}_{a i}, \tag{2.1}
\end{equation*}
$$

$\stackrel{(9)}{F}_{i n}$ being of maximal rank $4 n$ and
5) Throughout this paper, if otherwise stated, the latin indices $h, i, j, k, \cdots a, b, c, \cdots$ run from 1 to $4 n$.

$$
\begin{equation*}
\nabla_{j} F_{i}^{(1)}=0, \nabla_{j}{ }_{j}^{(2)} F_{i h}=0 \tag{2.2}
\end{equation*}
$$

where ∇_{j} denotes the covariant differentiation with respect to the affine connection $\Gamma_{j i}{ }^{n}$ of $A_{4 n}$

If $A_{4 n}$ is not simply connected, consider the universal covering manifold $\widetilde{A_{4 n}}$ of $A_{4 n}$ in which there are introduced an affine connection naturally froin that of $A_{4 n}$. Then the conclusion for $\widetilde{A}_{4 n}$ induces the same conclusion for $A_{4 n}$.

Assume conversely that there exist two tensor fields $\stackrel{(1)}{F}=\left(\stackrel{(1)}{F_{i}}{ }^{n}\right), \quad \stackrel{(2)}{F^{*}}=\left(\stackrel{(2)}{F_{i n}}\right)$ satisfying (2.1) and (2.2). Let $h^{0}(O)$ be the restricted homogeneous holonomy group at O. Then $h^{0}(O)$ leaves invariant two matrices $\stackrel{(1)}{F_{0}}=\left(\stackrel{(1)}{F_{l}^{n}}\right)_{0}, \stackrel{(2)}{F_{0}^{*}}=$ $\left({ }^{(2)} F_{i h}\right)_{0}$ satisfying

$$
\begin{equation*}
F_{0}^{\prime}=-\stackrel{(2)}{E}_{4 n}, \quad \stackrel{\left(\stackrel{(1)}{F_{0}^{*}}\right.}{F_{0}^{*}}=-\stackrel{(2)}{F_{0}^{*}}, \quad \stackrel{(1)(2)}{F_{0}} F_{0}^{*}=-{ }^{t}\left(\stackrel{(1)}{F_{0} \stackrel{(2)}{*}_{0}^{*}}\right), \tag{2.3}
\end{equation*}
$$

where $\stackrel{(1)}{F_{0}}, \stackrel{(3)}{F_{v}^{*}}$ denote the values of $\stackrel{(1)}{F}, \stackrel{(2)}{F^{*}}$ at O. We can choose a frame $\left[R_{0}\right]$ at O such that the components of $\stackrel{(1)}{F_{0}}=\left(\stackrel{(1)}{F}_{i}^{l}\right)_{0}$ are given by the form $\left(\begin{array}{cc}0 & E_{4 n} \\ -E_{2 n} & 0\end{array}\right)$ and further, by a complex transformation of the frame, $\stackrel{(1)}{F}_{0}$ changes into

$$
{\stackrel{(1)}{F_{0}}}_{0}=I_{4 n}^{-1} \stackrel{(1)}{F_{0}} I_{4 n}=\left(\begin{array}{cc}
-i E_{2 n} & 0 \\
0 & i E_{2 n}
\end{array}\right),
$$

 be the matrix corresponding to $\stackrel{(2)}{F_{0}^{*}}$ and put

$$
\stackrel{(2)}{5}_{v}^{*}=\left(\begin{array}{ll}
f_{1} & f_{2} \\
f_{3} & f_{4}
\end{array}\right)
$$

whene f_{1}, f_{2}, f_{3} and f_{4} are complex matrices of degree $2 n$. Since $\stackrel{(2)}{\mathfrak{F}_{n}^{*}}=\left(\stackrel{(2)}{\left(\tilde{F}_{i n}\right.}\right)_{0}$ is anti-symmetric in i and h, we have

$$
{ }^{t} f_{1}=-f_{1}, \quad{ }^{t} f_{4}=-f_{4}, \quad{ }^{t} f_{2}=-f_{3}
$$

 (2.3) we have ${ }^{t} f_{2}=f_{3}$, and hence $f_{2}=f_{3}=0$. That is, $\stackrel{(2)}{\overbrace{3}^{*}}{ }_{0}^{*}$ is of the form $\stackrel{(2)}{\tilde{\zeta}_{3}^{*}}$ $=\left(\begin{array}{ll}f_{1} & 0 \\ 0 & f_{4}\end{array}\right)$. Since
must be real, we see that $f_{4}=\overline{f_{1}}$ and hence $\frac{\left(\underset{F_{0}}{(2)}\right.}{\substack{*}}$ takes the form

Consequently we can normalize this $\frac{(2)}{\overbrace{\mathfrak{F}}^{0}}{ }_{0}^{*}$ into the form $\left(\begin{array}{ll}J & 0 \\ 0 & J\end{array}\right)$ by a suitable complex transformation given by a matrix of the form $\left(\begin{array}{cc}C & 0 \\ 0 & \bar{C}\end{array}\right)$ under which the form of $\stackrel{(1)}{(1)}_{\mathfrak{F}_{0}}$ is unchanged. And hence $h^{0}(\mathrm{O})$ is the real representation of $S p(n, C)$ or one of its subgroups taking account of the preliminaries of $\S 1$. Thus we have

THEOREM 2.1. The necessary and sufficient condition that the restricted homogeneous holonomy group of a $4 n$-dimensional affinely connected manifold $A_{4 n}$ (with or without torsion) be the real representation of $S p(n$, C) or one of its subgroups is that there exist two tensor fields $\stackrel{(1)}{F_{i}{ }^{h}}, \stackrel{(2)}{F_{i n}}$ satisfying

$$
\begin{equation*}
\stackrel{(1)}{F_{i}}{ }_{a}^{(1)} \stackrel{(1)}{F}_{a}^{n}=-\delta_{i}^{i}, \quad \stackrel{(2)}{F_{i h}}=-\stackrel{(2)}{F_{n t}}, \quad \stackrel{(1)}{F_{i}^{a}} \stackrel{(\stackrel{(2)}{F}}{F_{a h}}=-\stackrel{(1)}{F_{h}}{ }_{n}^{a} \stackrel{(2)}{F_{a i}}, \tag{I}
\end{equation*}
$$

$\stackrel{(2)}{F_{i n}}$ being of maximal rank $4 n$ and

$$
\begin{equation*}
\nabla_{j} \stackrel{(1)}{F}_{i}^{h}=0, \nabla_{j}^{\left(F_{i n}\right)}=0 . \tag{II}
\end{equation*}
$$

$\stackrel{(1)}{F_{i}^{h}}$ gives an almost complex structure and $\stackrel{(2)}{F_{i n}}$ gives an almost (real) symplectic structure ${ }^{6)}$. If we put $\stackrel{(1)}{F}_{F_{i}^{a}}^{\stackrel{(3)}{F_{a h}}} \equiv \stackrel{(3)}{F_{i h}}$, then $\stackrel{(3)}{F_{i h}}$ is anti-symmetric and of maximal rank $4 n$. It is also of null covariant derivative by virtue of (II). Hence we have

COROLLARY 2.1. Let the assumption for $A_{4^{2}}$ be the same as in the Theorem. Then there exist in $A_{4 n}$ three tensor fields satisfying
$\stackrel{(2)}{F_{i}^{n}}, \stackrel{(3)}{F_{i n}}$ being of maximal rank and

$$
\begin{equation*}
\nabla_{j}{ }^{(1)} F_{i}^{h}=0, \nabla_{j} \stackrel{(2)}{F}_{i h}=0 . \nabla_{j} \stackrel{(3)}{F}_{i h}=0 . \tag{II'}
\end{equation*}
$$

[^1]3. Almost complex sympectic structure. Let $X_{4 n}$ be a real $4 n$-dimensional manifold of class C^{2} admitting two tensor felds $\stackrel{(1)}{F}_{i}^{h}, \stackrel{(2)}{F}_{i n}$ satisfying (I) where $\stackrel{(2)}{F}_{F_{i h}}$ is of maximal rank, or necessarily admitting three tensor fields satisfying (I') where $\stackrel{(\stackrel{(2)}{F}}{l h}, \stackrel{(3)}{F} \stackrel{(3)}{ }$ are of maximal rank. We call such a manifold $X_{4 n}$ an almost complex symplectic manifold (or briefly almost CS-manifold)
 three tensor fields $\stackrel{(1)}{F}_{i}^{h}, \stackrel{(2)}{F_{i n}}, \stackrel{(3)}{F_{i n}}$) an almost complex symplectic structure (or briefly almost CS-structure).

As is known, an almost quaternion structure in a real $4 n$-dimensional manifold X_{42} is defined by a set of two tensor fields of (1,1)-type $\left({ }_{i}^{(1)}{ }_{i}^{n}, \stackrel{(2)}{(2)}_{F_{n}}^{n}\right)$
 tence of such two tensor fields of (1,1)-type implies necessarily the existence of the third tensor field $\stackrel{(3)}{F_{i}^{h}}$ of (1,1)-type which is an almost complex structure and in quaternic relations with $\stackrel{(1)}{F}_{i}^{h}$ and $\stackrel{(2)}{F_{i}^{h}}$:

THEOREM 3.1. In a differentiable $4 n$-dimensional manifold $X_{4 n}, a$ given almost quaternion structure induces an almost complex symplectic structure and conversely from a given almost complex symplectic structure we can find an almost quaternion structure. That is, the two structures are equivalent.

Proof. Suppose at first that a differentiable X_{42} admits an almost quaternion structure $\left(\stackrel{(1)}{F}=\left(\stackrel{(1)}{F}_{i}^{h}\right), \stackrel{(2)}{F}=\left(\stackrel{(2)}{F_{i}^{h}}\right)\right)$ which satisfy

Or, in matrix forms

$$
\stackrel{(1)}{F^{2}}=-E, \stackrel{(2)}{F^{2}}=-E, \stackrel{(1)(2)}{F F}=-\stackrel{(2)(1)}{F},
$$

where we denote for brevity the unit matrix of degree $4 n$ by E instead of $E_{4 n}$.

If we put $\stackrel{(3)}{F} \equiv \stackrel{(1)(2)}{F F}=-\stackrel{(2)(1)}{F F}$, then we get the following relations:

$$
\stackrel{(3)}{F^{2}}=-E, \stackrel{(3)(1)}{F F}=-\stackrel{(1)(3)}{F F}=\stackrel{(2)}{F} \stackrel{(2)(3)}{F F}=-\stackrel{(3)(2)(2)}{F F}=\stackrel{(1)}{F},
$$

[^2]by virtue of the given conditions for $\stackrel{(1)}{F}, \stackrel{(2)}{F}$. Since in our $X^{4 n}$ there exists always a positive definite Riemannian metric $G=\left(g_{j i}\right)$, we put
$$
G^{*}=\left(g_{i j}^{*}\right)=\frac{1}{4}\left(G+\stackrel{(1)}{F} G^{t} \stackrel{(1)}{F}+\stackrel{(2)}{F} G^{t} \stackrel{(2)}{F}+\stackrel{(3)}{F} G^{t}{ }^{t}\right)^{(3)} .^{8)}
$$

Then G^{*} is also positive definite and it is simultaneously hermitian with respect to $\stackrel{(1)}{F} \stackrel{(2)}{F}, \stackrel{(3)}{F}$, i. e.

$$
\stackrel{(1)}{F} G^{* t} F=G^{*}, \quad \stackrel{(1)}{F} G^{* t} t^{(3)}=G^{*}, \quad \stackrel{(3)}{F} G^{* t} \stackrel{(2)}{F}=G^{*},
$$

or in tensor forms

Hence, if we put

$$
\stackrel{(2)}{F} G^{*} \equiv \stackrel{(2)}{F^{*}} \quad\left(\stackrel{(2)}{F_{i}} g_{a l h}^{*}=\stackrel{(2)}{F_{i h}}\right)
$$

then we can see that $\stackrel{(2)}{F^{*}}=\left(\stackrel{(1)}{F}_{t h}\right)$ are anti-symmetric and of maximal rank. And we have

$$
\left.\stackrel{(1)(2)}{F F^{*}}=\stackrel{(1)(2)}{F F} G^{*}=-\stackrel{(\stackrel{(2)}{F}(1)}{F F} G^{*}=-\stackrel{(2)}{F} G^{* t} F^{(1)}\right)^{-1}=-\left(\frac{(1)(2)}{F} F^{*}\right),
$$

or in tensor forms

$$
\stackrel{(1)}{F_{i}^{a}}{ }^{(2)} F_{a h}=-\stackrel{(1)}{F_{h}}{ }^{(2)}{ }^{(2)} \text {. } .
$$

That is, the tensor fields $\stackrel{(1)}{F}=\left(\stackrel{(1)}{F_{i}^{n}}\right), \stackrel{(2)}{F^{*}}=\left(\stackrel{(2)}{F_{i n}}\right)$ gives an almost complex symplectic structure.

