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The purpose of this paper is at first to characterize a 4w-dimensional affi-
nely connected manifold (with or without