We will prove the converse. Let $\stackrel{(1)}{F}=\left(\stackrel{(1)}{F}_{i}^{h}\right),{\stackrel{(2)}{F^{*}}}^{(2)}\left(\stackrel{(2)}{F}_{F_{i h}}\right)$ be an almost complex symplectic structure:

$$
\begin{equation*}
\stackrel{(1)}{F^{2}}=-E,{\stackrel{(2)}{(2)} F^{*}=-\stackrel{(2)}{F}^{*}, \stackrel{(1)(2)}{F} F^{*}=-{ }^{t}\left(\frac{(1)(2)}{F} F^{*}\right), ~}_{\text {(2) }} \tag{3.1}
\end{equation*}
$$

$\stackrel{(2)}{F^{*}}=\left(\stackrel{(2)}{F_{i n}}\right)$ being of maximal rank. We remark that the third condition of (3.1) can also be written as $\stackrel{(1)(2)}{F F^{*}}=\stackrel{(2)}{F^{*} *(1)} F^{\prime}$.

Consider an arbitrary Riemannian metric $\stackrel{\circ}{G}=\left(\stackrel{\circ}{g}_{j i}\right)$ in $X_{4 l}$, then it is well known

$$
G=\left(g_{j i}\right)=\frac{1}{2}\left(\stackrel{\circ}{G}+\stackrel{(1) \circ}{F} G{ }^{t}{ }^{(1)} F\right)
$$

[^3]is a positive definite Riemannian metric hermitian with respect to $\stackrel{(1)}{F}$:
\[

$$
\begin{equation*}
\stackrel{(1)}{F} G^{t^{(1)}}=G . \tag{3.2}
\end{equation*}
$$

\]

Further, if we put
then \widetilde{G} is also positive definite, and consider the characteristic equation

$$
|\widetilde{G}-\rho G|=0 .^{\circ}
$$

Since \widetilde{G} are and G both positive definite, the ν different characteristic roots $\rho_{u}(u=1, \ldots \ldots, \nu)$ are all positive and the elementary divisors are all simple because the matrix $(\widetilde{G}-\rho G)$ is of (0,2)-type. Let $R_{u}(u=1, \ldots \ldots, \nu)$ be the characteristic root spaces corresponding to the different characteristic roots ρ_{u}.

Put $\stackrel{(2)}{F^{\prime \prime}} G^{-1}=\stackrel{(2)}{F^{\prime}}=\left(\stackrel{(3)}{F_{i}^{\prime \prime}}\right)$ and let $x=\left(x^{l}\right)$ be an arbitrary vector in R_{u}, i. e.,

$$
x \widetilde{G}=\rho_{u} x G \quad \text { or } \quad \stackrel{(2)}{-} x F^{*}{\underset{G}{(2)}}_{-1} F^{*}=\rho_{u} x G
$$

then the vectors $x \stackrel{(1)}{F}^{(1)}\left(\stackrel{(1)}{F}_{a}{ }^{h} x^{a}\right), x \stackrel{(2)}{F^{\prime}}=\left(\stackrel{(2)}{F_{a}^{\prime}}{ }^{h} x^{a}\right)$ are also in R_{u}. For, using (3.1) and (3.2), we can see that

$$
\begin{aligned}
& (x \stackrel{(1)}{F}) \widetilde{G}=-x^{(1)(2)} F F^{*} G^{-1} F^{(2)}=-x{\stackrel{(2)}{F^{*}}{ }^{*(2)} F G^{-1^{(2)}} F^{*}}^{*} \\
& =-x F^{\left(\frac{(2)}{*}\right)} G^{-1} t^{(1)} F^{-1} \stackrel{(2)}{(2)}_{F^{*}}=-x F^{(2)} G^{-1}{ }^{(2)} F^{* 2} F^{(1)}{ }^{-1} \\
& =x \widetilde{G}^{t}{ }^{(1)} F^{-1}=\rho_{u} x G^{t}{ }^{t} F^{(1)} \\
& =\rho_{u}\left(x{ }^{(1)}\right) G,
\end{aligned}
$$

and this shows that the vector $x \stackrel{(1)}{F}=\left({ }_{\left(F_{a}\right)}{ }^{h} x^{a}\right)$ is also in R_{u}. Similarly we can see that $x{ }^{(2)} F$ lies in R_{u}, too.

Hence if we choose the frames of reference $\left[e_{i}\right]$ such that $\left[e_{t u}\right]$ span the root space R_{u}, then $G=\left(g_{j i}\right), \stackrel{(1)}{F}=\left(\stackrel{(1)}{F_{i}^{n}}\right), \stackrel{(\omega)}{F^{\prime}}=\left(\stackrel{(2)}{F_{i}^{\prime l}}\right)$ decomposes into ν blocks simultaneously, i.e, $\left(g_{j t}\right)=\left(g_{j_{1 i_{1}}}\right)+\left(g_{j_{2 i_{2}}}\right)+\cdots \cdots+\left(g_{j v i}\right)$, etc.,

Thus with respect to the frames of reference now introduced

$$
G^{*}=\left(g_{j_{i}}^{*}\right)=\left(\sqrt{\rho_{1}} g_{j_{1} i_{1}}\right)+\left(\sqrt{\rho_{2}} g_{j_{2}{ }_{2}}\right)+\cdots \cdots+\left(\sqrt{\rho_{v}} g_{j v i v}\right)
$$

defines a positive definite Riemannian metric such that

[^4]$$
\stackrel{(1)}{F} G^{*} t^{(1)} F=G^{*}, \quad-\stackrel{\left(\stackrel{(1)}{F}{ }^{*} G^{*-1} \stackrel{(9)}{F^{*}}=G^{*}\right.}{ }
$$

Therefore, if we put

$$
\stackrel{(2)}{F^{*}} G^{*-1}=\stackrel{(2)}{F},
$$

then we can verify that

$$
\stackrel{(1)}{F^{2}}=-E, \quad \stackrel{(2)}{F^{2}}=-E, \quad \stackrel{(1)(2)}{F F}=-\stackrel{(2(2)(1)}{F F}
$$

by virtue of (3.1), or in tensor forms

Consequently, we can find an almost quaternion structure $\stackrel{(1)}{F}=\left(\stackrel{(1)}{F_{i}^{h}}\right), \stackrel{(2)}{F}$ $=\left(\stackrel{(\stackrel{9}{(})}{F_{i}}\right)$ derived from the almost $C S$-structure. And hereby we have completed the proof of Theorem 3.1.

On account of the proof of the above Theorem, we see that there exists a positive definite Riemannian metric $g_{j i}^{*}$ combining the almost quaternion structure $\left(\stackrel{(1)}{F_{i}}, \stackrel{(2)}{F_{i}}\right)$ and the almost $C S$-structure $\left(\stackrel{(1)}{F_{i}}, \stackrel{(1)}{F_{i h}}\right)$, such that

$$
g_{a b}^{*} \stackrel{(1)}{F_{j}^{a}} \stackrel{(1)}{F_{i}^{b}}=g_{i j}^{*}, \quad \stackrel{(1)}{F_{t}} g_{a h}^{*}=\stackrel{(2)}{F}_{F_{t}},
$$

hence necessarily

$$
\stackrel{(3)}{F}_{i}^{a} g_{a h}^{*}=\stackrel{(3)}{F}_{i h} .
$$

DEFINITION. We call such an almost quaternion structure and an almost $C S$-structure to be naturally related and call $g_{3 i}^{*}$ he related Riemannian metric.
4. Natural affine connections in almost complex symplectic manifold.

Let $X_{4 n}$ be an almost $C S$-manifold with almost $C S$-structure $\stackrel{(1)}{F_{i}^{h}}, \stackrel{(2)}{F_{i n}}$:

$$
\begin{equation*}
\stackrel{(1)}{F_{i}^{a}} \stackrel{(1)}{F}_{a}^{h}=-\delta_{i}^{k}, \quad \stackrel{(2)}{F_{i h}}=-\stackrel{(2)}{F_{h i}}, \quad \stackrel{(1)}{F_{i}^{a}} \stackrel{(2)}{F}_{a h}=-\stackrel{(1)}{F_{h}}{ }^{a} \stackrel{(2)}{F}_{a i} . \tag{4.1}
\end{equation*}
$$

It is noted that in X_{1}, there exists the third tensor field of (0,2)-type $\stackrel{(3)}{F}_{\text {ith }}$ satisfying
$\stackrel{(3)}{F}_{i h}$ being of maxiaml rank.

There exists a related Riemannian metric $g_{j i}^{*}(\S 3$ Definition) such that
where $\left(\stackrel{(1)}{F}_{i}^{h},{\left.\stackrel{(2)}{F_{i} h}, \stackrel{(3)}{F_{i}^{n}}\right) \text { gives an almost quaternion structure. If we put }}^{(2)}\right.$

$$
\stackrel{(2)}{F^{i n}}=g^{* i(a)} F_{a}^{(2)}, \stackrel{(3)}{F^{i n}}=g^{* i a^{* 3}} F_{a}{ }^{n},
$$

then $\stackrel{(2)}{F^{i n}}, \stackrel{(3)}{F^{i n}}$ are also anti-symmetric in i, h and we have

We remark that although the related Riemannian metric $g_{j i}^{*}$ is not unique, but the $\stackrel{(2)}{F^{i h}}$ and $\stackrel{(3)}{F^{i h}}$ are both unique for $\stackrel{(2)}{F_{i n}}, \stackrel{(3)}{F_{t h}}$ since $\stackrel{(2)}{F_{i a}} \stackrel{(2)}{F}^{a / h}=-\delta_{i}^{h}$, and $\stackrel{(3)}{F_{t a}} \stackrel{(3)}{F^{a n}}=-\delta_{i}^{h}$. Hence with no use of $g_{i j}^{*}$ we can define $\stackrel{(2)}{F^{\text {in }}}$ such that $\stackrel{\left({ }^{(2)}\right.}{F_{i a}}\left(-\stackrel{(2)}{F^{a l h}}\right)=\delta_{i}^{h}$, since such a $\stackrel{(2)}{F}^{i l h}$ is a tensor field. It is similar for ${ }^{(3)} F^{h i}$.

If the covariant differentiation ∇_{j} with respect to an affine connection satisfies

$$
\nabla_{j}{\stackrel{(1)}{F_{i}^{h}}}^{\prime \prime}=0, \nabla_{j}^{(2)}{\underset{F}{i l}}^{(2)}=0 \text { and hence necessarily } \nabla_{j} \stackrel{(3)}{F}_{i h}=0,
$$

then the restricted homogeneous holonomy group of the affine connection is the real representation of $S p(n, C)$ or one of its subgroups. We call such an affine connection a natral affine connection or briefly natural connection of the almost complex symplectic manifold $X_{4 n}$.

We can easily verify that a natural affine connection in an almost CSmanifold coincides with a natural affine connection in an almost quaternion manifold $((\varphi, \psi)$-connection by Obata's terminology, Obata [5]) if and only if the connection is a metric connection (with or without torsion) with respect to the related Riemannian metric.

In the similar way as those of Schouten and Yano [10] and Obata [5], we introduce the following operations making use of $\stackrel{(1)}{F}_{i}{ }^{h}$.

Let $P_{j i}{ }^{n}$ be an arbitrary tensor field in $X_{4 n}$ and we define ${ }^{11)}$

$$
\stackrel{(1)}{\mathfrak{F}} P_{j t}{ }^{n}=\frac{1}{2}\left(P_{j i}{ }^{n}--\stackrel{(1)}{\left.F_{i}{ }^{b} P_{j b}{ }^{a}{ }^{(1)}{ }_{a}{ }^{n}\right)}\right.
$$

[^5]\[

$$
\begin{aligned}
& \stackrel{(1)}{\mathfrak{F}} P_{j t}{ }^{h}=\frac{1}{2}\left(P_{j t}{ }^{h}-\stackrel{(1)}{F_{i}{ }^{b}} P_{j b}{ }^{a}{ }^{(1)} F_{a}^{h}\right) \\
& \stackrel{(1)}{\mathfrak{F}^{*}} P_{j t}{ }^{n}=\frac{1}{2}\left(P_{j t}{ }^{n}+\stackrel{(1)}{F_{i}}{ }^{b} P_{j b}{ }^{a}{ }^{(1)} F_{a}{ }^{n}\right) \\
& \stackrel{(1)}{\mho}{ }^{(1)} P_{j t}{ }^{n}=\frac{1}{2}\left(P_{j i}{ }^{n}-\stackrel{(1)}{F_{j}}{ }^{\left({ }^{(1)} F_{i}{ }^{b} P_{a b}{ }^{n}\right)}\right. \\
& \stackrel{(1)}{\mho^{\prime}}{ }^{*} P_{j i}{ }^{n}=\frac{1}{2}\left(P_{j i}{ }^{n}+\stackrel{(1)}{F_{j}^{a}}{ }^{(1)} F_{i}^{b} P_{a b}{ }^{n}\right) .
\end{aligned}
$$
\]

And we also introduce anew by using $\stackrel{(2)}{F_{i} h}, \stackrel{(2)}{F_{i l}}$ and $\stackrel{(3)}{F_{i n}}, \stackrel{(3)}{F_{i h}}$ the following operations

$$
\begin{aligned}
& \left\{\begin{array}{l}
\stackrel{(2)}{\breve{\zeta}} P_{j t}{ }^{n}=\frac{1}{2}\left(P_{j i}{ }^{n}-P_{j b}{ }^{(2)} F_{a t} F^{(2)}\right) \\
\stackrel{(2)}{\zeta}{ }^{\prime 2} P_{j t}{ }^{n}=\frac{1}{2}\left(P_{j t}{ }^{n}+P_{j b}{ }^{(2)} F_{a i}{ }^{(2)} F^{b l l}\right),
\end{array}\right. \\
& \left\{\begin{array}{l}
\stackrel{(3)}{\mathfrak{\zeta}} P_{j t}{ }^{n}=\frac{1}{2}\left(P_{j i}{ }^{n}-P_{j b}{ }^{(3)} F_{a i} F^{(3)}\right) \\
\stackrel{(3)}{\zeta}{ }^{(3)} P_{j t}{ }^{n}=\frac{1}{2}\left(P_{j t}{ }^{n}+P_{j b}{ }^{(3)} F_{a i}{ }^{(3)} F^{(3)}\right) .
\end{array}\right.
\end{aligned}
$$

 as follows.

$$
\begin{aligned}
& \stackrel{(1)}{\mathfrak{q})} \Gamma_{j t}{ }^{n}=\Gamma_{j t}{ }^{n}-\frac{1}{2}\left(\nabla_{j} \stackrel{(1)}{F}_{i}{ }^{a}\right) \stackrel{(1)}{F}_{a}{ }^{n} \\
& \stackrel{(2)}{\mathfrak{T})} \Gamma_{j t}{ }^{n}=\Gamma_{j t}{ }^{n}-\frac{1}{2}\left(\nabla_{j} \stackrel{(2)}{F}_{i a}\right) \stackrel{(2)}{F^{\alpha u}} \\
& \stackrel{(3)}{\mho} \Gamma_{j t}{ }^{n}=\Gamma_{j t}{ }^{h}-\frac{1}{2}\left(\nabla_{j} \stackrel{(3)}{F}_{i a}\right) \stackrel{(3)}{F^{\alpha h}}
\end{aligned}
$$

 connection $\Gamma_{j i}{ }^{n}$ and a tensor $P_{j t}{ }^{h}$:

These are shown by a direct calculation. For example, consider $\stackrel{(2)}{\overbrace{\urcorner}^{2}}$. Denoting by $\stackrel{p}{\nabla} j$ the covaraint differentiation with respect to $\Gamma_{j t}{ }^{h}+P_{j t}{ }^{n}$, we see that

$$
\stackrel{(2)}{\mathfrak{\zeta}}\left(\Gamma_{j t}{ }^{n}+P_{j i}{ }^{n}\right)=\left(\Gamma_{j t}{ }^{n}+P_{j t}{ }^{n}\right)-\frac{1}{2}\left(\stackrel{p}{\nabla_{j}} \stackrel{F}{F a}^{(2)}\right)^{(2)} F^{a n}
$$

$$
\begin{aligned}
& =\Gamma_{j t}{ }^{h}+P_{j i}{ }^{n}-\frac{1}{2}\left(\nabla_{i}{ }_{i}^{(2)} F_{i a}\right) \stackrel{(2)}{F^{a n}}+\frac{1}{2}\left(P_{j t}{ }^{(2)} \stackrel{H}{c a}^{(2)}+P_{j a}{ }^{c}{ }^{(2)} F_{i c}\right) \stackrel{(2)}{F^{\alpha / h}}
\end{aligned}
$$

$$
\begin{aligned}
& =\stackrel{(2)}{\sqrt[2]{3}} \Gamma_{j i}{ }^{n}+\stackrel{(2)}{\mathfrak{F})} P_{j t}{ }^{n} .
\end{aligned}
$$

The others are proved similarly.
Lemma 4.1. For an affine connection or for a tensor,

$$
\stackrel{(\stackrel{(u)}{\overbrace{}^{2}}}{ }=\stackrel{(u)}{\sqrt{\zeta}} \quad(u=1,2,3)
$$

PROOF. For $\stackrel{(1)}{\mathfrak{F}}$, the property is alraedy known (for exp. [5]). We will

Put $\stackrel{(2)}{\zeta} \Gamma_{j i}{ }^{n}=\stackrel{(2)}{\Gamma}{ }_{j i}{ }^{n}$ and denoting by $\stackrel{(2)}{\nabla}_{j}$ the covaraint differentiation with

$$
\begin{aligned}
& =\left(\Gamma_{j}^{{ }^{g h}}-\frac{1}{2}\left(\nabla_{j} F_{i a}^{(2)} F^{(2)}{ }^{(2)}\right)-\frac{1}{2}\left(\nabla_{j} F_{i a}^{(2)}\right) F^{(2)}-\frac{1}{4}\right.
\end{aligned}
$$

$$
\begin{aligned}
& =\Gamma_{j t}{ }^{n}-\left(\nabla_{j} \stackrel{(2)}{F}_{i a}\right) \stackrel{(2)}{F^{a h}}+\frac{1}{4}\left(\nabla_{j} \stackrel{(2)}{F_{i a}}\right) \stackrel{(2)}{F^{\alpha h}}+\frac{1}{4}\left(\nabla_{j} \stackrel{(2)}{F}_{i a}\right) \stackrel{(2)}{F^{a h}} \\
& =\Gamma_{j i}{ }^{n}-\frac{1}{2}\left(\nabla_{j} \stackrel{(2)}{F_{i a}}\right) \stackrel{(2)}{F^{\alpha / h}}=\stackrel{(2)}{\lessgtr} \Gamma_{j t}{ }^{n} .
\end{aligned}
$$

We can also verify for a tensor $P_{j i}{ }^{h}$.
Q.E.D.

The following Lemma is immediate from the definition of $\stackrel{(u)}{\stackrel{(u)}{\lessgtr}}(u=1,2,3)$.
Lemma 4.2. Let $\Gamma_{j t}{ }^{h}$ be an affine connection in $X_{4 n}$ and let ∇_{j} be the covariant differentiation with respect to $\Gamma_{j i}{ }^{h}$. Then, in order that $\nabla_{j}{ }^{(1)}{ }_{i}{ }^{n}$
 respectively.

This Lemma is already known for $\stackrel{(1)}{F}_{i}^{n}, \stackrel{(1)}{\lessgtr}$ (for exp. [5]).
LEMMA 4.3. The operations $\stackrel{(1)}{\mathfrak{F}, \mathfrak{F}, \mathfrak{F}, \mathfrak{F} \text { for an arbitrary affine connection }}$
satisfy

$$
\begin{gathered}
\stackrel{(u)(v)}{\mathscr{\wp}} \Gamma_{j i}^{n}=\Gamma_{j i}{ }^{n}-\frac{1}{4}\left(\nabla_{j}{\left.\stackrel{(1)}{F_{i}}\right) \stackrel{(1)}{F_{a}}{ }^{n}-\frac{1}{4}\left(\nabla_{j} \stackrel{(2)}{F}\right)_{(2)}^{F^{a h}}-\frac{1}{4}\left(\nabla_{j} \stackrel{(3)}{F}_{j}\right) \stackrel{(3)}{F^{a h}}}_{(u \neq v ; u, v=1,2,3) .}\right.
\end{gathered}
$$

And the operations $\stackrel{(1)}{\mathfrak{F}}, \stackrel{(2)}{\lessgtr}, \stackrel{(3)}{\lessgtr}$ for an arbitrary tensor field $P_{j t}{ }^{h}$ satisfy

$$
\begin{aligned}
& \stackrel{(u)(v)}{\lessgtr} \underset{\lessgtr}{\lessgtr} P_{j t}{ }^{n}=\frac{1}{4}\left(P_{j i}{ }^{n}-\stackrel{(1)}{F_{i}{ }^{b}} P_{j b}{ }^{a} \stackrel{(1)}{F_{a}{ }^{n}}-P_{j b}{ }^{a} \stackrel{(2)}{F_{a i}} F^{(2)}-P_{j b}{ }^{(3)} F_{a i} F^{(3)}\right) \\
& (u \neq v ; u, v=1,2,3) .
\end{aligned}
$$

PROOF. If we put
and denote by $\stackrel{(2)}{\nabla}$, the covariant differentiation with respect to $\stackrel{(2)}{\Gamma}_{j i}{ }^{n}$, then we see that

$$
\begin{aligned}
& =\left(\Gamma_{s t}{ }^{n}-\frac{1}{2}\left(\nabla_{j} \stackrel{(2)}{F}_{i a}{ }^{(2)} F^{a n}\right)-\frac{1}{2}\left(\nabla_{j} \stackrel{(1)}{F}_{i}{ }^{a}\right){ }_{F}^{(1)}{ }_{a}{ }^{n}-\frac{1}{4} \times\right.
\end{aligned}
$$

$$
\begin{aligned}
& =\Gamma_{j i}{ }^{h}-\frac{1}{4}\left(\nabla_{j} \stackrel{(1)}{F}_{i}^{a}\right) \stackrel{(1)}{F_{a}}{ }^{h}-\frac{1}{4}\left(\nabla_{j} \stackrel{(2)}{F}{ }_{i a}\right) \stackrel{(2)}{F^{a l h}}-\frac{1}{4}\left(\nabla_{j} \stackrel{(3)}{F}_{i a}\right) \stackrel{(3)}{F^{a h h}} .
\end{aligned}
$$

We can verify that the other $\stackrel{(2)}{\mathcal{F}} \stackrel{(1)}{\mathfrak{z}} \Gamma_{j t}{ }^{n}, \stackrel{(2)}{\mathfrak{F}} \mathfrak{F} \Gamma_{j t}{ }^{n}$, etc. are all equal to this quantity. The latter part of the Lemma is proved similarly.

From Lemma 4.1, 4.2, 4.3, we have the following Theorem
THEOREM 4.1. Let $\Gamma_{s t}{ }^{n}$ be an arbitrary affine connection ${ }^{11)}$ in an almost
11) An affine connection always exists in our $X_{4 n}$.
complex symplectic manifold $X_{4 n}$ with almost complex symplectic structure $\left(\stackrel{(1)}{F_{i}^{h}}, \stackrel{(2)}{F_{i}}, \stackrel{(3)}{F}\right.$) and let ∇_{j} denote the covariant differentiation with respect to $\Gamma_{j i}{ }^{h}$. Then the affine connection
is a natural affine connection of $X_{4 n}$, that is, its restricted homogeneous holonomy group is the real representation of $S p(n, C)$ or one of its subgroups.

THEOREM 4.2. The necessary and sufficient condition that an affine
 ($u \neq v ; u, v=1,2,3$), that is,

$$
\left(\nabla_{j} \stackrel{(1)}{F}_{i}^{a}\right) \stackrel{(1)}{F_{a}{ }^{h}}+\left(\nabla_{j} \stackrel{(2)}{F}_{i a} \stackrel{(2)}{F^{a h}}+\left(\nabla_{j} \stackrel{(3}{F}_{i a}\right){ }^{(3)}{ }^{a h h}=0,\right.
$$

where ∇_{j} denotes the covariant differentiation with respect to $\Gamma_{f i}{ }^{h}$.
The following Theorem is immediate from
and from Lemma 4.3, Theorem 4.2.
THEOREM 4.3. Let $\Gamma_{j i}{ }^{h}$ be a natural affine connection of an almost complex symplectic manifold $X_{4 n}$ and let $P_{j i}{ }^{n}$ be a tensor field over $X{ }_{4 n}$. Then the necessary and sufficient condition that the affine connection $\Gamma_{j i}{ }^{h}$ $+P_{j i}{ }^{n}$ be again a natural affine connection is that $P_{j i}{ }^{h}$ satisfy $\stackrel{(u)(v)}{\mathfrak{F})} P_{j i}{ }^{n}=P_{j i}{ }^{h}$ ($u \neq v ; u, v=1,2,3$), that is,

$$
3 P_{j i}{ }^{h}+\stackrel{(1)}{F_{i} b} P_{j b}{ }^{a}{ }_{F}^{(1)} F_{a}^{h}+P_{j b}{ }^{a}{ }_{F}^{(2)} \stackrel{(2)}{a i}^{(2)} F^{b h}+\stackrel{(3)}{P_{j b}}{ }^{a} \stackrel{(3)}{F}_{a i} F^{b h}=0
$$

This condition is equivalent to the following two conditions:

$$
P_{j t}{ }^{h}+\stackrel{(1)}{F_{i}^{b}} P_{j b}{ }^{(1)} F_{a}^{h}=0, \quad P_{j i}{ }^{h}+P_{j b}{ }^{a}{ }^{(2)} \stackrel{(2)}{F^{b}}{ }^{b h}=0,
$$

which is verified by contracting $\stackrel{(1)}{F_{k}} \stackrel{(1)}{F}_{h}{ }^{i}$ and $\stackrel{(2)}{F_{h k}} \stackrel{(2)}{F}^{i l}$ to the equation indicated in the Theorem.

The following Theorem is also immediate from Lemma 4.1, 4.3 and Theorem 4.3.

THEOREM 4.4. Let $\Gamma_{j i}{ }^{n}$ be a natural affine connection in an almost complex symplectic manifold $X_{4 n}$ and let $Q_{j t}{ }^{n}$ be an arbitrary tensor field over $X_{4 n}$. Then
is also a natural affine connection.
5. Nijenhuis tensor of $\stackrel{(1)}{F_{i}^{h}}$ and tensors $\stackrel{(2)}{F_{j t h}}, \stackrel{(3)}{F_{j t h}}$. We introduce the Nijenhuis tensor $\stackrel{(1)}{N f i}^{n}$ of the almost complex structure $\stackrel{(1)}{F}_{i}^{n}$:

$$
\stackrel{(1)}{N}_{j t}^{n} \equiv \frac{1}{2}\left(\stackrel{(1)}{F}_{\mid j}^{a} \partial_{|a|} \stackrel{(1)}{F_{i j}}-\stackrel{(1)}{F}_{\mid j}^{a} \partial_{i \mid} \stackrel{(1)}{F_{a}}{ }^{n}\right)
$$

and if $\Gamma_{3 i}{ }^{n}$ is an arbitrary affine connection in $X_{4 n}$, we can write
where ∇_{a} denotes the covariant differentiation with respect to $\Gamma_{f t}{ }^{h}$ and $S_{f t}{ }^{n}$ is the torsion tensor of $\Gamma_{j i}{ }^{h}$.

As to $\stackrel{(2)}{F}_{i n}$ and $\stackrel{(3)}{F}_{i n}$, we put

$$
\begin{aligned}
& \stackrel{(2)}{F}_{y i h} \equiv \partial_{[j} \stackrel{(2)}{F}_{i n]}=\frac{1}{3}\left(\partial_{j} \stackrel{(2)}{F}_{i h}+\partial_{i} \stackrel{(2)}{F}_{h j}+\partial_{h} \stackrel{(2)}{F}_{j f t}\right), \\
& \stackrel{(3)}{F}_{j t h} \equiv \partial_{l j} \stackrel{(3)}{F}_{i h]}=\frac{1}{3}\left(\partial_{j} \stackrel{(3)}{F}_{i h}+\partial_{i} \stackrel{(3)}{F}_{h j}+\partial_{h} \stackrel{(3)}{F}_{j f}\right) .
\end{aligned}
$$

Then, $\stackrel{(2)}{F}_{j t h}$ and $\stackrel{(3)}{F}_{j t h}$ are both tensor felds in $X_{4 n}$ and for an arbitrary affine connection $\Gamma_{j t}{ }^{n}$ in $X_{4 n}$, we can write

$$
\begin{equation*}
\stackrel{(2)}{F}_{j t h}=\nabla_{\mid j} \stackrel{(2)}{F}_{i t h}+\frac{2}{3}\left(S_{j t}{ }^{a} \stackrel{(2)}{F_{a h}}+S_{t h}{ }^{a} \stackrel{(2)}{F}_{a j}+S_{h j}{ }^{a} \stackrel{(2)}{F_{a t}}\right), \tag{5.2}
\end{equation*}
$$

$$
\begin{equation*}
\stackrel{(3)}{F}_{j t h}=\nabla_{i j} \stackrel{(3)}{F}_{F_{t h}}+\frac{2}{3}\left(S_{j t} \stackrel{(3)}{F}_{a h}+S_{i h} \stackrel{(3)}{F}_{a j}+S_{h j}{ }^{a} \stackrel{(3)}{F}_{a t}\right) \tag{5.3}
\end{equation*}
$$

From these equations, we easily have

$$
\begin{align*}
& \left.+S_{j i}{ }^{h}-2 \stackrel{(1)}{F_{1 j}}{ }_{b} S_{i b}{ }^{n}{ }^{(1)} F_{a}{ }^{n}-{ }^{(1)} F_{j}{ }^{(1)}{ }_{F}{ }_{i}{ }^{b} S_{a b}{ }^{n}\right], \tag{5.1}
\end{align*}
$$

$$
\begin{aligned}
& (u \neq v ; u, v=1,2,3)
\end{aligned}
$$

If $S_{f i}{ }^{n}$ is the torsion tensor of a natural connection, then we get

$$
\begin{align*}
& \stackrel{(2)}{F_{j t a}} \stackrel{(3)}{F}{ }^{a n}=-\frac{2}{3}\left(S_{j t}^{n}+S_{j b} \stackrel{(3)}{F}_{a t} \stackrel{(3)}{F}^{b l h}-S_{i b}{ }^{a} \stackrel{(3)}{F}{ }_{a j}{ }^{(3)} F^{b l}\right) . \tag{5.5}
\end{align*}
$$

For a tensor $P_{s i}{ }^{h}$, we have
and we obtain the following theorem.
TheOrem 5.1. The Nijenhuis tensor $\stackrel{(1)}{N j i t}^{h}$ can be represented by means of the tensors $\stackrel{(2)}{F_{\text {jth }}}, \stackrel{(3)}{F}_{\text {jth }}$ as follows:
where $P_{j t}{ }^{n} \equiv \stackrel{(2)}{F_{j t a}} F^{(2)}+\stackrel{(3)}{F}_{j t a}{ }^{(3)}{ }^{a n}$.
PROOF. Let $\Gamma_{j t}{ }^{h}$ be an arbitrary natural connection with torsion tensor $S_{j t}{ }^{n}$ and at first we calculate $\mathfrak{F}^{(1)}{ }^{(1)} \mathfrak{F}^{(1)}\left(\stackrel{(2)}{F i a}_{F_{j i a}}^{(2) a h}\right)$ taking account of (5.4), (5.5) and (5.6).

$$
\begin{aligned}
& \stackrel{(1)}{\mathfrak{F}}{ }^{*} \mathfrak{F}^{(1)}\left(\stackrel{(2)}{F}_{F_{j t a}} F^{(2)}\right) \\
& =-\frac{1}{6}\left[\left(S_{j i}^{n}+S_{j b}{ }^{(2)} F_{a i} F^{(2)}-S_{i b}{ }^{(2)} F_{a i} F^{(2)}\right)\right. \\
& -\stackrel{(1)}{F_{j}}{ }^{b}\left(S_{i b}{ }^{a}+S_{i d}{ }^{{ }^{(2)}}{ }^{(2)}{ }_{c b} F^{(2)}-S_{b d}{ }^{c}{ }^{(2)}{ }_{c t}{ }^{(2)} F^{a d}\right){ }^{(2)}{ }_{a}{ }^{n}
\end{aligned}
$$

$$
\begin{aligned}
& -\stackrel{(1)}{F}{ }_{j}^{a}{ }^{(1)}{ }_{i}^{b}{ }^{b}\left(S_{a b}^{h}+S_{a d}{ }^{\left.\left({ }^{(2)} F_{c b} F^{(2)} F^{d h}-S_{b d}{ }^{(2)} F_{c a} F^{(2)}\right)\right]}\right. \\
& =-\frac{1}{6}\left[\left(S_{j i}{ }^{n}+S_{j b}{ }^{a}{\left.\stackrel{(2)}{F}{ }_{a i}{ }^{(2)} F^{b h}-S_{i b}{ }^{a} \stackrel{(2)}{F}{ }_{a j}{ }^{(2)} F^{b l u}\right)}\right.\right. \\
& -\left(\stackrel{(1)}{F}_{j}^{b} S_{i b}{ }^{a} \stackrel{(1)}{F}_{a}{ }^{n}-S_{i d}{ }^{c}{ }^{(3)} F_{c j} F^{(3)} F^{d h}+\stackrel{(1)}{F_{j}^{b}} S_{b d}{ }^{c}{ }^{(2)}{ }_{c t}{ }^{(3)} F^{d h}\right)
\end{aligned}
$$

$$
\begin{aligned}
& +\left(\stackrel{(1)}{F}_{i} S_{j b}{ }^{a} \stackrel{(1)}{F}_{a}{ }^{h}-S_{j d}{ }^{c^{(3)} F_{c t} F^{(3)}}{ }^{d h}+\stackrel{(1)}{F}_{i}^{b} S_{b d}{ }^{c}{ }^{(2)}{ }_{c j} F^{(3)}{ }^{d h}\right) \\
& \left.-\left({ }_{F}^{(1)} \stackrel{(1)}{a}^{a} F_{i}^{b} S_{a b}{ }^{h}+\stackrel{(1)}{F_{j}}{ }^{a} S_{a d}{ }^{(3)} F_{c t} F^{(2)}{ }^{(2)}-\stackrel{(1)}{F}_{i}^{b} S_{b d}{ }^{\left({ }^{(3)}\right.} F_{c j}{ }^{(2)} F^{d h}\right)\right] \\
& =-\frac{1}{6}\left[\left(S_{j t}{ }^{n}-\stackrel{(1)}{F_{j}^{b}} S_{i b}{ }^{a}{ }^{(1)} F_{a}{ }^{n}+\stackrel{(1)}{F_{i}{ }^{b}} S_{j b}{ }^{a}{ }^{(1)} F_{a}{ }^{n}-\stackrel{(1)}{F_{j}}{ }_{j}{ }^{(1)}{ }_{i}{ }^{b} S_{a b}{ }^{n}\right)\right.
\end{aligned}
$$

$$
\begin{aligned}
& -\left(S_{j t}{ }^{h}+S_{j b}{ }^{a^{(3)}} F_{a i}{ }^{(3)} F^{b h}-S_{i b}{ }^{a}{ }^{(2)}{ }_{a j} F^{(3)}\right) \\
& -\stackrel{(1)}{F}{ }_{j}^{a}{ }_{F}^{(1)}{ }_{i}^{b}\left(S_{a b}{ }^{h}+S_{a d}{ }^{c^{(2)} F_{c b} F^{(2)}}-S_{b d}{ }^{c}{ }^{(2)} F_{c a} F^{(2)}\right)
\end{aligned}
$$

$$
\begin{aligned}
& =-\frac{1}{6}\left[2 \stackrel{(1)}{N}_{j t}^{n}-\frac{3}{2} \stackrel{(2)}{F}_{f j a}^{F} \stackrel{(2)}{a h h}^{2}+\frac{3}{2} \stackrel{(3)}{F} j \stackrel{(3)}{ }_{F}^{F}{ }^{a h}\right.
\end{aligned}
$$

$$
\begin{aligned}
& =-\frac{1}{3} \stackrel{(1)}{N}_{j t}^{h}+\frac{1}{4}\left[\stackrel{(2)}{F_{j i a}} \stackrel{(2)}{F}^{a n}-\stackrel{(1)}{F}_{j}{ }_{j}^{a(1)} F_{i}^{b}\left(\stackrel{(2)}{F}_{a b c} \stackrel{(2)}{F}^{c h}\right)\right] \\
& -\frac{1}{4}\left[\stackrel{(3)}{F_{j t a}} F^{(3)}-\stackrel{(1)}{F_{j}^{a}} \stackrel{(1)}{F}_{F}^{b}\left(\stackrel{(3)}{F_{a b c}} \stackrel{(3)}{F}^{c h}\right)\right] .
\end{aligned}
$$

Analoguously we get

$$
\begin{aligned}
& \left.+\frac{1}{4}\left[\stackrel{(3)}{F_{j i a}} F^{(3)} F^{a h}-\stackrel{(1)}{F}{ }_{j}{ }^{a} \stackrel{(1)}{F}_{F_{i}}{ }^{(} \stackrel{(3)}{F_{a b c}} F^{(3)}\right)\right] .
\end{aligned}
$$

Consequently we have
Q.E.D.

THEOREM 5.2. The tensors $\stackrel{(2)}{F}_{\text {ith }}$ and $\stackrel{(3)}{F}_{\text {jith }}$ can be represented as follows :
where

$$
P\left(T_{y i h}\right)=\frac{1}{3}\left(T_{y t h}+T_{i h j}+T_{h i f}\right),
$$

for a tensor $T_{j t h}$.
PROOF. Let $\Gamma_{j i}{ }^{n}$ be an arbitrary natural connection with torsion tensor $S_{i f}{ }^{n}$. Then by virtue of Theorem 4.4,
is also a natural connection and taking account of (5.4). (5.5), (5.6), the torsion tensor $S_{j i}^{\prime}{ }^{h}$ of $\Gamma_{j i}^{\prime}{ }^{n}$ is calculated as follows :

$$
\begin{aligned}
& S_{j i}^{\prime n}=\frac{1}{5}\left[\left(S_{j i}{ }^{n}-\stackrel{(1)}{F_{j}{ }^{b}} S_{i b}{ }^{a}{ }^{(1)}{ }_{a}{ }^{n}+\stackrel{(1)}{F_{i}{ }^{b}} S_{j b}{ }^{(1)} F_{a}{ }^{n}\right)\right. \\
& +\left(S_{j i}{ }^{h}+S_{j b}{ }^{(2)}{ }_{F}^{(2)}{\left.\stackrel{(2)}{ } F^{b h}-S_{i b}{ }^{a}{ }^{(2)}{ }_{a j}{ }^{(2)} F^{b h}\right)}^{a}\right) \\
& \left.+\left(S_{f t}{ }^{n}+S_{f b}{ }^{a}{ }^{(3)} F_{a t}{ }^{(3)} F^{b n}-S_{i b}{ }^{a}{ }^{a} F_{a t i}{ }^{(3)} F^{b h}\right)\right]
\end{aligned}
$$

from which we get
and hence

$$
\begin{aligned}
& P\left(S_{j t}^{\prime} \stackrel{(1)}{F_{a h}}\right)=\frac{2}{5} P\left(\stackrel{(1)}{N_{j i}}{ }^{a}{ }^{(2)}{ }_{|a| h}\right)+\frac{1}{5} P\left(\stackrel{(1)}{F} ; \stackrel{a}{F}_{i}^{(1)}{ }_{i}^{b} S_{|a||b|}{ }^{c}{ }^{(2)}{ }_{c h}\right) \\
& +\frac{3}{10} \stackrel{(2)}{F_{j t h}}-\frac{3}{10} P\left({\left.\stackrel{(3)}{F}{ }_{j i|a|} \stackrel{(1)}{F}_{h}{ }^{a}\right) .}\right.
\end{aligned}
$$

Since $S_{j i}^{\prime h}$ is the torsion tensor of a natural connection, we have from (5.2)

$$
P\left(S_{j i}^{\prime a} \stackrel{(2)}{F_{a h}}\right)=\frac{1}{3}\left(S_{j i}^{\prime}{ }^{(2)}{ }_{a h t}^{(2)}+S_{i h}^{\prime}{ }^{(2)} F_{a t}+S_{j h}^{\prime} \stackrel{(2)}{F}_{a i}\right)=\frac{1}{2} \stackrel{(2)}{F}_{j t h}
$$

and further from (5.3) we get

Consequently, we obtain
or

The representation of $\stackrel{(3)}{F}$ gth $^{\text {is also obtained by a quite similar way. }}$
Q. E. D.

Corollary. If we put
then

PROOF. From the second equation of Theorem 5.2, we have
hence subtracting this equation from the first equation of the Theorem, we get

But since

$$
\stackrel{(1)}{N j i}^{c}{ }^{c}+\stackrel{(1)}{F_{j}}{ }_{j}^{(1)} F_{i}{ }^{e} \stackrel{1}{N}_{d e}{ }^{c}=0
$$

hlods true (Cf. [5], p. 55, Corollary 1), we obtain

$$
\frac{1}{2} \stackrel{(1)}{F}_{j i h}-\frac{3}{2} P\left(\stackrel{(1)}{F}_{j}^{d}{ }^{d} \stackrel{(1)}{F}_{i}^{e} \stackrel{(2)}{F}_{|a||e| h}\right)=\frac{1}{2} \stackrel{(1)}{F} F_{j}^{a} \stackrel{(1)}{F}_{i}{ }^{(1)} F_{h}{ }^{c} \stackrel{(3)}{F}_{a b c}-\frac{3}{2} P\left({ }_{F}^{(1)}{ }_{F}{ }^{(3)} F_{|c| j i}\right)
$$

or

From Theorem 5.1 and 5.2, we have

$$
\begin{aligned}
& +\frac{3}{2} P\left(\stackrel{(1)}{F_{j}^{d}} \stackrel{(1)}{F}_{i}^{e}{ }^{e}{ }_{|d|| | \epsilon \mid h}^{(2)}\right)+\frac{1}{2} \stackrel{(2)}{F_{j i h}} .
\end{aligned}
$$

$$
\begin{aligned}
& -\frac{3}{2} P\left(\stackrel{(1)}{F_{j}}{ }^{d} \stackrel{(1)}{F}_{F_{i}^{e}} \stackrel{(2)}{F}_{|d||e| h}\right)-\frac{1}{2} \stackrel{(2)}{F_{j i l h}},
\end{aligned}
$$

$$
\begin{aligned}
& +\frac{3}{10} \stackrel{(2)}{F}_{j t h}-\frac{3}{10} P\left(\stackrel{(3)}{F}_{f t|a|}{ }^{(1)}{ }_{h}{ }^{a}\right)
\end{aligned}
$$

 one also vanishes.

THEOREM 5.4. There exists in $X_{4 n}$ a natural connection $\Gamma_{j i}^{\prime}{ }^{n}$ whose torsion tensor $S_{j i}^{\prime}{ }^{n}$ is given by

PROOF. Let $\Gamma_{j i}{ }^{n}$ be an arbitrary natural affine connection in $X_{4 n}$, then by virtue of Theorem 4.4,

$$
\Gamma_{j i}^{\prime}{ }^{n}=\Gamma_{j i}{ }^{n}+\frac{1}{4}\left(Q_{j i}{ }^{n}-\stackrel{(1)}{F_{i}^{b}} Q_{j b}{ }^{a} \stackrel{(1)}{F}_{a}^{n}-Q_{j b}{ }^{a} \stackrel{(2)}{F_{a i}} \stackrel{(2)}{ }^{(2)}-Q_{j b}{ }^{a} \stackrel{(3)}{F}_{F_{a i}} F^{(3)}\right)
$$

is also a natural affine connection, where $Q_{f t}{ }^{h}$ is an arbitrary tensor field. If we take

$$
Q_{t i}^{n}=-\frac{1}{3}\left(5 S_{j t}^{n}+\stackrel{(1)}{F_{i}^{a}}{\left.\stackrel{(1)}{F_{i}^{b}} S_{a b}^{n}\right), ~, ~}_{n}\right.
$$

where $S_{j i}{ }^{h}$ is the torsion tensor of $\Gamma_{j i}{ }^{n}$, then we can calculate

$$
\begin{aligned}
& \frac{1}{4}\left(Q_{j i}{ }^{h}-\stackrel{(1)}{F_{i}^{b}} Q_{j b}{ }^{a}{ }^{(1)}{ }_{a}{ }^{h}-Q_{j b}{ }^{(2)} F_{a i}{ }^{(2)} F^{b h}-Q_{j b}{ }^{a}{ }^{(3)} F_{a i}{ }^{(3)} F^{b / h}\right)
\end{aligned}
$$

$$
\begin{aligned}
& =-\frac{1}{12}\left[5 S_{j t}{ }^{h}+\stackrel{(1)}{F_{j}}{ }^{a} \stackrel{(1)}{F_{i}{ }_{b} S_{a b}{ }^{n}-5 \stackrel{(1)}{F}{ }_{i}{ }_{b} S_{j b}{ }^{(1)} F_{a}{ }^{h}+\stackrel{(1)}{F_{j}{ }^{c}} S_{c t}{ }^{a}{ }^{(1)}{ }_{a}{ }^{h}}\right.
\end{aligned}
$$

$$
\begin{aligned}
& =-\frac{1}{12}\left[12 S_{j i}{ }^{n}-\left(2 S_{j t}{ }^{n}-\stackrel{(1)}{F}{ }_{j}^{b} S_{b i}{ }^{a} F_{a}^{(1)}+5 F_{i}{ }^{h} S_{j b}{ }^{a} \stackrel{H}{F}_{a}{ }^{n}-2 \stackrel{(1)}{F}, \stackrel{(1)}{F_{i}}{ }^{b} S_{a b}{ }^{n}\right)\right.
\end{aligned}
$$

Hence we get

$$
\begin{aligned}
& +5\left(\frac{1}{2} S_{j i}{ }^{n}+S_{j b}{ }^{a}{ }_{F}^{(2)}{ }_{a i} F^{(\underline{(2)}}{ }^{b n}\right)+5\left(\frac{1}{2} S_{j i}{ }^{n}+S_{j b}{ }^{(3)} F_{a i} F^{(3)}{ }^{b h}\right) \\
& \left.+\stackrel{(1)}{F}{ }_{j}{ }^{a}{ }^{(1)}{ }_{i}{ }^{b}\left(\frac{1}{2} S_{a b}{ }^{n}+S_{a d}{ }^{c}{ }^{2} F_{c b}{ }^{(2)} F^{d h}\right)+\stackrel{(1)}{F} F_{j}{ }^{a} \stackrel{(1)}{F}_{i}{ }^{b}\left(\frac{1}{2} S_{a b}{ }^{n}+S_{a d}{ }^{c} \stackrel{(3)}{F}_{c b}{ }^{(3)}{ }^{d h}\right)\right] .
\end{aligned}
$$

Let $S_{j i}^{\prime h}$ be the torsion tensor of $\Gamma_{j i}^{\prime}{ }^{h}$, then from (5.4), (5.5), (5.6) we see that

$$
\begin{aligned}
& \left.\left.-\frac{3}{4} \stackrel{(1)}{F_{j}^{a}} \stackrel{(1)}{F}_{i}^{b} \stackrel{(2)}{F_{a b c}}{ }^{(2)}{ }^{c h}\right)-\frac{3}{4} \stackrel{(1)}{F_{j}}{ }^{a^{(1)}}{ }_{i}{ }_{i}^{b}\left(\stackrel{(3)}{F} F_{a b c}{ }^{(3)}{ }^{c h}\right)\right] .
\end{aligned}
$$

Thus $\Gamma_{j i}^{\prime}{ }^{h}$ is a natural affine connection with torsion tensor $S_{j i}^{\prime}{ }^{h}$ of the required form.
Q.E.D.

COROLLARY. In order that we can introduce in $X_{4 n}$ a natural affine connection without torsion is that the Nijenhuis tensor $\stackrel{(1)}{N_{j i}}$ of $\stackrel{(1)}{F}_{i}^{n}$ and the tenrors $\stackrel{(2)}{F}_{\text {filh }}, \stackrel{(3)}{F}_{\text {gth }}$ all vanish.

PROOF. The necessity is evident from (5.4), (5.5), (5.6). We can also prove the sufficiency by virtue of the Theorem.
6. Complex frames and complex analytic cases with respect to $\stackrel{(1)}{F}_{i}$.

In general, let $A_{2 m}$ be a $2 m$-dimensional almost complex manifold with natural affine connection ${ }^{12)}$, then the restricted homogeneous holonomy group is the real representration of $G L(m, C)$ or one of its subgroups.

If we choose complex frames of referfnce $\left[e^{\alpha}, e_{\bar{\alpha}}\right]^{73)}$ in $A_{2 m}$, the connection of $A_{2 m}$ can be given by

$$
\begin{equation*}
d P=\pi^{\alpha} e_{\alpha}+\pi^{\bar{\alpha}} e_{\bar{\alpha}}, d e_{\beta}=\pi_{\beta}^{\alpha} e_{\alpha} ; \text { conj. } \tag{6.1}
\end{equation*}
$$

where $e^{\alpha}=\overline{e_{\bar{\alpha}}}, \pi^{x}=\overline{\pi^{\bar{x}}}$. And if we put

$$
\left\{\begin{array}{l}
e_{\alpha}=\frac{1}{\sqrt{2}}\left(e_{\alpha}^{\prime}-i e_{\bar{\alpha}}^{\prime}\right), e_{\bar{\alpha}}=\frac{1}{\sqrt{2}}\left(e_{\alpha}^{\prime}+i e_{\alpha}^{\prime}\right), \\
\pi^{\alpha}=\frac{1}{\sqrt{2}}\left(\omega^{\alpha}+i \omega^{\dot{\bar{x}}}\right)=\overline{\pi_{\bar{\alpha}}}, \\
\pi_{\beta}^{\alpha}=\omega_{\beta}^{\alpha}-i \omega_{\beta}^{\bar{\alpha}}=\omega_{\beta}^{\alpha}+i \omega_{\bar{\sim}}^{\alpha}=\overline{\pi_{\bar{\beta}}^{\bar{\alpha}}},
\end{array}\right.
$$

12) The natural affiae connection means the connection with respect to which the almost complex structure is of null covariant derivative.
13) The ranges of Greek indices are as follows.

$$
\alpha, \beta, \gamma, \cdots, \lambda, \mu, \nu, \cdots=1, \cdots, m ; \bar{\alpha}, \bar{\beta}, \boldsymbol{\gamma}, \cdots, \bar{\lambda}, \bar{\mu}, \bar{\nu}, \cdots=\alpha+m, \beta+m, \cdots, \lambda+m, \mu+m \cdots
$$

then the real Pfaffians $\omega^{\alpha}, \omega^{\bar{\alpha}}, \omega_{\beta}^{\alpha}\left(=\omega_{\beta}^{\bar{\alpha}}\right), \omega_{\beta}^{\bar{\alpha}}\left(=-\omega_{\bar{\beta}}^{\alpha}\right)$ give the connection of $A_{2 m}$ with respect to real frames of reference $\left[e_{\alpha}^{\prime}, e_{\bar{\alpha}}^{\prime}\right]\left(e_{i}^{\prime}=a_{i}^{a}(x) \frac{\partial}{\partial x^{a}} ; i, a=\right.$ $1, \ldots, 2 m)$.

If $m=2 n$ and if the restricted homogeneous holonomy group h^{0} of $A_{2 m}=A_{4 n}$ is the real representation of $S p(n, C)$, then with respect to the connection (6.1), an anti-symmetric tensor feld ${ }^{14}$ of the form

$$
\left(\begin{array}{cc}
f_{\mu \lambda} & 0 \tag{6.2}\\
0 & f_{\bar{\mu} \bar{\lambda}}
\end{array}\right), \quad\left(f_{\mu \lambda}=\overline{f_{\bar{\mu} \bar{\lambda}}} ; \operatorname{det}\left|f_{\mu \lambda}\right| \neq 0\right)^{15)}
$$

is of null covariant derivative (Cf. §1). And according to §1, we see that: Let $A_{4 n}$ be an almost complex manifold with natural affine connection and consider complex frames of reference such as (6.1). Then the necessary and sufficient condition that the restricted homogeneous holonomy group h^{0} of $A_{4 n}$ be contained in the real representation of $S p(n, C)$ is that there exists an anti-symmetric tensor field ${ }^{15)}$ with null covariant derivative whose components are given by (6.2), with respect to the complex frames of reference under consideration.

We can normalize the tensor (6.2) by a suitable complex change of frames of reference.

Now, let $X_{4 n}$ be an almost $C S$-manifold with almost $C S$-structure (${ }^{(1)}{ }_{i}{ }^{n}$, $\stackrel{(2)}{F}_{i n}$) and consider the case where $X_{4 n}$ is complex analytic, $\stackrel{(1)}{F}_{i}^{h}$ giving the complex analytic structure of $X_{4 n}$. The Nijenhuis tensor $\stackrel{11}{N}_{j i}^{n}$ of $\stackrel{(1)}{F}_{i}^{h}$ necessarily vanishes.

We call such an $X_{4 n}$ a complex almost symplectic manifold and in this case we call the structure $\left({ }_{(}^{(1)}{ }_{i}^{h}, F_{i n}^{(2)}\right)$ a complex almost symplectic structure.

And further, if $\stackrel{(2)}{F}_{\text {jil }}=0$ in complex almost symplectic $X_{4 n}$, then we call such an $X_{4 n}$ a complex symplectic manifold with complex symplectic structure $\left(\stackrel{(1)}{F_{i}{ }^{n}}, \stackrel{(2)}{F_{i n}}\right)$. In this case, we have necessarily $\stackrel{(3)}{F}_{j j l l}=0$ by virtue of Theorem 5.3.

In a complex almost symplectic manifold $X_{4 n}$, if we introduce a complex analytic coordinate system $\left(z^{\alpha}, z^{\bar{a}}\right),\left(z^{\bar{\alpha}}=\overline{z^{\alpha}},\right)$ then the tensor field $\stackrel{(1)}{F_{i}^{h}}$ takes
14) The components are complex, the real and imaginary parts being functions of the initial real coordinate system.
15) In case of $m=2 n$, the Greek indices run as follows:

$$
\alpha, \beta, \gamma, \cdots, \lambda, \mu, \nu, \cdots=1, \cdots 2 n ; \bar{\alpha}, \bar{\beta}, \cdots, \bar{\lambda}, \bar{\mu}, \cdots=\alpha+2 n, \beta+2 n, \cdots, \lambda+2 n, \mu+2 n, \cdots
$$

the numerical components of the form $\left(\begin{array}{ccc}-i E_{2 n} & 0 \\ 0 & i E_{2 n}\end{array}\right)$ and we denote this tensor field anew by $I=\left(I_{i}{ }^{h}\right)$. With respect to the complex coordinate system under consideration, put $\stackrel{(2)}{F}=\left({ }_{(2)}^{F} F_{h}\right)=\left(\begin{array}{ll}A & B \\ C & D\end{array}\right)$, where A,B,C,D are complex matrices of degree $2 n$. Then since $\left(\stackrel{(2)}{F_{i n}}\right)$ is anti-symmetric, we have

$$
{ }^{t} A=-A,{ }^{t} D=-D,{ }^{t} B=-C,
$$

and further since $I \stackrel{(2)}{F}=\left(\begin{array}{rr}-i A & -i B \\ i C & i D\end{array}\right)$ is also anti-symmetric from the definition of the almost $C S$-structure, we have

$$
{ }^{t} B=C
$$

and hence $B=C=0$.
Therefore, if we denote the tensor $\left({ }_{\left({ }_{i n}\right)}^{(2)}\right)$ with respect to the complex coordinate system by $f=\left(f_{i n}\right)$, we see that

$$
f=\left(f_{i l}\right)=\left(\begin{array}{lr}
f_{\mu \lambda} & 0 \\
0 & f_{\bar{\mu} \lambda}
\end{array}\right),
$$

where $f_{\mu \lambda}=f_{\mu \lambda}(z, \bar{z})$ and $f_{\bar{\mu} \bar{\lambda}}=f_{\bar{\mu} \bar{\lambda}}(z, \bar{z})$ are anti-symmetric in λ, μ and $\bar{\lambda}, \bar{\mu}$ respectively. Since $\left(f_{i h}\right)$ must have real representations it is self-adjoint:

$$
f=\left(f_{i l l}\right)=\left(\begin{array}{cc}
f_{\mu \lambda} & 0 \tag{6.3}\\
0 & f_{\bar{\mu} \bar{\lambda}}
\end{array}\right),\left(f_{\mu \lambda}=\overline{f_{\bar{\mu} \bar{\lambda}}} ; f_{\mu \lambda}=-f_{\lambda \mu}\right) .
$$

Hence in a complex almost symplectic case, we denote the complex almost symplectic structure with respect to a complex coordinate system by ($I_{i}^{h}, f_{i n}$), ($f_{\text {in }}$) being of the form (6.3).

Hereafter we confine ourselves to such complex analytic coordinate systems if otherwise stated.

If we put

$$
f_{s i l b}=\partial_{i} f_{i n]},
$$

then of course this $f_{\text {jil }}$ is no other than the $\stackrel{(\stackrel{2}{F}}{F}_{\text {jil }}$ in general real coordinate system. $f_{\text {jif }}$ is also self-adjoint, and

$$
f_{\bar{\nu} \mu \lambda}=\frac{1}{3} \partial_{\bar{\nu}} f_{\mu \lambda} ; \text { conj. }
$$

taking account of (6.3).
A tensor field whose mixed components vanish is called pure. And we
can easily see that: The necessary and sufficient condition that $f_{\mu \lambda}\left(f_{\bar{\mu} \bar{\lambda}}\right)$ do not contain $z^{\alpha}\left(\bar{z}^{\alpha}\right)$ is that the tensor $f_{\text {sith }}$ be pure. Hence if the manifold is complex symplectic, i.e., if $f_{\text {jith }}=0$, then $f_{\mu \lambda}=f_{\mu \lambda}(z), f_{\bar{\mu} \bar{\lambda}}=f_{\bar{\mu} \bar{\lambda}}(\bar{z})$.

If we put

$$
f^{\prime}=\left(f_{i h}^{\prime}\right)=\left(I_{i}^{a} f_{a h}\right)=\left(\begin{array}{rr}
-i f_{\mu \lambda} & 0 \\
0 & i f_{\bar{\mu} \lambda}
\end{array}\right)=\left(-i f_{i h}\right)
$$

then $f_{i h}^{\prime}$ corresponds to the $\stackrel{(3)}{F}_{F i l}$ in the real case and

$$
f_{s i h}^{\prime}=\partial_{[j} f_{i n]}
$$

corresponds to the $\stackrel{(3)}{F_{j t h}}$. We see that

$$
f_{\nu \mu \lambda}^{\prime}=-i f_{\nu \mu \lambda} ; \text { conj. }
$$

$$
f_{\bar{\nu}_{\mu \lambda}}^{\prime}=\frac{1}{3} \partial_{\nu} f_{\mu \lambda}=-\frac{i}{3} \partial_{\nu} f_{\mu \lambda}=-i f_{\bar{\nu}_{\mu \lambda} \lambda} ; \text { conj. }
$$

Hence we have
PROPOSITION 6.1. In an $X_{4 n}$ with complex almost symplectic structure ($I_{i}^{h}, f_{i h}, f_{i h}^{\prime}$), we have

$$
f_{\nu \mu \lambda}^{\prime}=-i f_{\nu \mu \lambda}, f_{\nu \mu \lambda}^{\prime}=-i f_{\bar{\nu} \mu \lambda} ; \operatorname{conj} .
$$

This corresponds to Theorem 5.2 or to its Corollary.
In general, in a complex analytic manifold with complex coordinate system ($z^{\alpha}, z^{\bar{\alpha}}$), the natural affine connection is given by ($\Gamma_{j \mu}{ }^{\lambda}, \Gamma_{j \mu}{ }^{\bar{\alpha}}$), the other Γ^{\prime} 's being all zero. And we remark that $\left(\Gamma_{\nu \mu}{ }^{\lambda}, \Gamma_{\bar{\nu} \bar{\mu}^{\overline{ }}}\right.$) give also components of a natural affine connection and $\left(\Gamma_{\bar{\nu} \mu}{ }^{\lambda}, \Gamma_{\nu \mu}{ }^{\bar{\lambda}}\right)$ are components of a mixed tensor.

PROPOSITION 6.2. Let $A_{4 n}$ be a complex analytic manifold with complex coordinate system $\left(z^{\alpha}, z^{\bar{\alpha}}\right)$ and with natural afine connection $\left(\Gamma_{j u}{ }^{\lambda}, \Gamma_{j \bar{\mu}}{ }^{\bar{\lambda}}\right)$. Then the necessary and sufficient condition that the restricted homogeneous holonomy group h^{0} is contained in the real representation of $S p(n, C)$ is that there exist an anti-symmetric self-adjoint tensor field $\left(f_{\mu \lambda}, f_{\mu \bar{\lambda}}\right)\left(f_{\mu \bar{\lambda}}\right.$ $=f_{\bar{\mu}}=0$) with null covariant derivatives.

That is, the $A_{4 n}$ is necessarily a complex almost symplectic manifold and the connection is a natural affine connecton with respect to the complex almost symplectic structure ($I_{i}{ }^{h}, f_{i n}$).

The condition $\nabla_{j} f_{\text {ih }}=0$ are written out fully as follows:

$$
\left\{\begin{array}{l}
\Delta_{\nu} f_{\mu \bar{\lambda}}=\nabla_{\nu} f_{\bar{\mu} \lambda}=0 ; \text { conj. } \quad \text { (identically satisfied) } \tag{6.4}\\
\nabla_{\nu} f_{\mu \lambda}=\partial_{\nu} f_{\mu \lambda}-\Gamma_{\nu \mu}{ }^{\omega} f_{\omega \lambda}-\Gamma_{\nu \lambda}{ }^{\omega} f_{\mu \omega}=0 ; \text { conj. } \\
\nabla_{\bar{\nu}} f_{\mu \lambda}=\partial_{\bar{\nu}} f_{\mu \lambda}-\Gamma_{\bar{\nu} \mu}{ }^{\omega} f_{\omega \lambda}-\Gamma_{\bar{\nu} \lambda}{ }^{\omega} f_{\mu \omega}=0 ; \text { conj. }
\end{array}\right.
$$

Since $\partial_{\bar{\nu}} f_{\mu \lambda}=0$ if and only if $f_{j i h}$ is pure, we can easily obtain from (6.4).
PROPOSITION 6.3. Let $X_{4 n}$ be a complex almost symplectic manifold with complex almost symplectic structure ($I_{i}^{h}, f_{i n}$). Then in order that there exist a natural connection of the type $\left(\Gamma_{\nu \mu}{ }^{\lambda}, \Gamma_{\bar{\nu} \bar{\mu}^{-\lambda}}\right)$ with respect to ($I_{i}^{h}, f_{i n}$), it is necessary and sufficient that the tensor $f_{\text {sill }}$ be pure.

Hence, in a complex symplectic $X_{4 n}\left(f_{\text {jil }}=0\right)$, there exists always a natural connection of the type $\left(\Gamma_{\nu \mu}{ }^{\lambda}, \Gamma_{\bar{\nu} \mu} \overline{\bar{\lambda}}^{\overline{1}}\right.$) with respect to the structure ($I_{i}{ }^{h}, f_{i h}$).

We can define a tensor $f^{t h}$ such that $f_{i a}\left(-f^{a h}\right)=\delta_{i}^{h}$ since such an $f^{i h}$ has a tensor character, and we see that $f^{t h}$ is also self-adjoint and anti-symmetric in i, h.

PROPOSITION 6.4. In an $X_{4 n}$ with complex almost symplectic structure $\left(I_{i}^{h}, f_{i n}\right)$, there exists a natural connection with respect to ($I_{i}^{h}, f_{i l}$) whose torsion tensor $S_{i j}^{\prime n}$ is given by

$$
S_{\nu \mu}^{\prime}{ }^{\lambda}=-\frac{1}{2} f_{\nu \mu \alpha} f^{a \lambda}, \quad S_{\nu_{\mu}}^{\prime}{ }^{\lambda}=-\frac{3}{4} f_{\bar{v}_{\mu \alpha}} f^{a \lambda} ; \text { conj. }
$$

PROOF. Let $\Gamma_{j i}{ }^{n}=\left(\Gamma_{j \mu}{ }^{\lambda}, \Gamma_{j \mu}{ }^{-\bar{\lambda}}\right)$ be an arbitrary natural connection with respect to ($I_{i}{ }^{h}, f_{i h}$), then it satisfies (6.4). Since $\left(\Gamma_{\nu \mu}{ }^{\lambda}, \Gamma_{\bar{\nu} \mu}{ }^{-\bar{\lambda}}\right)$ is an affine connection leaving invariant the I_{i}^{h} and $\left(\Gamma_{\bar{\nu}_{\mu}}{ }^{\lambda}, \Gamma_{\nu \mu_{\mu}}\right.$) is a tensor, an affine connection ($\Gamma_{j_{\mu \lambda}}^{\prime}$ $\left.\Gamma_{s,}^{\prime-\bar{u}}\right)$ such that

$$
\left\{\begin{array}{l}
\Gamma_{\nu \mu}^{\prime}{ }^{\lambda}=\Gamma_{\nu \mu}{ }^{\lambda}-\frac{2}{3}\left(S_{\nu \mu}{ }^{\lambda}-S_{\nu \beta}{ }^{\alpha} f_{\alpha \mu} f^{\beta \lambda}\right) ; \text { conj. } \\
\Gamma_{\bar{\nu} \mu}^{\prime} \lambda=\Gamma_{\bar{\nu}_{\mu}}{ }^{\lambda}-\left(S_{\bar{\nu} \mu}{ }^{\lambda}-S_{\bar{\nu} \beta}^{\alpha} f_{\alpha ; \mu} f^{\beta \lambda}\right)=\frac{1}{2} \Gamma_{\bar{\nu} \mu}{ }^{\lambda}+\frac{1}{2} \Gamma_{\bar{\nu}{ }^{\alpha}} f_{\alpha_{\mu}} f^{\beta \lambda} ; \text { conj. }
\end{array}\right.
$$

is also an affine connection leaving invariant the $I_{i}{ }^{h}$. And further we can see that this affine connection is indeed a natural connection with respect to ($I_{i}{ }^{h}$, $f_{t h}$), by a simple calculation making use of (6.4). Taking account of (5.5) and (6.3), the components of the tensor $S_{j i}^{\prime}{ }^{n}$ are given by

$$
\begin{align*}
& S_{\nu \mu}^{\prime}{ }^{\lambda}=\frac{1}{3}\left(S_{\nu \mu}{ }^{\lambda}+S_{\nu \beta}{ }^{\alpha} f_{\alpha \mu} f^{\beta \lambda}-S_{\mu \beta}{ }^{\alpha} f_{\alpha \nu} f^{\beta \lambda}\right)=-\frac{1}{2} f_{\nu \mu \alpha} f^{\nu \lambda} ; \text { conj. } \\
& S_{\bar{\nu} \mu}^{\prime \lambda}=\frac{1}{2}\left(S_{i_{\mu}}{ }^{\lambda}+S_{\bar{\nu} \beta}{ }^{\alpha} f_{\alpha \mu} f^{\beta \lambda}\right)=-\frac{3}{4} f_{\bar{\nu} \mu \alpha} f^{\alpha \lambda} ; \text { conj. }
\end{align*}
$$

REMARK. This Proposjtion corresponds to the Corollary of Theorem 5.4. The natural connection ($\Gamma_{j_{\mu}}^{\prime}{ }^{\lambda}, \Gamma_{j_{i}}^{\prime}$) possesses a freedom of tensors such as $P_{j i}{ }^{h}$ symmetric in j and i and satisfying $P_{\nu \mu}{ }^{\omega} f_{\omega \lambda}+P_{\nu \lambda}{ }^{\omega} f_{\mu \omega}=0$; conj.

APENDIX

In connection with the almost complex case, we state several propositions on affinely connected manifolds with restricted homogeneous holonomy $S p(m$, R), the real symplectic group in $2 m$-dimensional real linear space or one of its subgroups. Hereafter the class of the manifolds in consideration are C^{3}. The following Proposition is easily obtained.

PROPOSITION 1. The necessary and sufficient condition that the restricted homogeneous holonomy group of a 2 m -dimensional affinely connected manifold $A_{2 m}$ (with or without torsion) be $S p(m, R)$ or one of its subgroups is that there exists over $A_{2 m}$ an anti-symmetric tensor field $F_{\text {in }}$ of maximal rank $2 m$ satisfying

$$
\begin{equation*}
\nabla_{j} F_{i l}=0, \tag{1}
\end{equation*}
$$

where ∇_{j} denotes the covariant differentiation with respect to the affine connection of $A_{2 m}$.

A tensor field $F_{i n}$ anti-symmetric in i and h of maximal rank in a $2 m$ dimensional manifold is called a null-system. A differentiable manifold admitting a null-system $F_{i h}\left(=-F_{h i}\right)$ or an exterior 2-form $F_{i h} d x^{i} \wedge d x^{h}$ of maximal rank is called an almost symplectic manifold (variété presque symplectique) ([2]; [3], especially Chap. IV), and the null-system or the 2 -form is called almost symplectic structure.

In an almost symplectic manifold, we can always introduce a positive definite Riemannian metric such that $F_{i a} F_{l b} g^{a b}=g_{i l}\left([9]\right.$, Section 14) and $F_{i}{ }^{n}$ $=F_{i \alpha} g^{a n}$ gives an almost complex structure for which the metric $g_{i n}$ is hermitian. If we put $g^{a_{i}} F_{a}{ }^{h}=F^{t h}$, then $F_{i a} F^{a h}=-\delta_{i}^{h}$. We call an affine connection satisfying (1) for an almost symplectic structure $F_{i l}$ a natural affine connection of $F_{i n}$. The restricted homogeneous holonomy group of a natural affine connection is $S p(m, R)$ or one of its subgroups.

We also remark that the above Riemannian metric $g_{i l}$ is not unique, but $F^{t h}$ is uniquely determined from the given $F_{i b}$ since $F_{i a} F^{a h}=-\delta_{i}^{h}$ (Cf. $\S 5$ and §6).

We can prove the following two propositions and a corollary by direct calculations.

PROPOSITION 2. Let $\Gamma_{j t}{ }^{h}$ be an affine connection in an almost symplectic $A_{2 m}$ admitting an almost symplectic structure $F_{i l}$. Then the affine connection $\Gamma_{j i}^{\prime}{ }^{n}$ such that

$$
\Gamma_{j i}^{\prime}{ }^{\prime \prime}=\Gamma_{j i}{ }^{n}-\frac{1}{2}\left(\nabla_{j} F_{i a}\right) F^{a h}
$$

is a natural affine connection of $F_{i l}$, that it, a connection whose restricted homogeneous holonomy group is $S p(m, R)$ or one of its subgroups.

PROPOSITION 3. Let $\Gamma_{f i}{ }^{n}$ be a natural affine connection of $F_{i l}$ and let $P_{j i}{ }^{n}$ be an arbitrary tensor field. Then,

$$
\Gamma_{j i}^{\prime}{ }^{n}=\Gamma_{j i}{ }^{h}+\frac{1}{2}\left(P_{j i}{ }^{h}-P_{j b}^{a} F_{a i} F^{b n}\right)
$$

is also a natural affine connection of $F_{i n}$.
COROLLARY. For an arbitrary natural affine connection $\Gamma_{j i}{ }^{n}$, in order that

$$
\Gamma_{j i}^{\prime h}=\Gamma_{j i}{ }^{h}+Q_{j i}{ }^{h}\left(Q_{j i}{ }^{h}: \text { a tensor }\right)
$$

be also a natural affine connection, it is necessary and sufficient that the tensor $Q_{j i}{ }^{h}$ satisfy

$$
Q_{j i}{ }^{a} F_{a l b}+Q_{j l}{ }^{a} F_{i a}=0 \text { or } Q_{j i}{ }^{h}+Q_{j b}{ }^{a} F_{a i} F^{b h}=0
$$

Now, put

$$
F_{j i l h}=\partial_{i j} F_{i l]}=\frac{1}{3}\left(\partial_{j} F_{i l}+\partial_{i} F_{h j}+\partial_{l h} F_{j i}\right),
$$

then $F_{s i h}$ is a tensor field. If $\Gamma_{s i}{ }^{h}$ is an arbitrary affine connection in $A_{2 m}$ with torsion tensor $S_{j i}{ }^{h}$, then we have

$$
F_{j t h}=\nabla_{[j} F_{t h]}+\frac{2}{3}\left(S_{j t}{ }^{a} F_{a l k}+S_{t h}{ }^{a} F_{a j}+S_{h j}{ }^{a} F_{a i}\right) .
$$

If $\Gamma_{j i}{ }^{h}$ is a natural affine connection of $F_{i b}$, we get

$$
\frac{3}{2} F_{j t h}=S_{j i}{ }^{a} F_{a h}+S_{t h}{ }^{a} F_{a l}+S_{h j}{ }^{a} F_{a i},
$$

from which

$$
\frac{3}{2} F_{j i a} F^{a n}=-S_{j i}{ }^{n}+S_{i b}{ }^{a} F_{a j} F^{b n}-S_{j b}{ }^{a} F_{a i} F^{b h} .
$$

On the other hand, if we put

$$
\Gamma_{j i}^{\prime}{ }^{h}=\Gamma_{j i}^{n}-\frac{2}{3}\left(S_{j i}{ }^{h}-S_{b j}^{a} F_{a i} F^{b h}\right),
$$

then $\Gamma_{j i}^{\prime}{ }^{h}$ is also a natural connection by virtue of Proposition 3 and its torsion tensor $S_{j c}^{\prime \prime}$ is given by

$$
S_{j i}^{\prime h}=\Gamma_{[s s]}^{\prime}{ }^{n}=\frac{1}{3}\left(S_{j i}{ }^{n}+S_{j b}{ }^{a} F_{a i} F^{b h}-S_{i b}{ }^{a} F_{a j} F^{b h}\right)
$$

$$
=-\frac{1}{2} F_{j i a} F^{a h}
$$

Thus we have
PROPOSITION 4. The necessary and sufficient condition that it be possible to introduce a natural affine connection of $F_{\text {in }}$ without torsion in $A_{2 m}$ is that the tensor $F_{j t h}=\partial_{i s} F_{i n l}$ vanish identically.

COROLLARY. In our $A_{2 m}$, there exists a natural affine connection of $F_{\text {il }}$ with torsion tensor

$$
S_{j i}^{\prime n}=-\frac{1}{2} F_{j i a} F^{a h} .
$$

If $F_{j i h}=\partial_{i j} F_{i n]}=0$, then the 2 -form $F_{i n} d x^{i} \wedge d x^{n}$ is closed and in this case $F_{i n}$ is called a symplectic structure and the manifold is called a symplectic manifold.

Example. Consider an almost Kaehlerian manifold with metric tensor $g_{j i}$ hermitian with respect to its almost complex structure $\phi_{i}{ }^{h}$. Then the almost symplectic structure $\phi_{j i}=\phi_{j}{ }^{6} g_{a i}$ satisfies $\partial_{i, j} \phi_{i n l}=0$, hence by Proposition 4 there exists a symmetric natural affine connection of $\phi_{j i}$, but this natural connection does not leave invariant the individual $g_{j t}$ and $\phi_{i}{ }^{h}$ unless $\phi_{i}{ }^{h}$ is integrable, i.e., unless the manifold is pseudo-Kaehlerian.

REFERENCES

[1] C. Ehresmann, Sur la théorie des espaces fibrés, Coll. Top. Alg. C. N. R.S., Paris (1947), 3-35.
[2] , Sur les variétés presque complexes, Proc. Inter. Congr. Math., (1950), 412-419.
[3] P. Libermann, Sur le problème d'équivalence de certaine structures infinitésimales, Thèse (1953).
[4] -, Sur les structures presque complexes et autre structures infinitésimales régulières, Bull. Soc. Math. Franse, 83 (1955), 195-224.
[5] M. Obata, Affine Connections on Manifolds with Almcst Ccmplex, Quaternion or Hermitian Structure, Japanese J. Math., 26 (1956), 43-77.
[6] H. WAKAKUWA, On Riemannian manifolds with homogeneous holoncmy gorup $S_{p(n)}$, Tôhoku Math. J., 10 (1958), 274-303.
[7] H. WAKAKUWA, On affinely connected manifolds with homogeneous hcloncmy group $C L(n, Q) \otimes T^{1}$, Tôhoku Math. J., 11 (1959), 364-375.
[8] H. IWAMOTO, On the structure of Riemannian spaces holonomy groups fix a null system, Tôhoku Math. J., 2 (1950), 109-135.
[9] A. Lichnerowicz, Généralisations de la géométrie bählerienne glcbale, Coll. géométrie différentielle, Louvain (1951).
[10] J. A. Schouten and K. Yano, On intrinsic connection in $X_{2 n}$ with an almcst hermitian structure, Ir.dg. Math., 17 (1955), 1-9.

[^0]: 1) We shall show that this manifold must be necessarily an "almost complex symplectic manifold" (\$3).
 2) Cf.Ehresmann [1]: Libermann [3], [4]; Obata [5].
 3) S runs from 1 to n. In this paper we adopt the summation convention.
 4) In this paper, E_{N} denctes a unit matrix of degree N.
[^1]: 6) With respect to (real) symplectic structure, see Ehresmann [2] and Libermann [3], especially Chap. IV.
[^2]: 7) Ehresmann [1]; Libermann [3], [4]; Obata [5].
[^3]: 8) Cf. Obata [5], Section 14 ; Wakakuwa [7], Lemma 1.3.
[^4]: 9) Cf. Iwa moto [8] ; Lichnerowicz [9].
[^5]: 10) These are the same as $O_{1,0}^{b r}, * O_{d c}^{\prime c}$ of Schouten and Yano [10] or $\boldsymbol{\Phi}_{1}, \boldsymbol{\Phi}_{2}, \boldsymbol{\Phi}_{3}, \boldsymbol{\Phi}_{4}$ of Obata [5].
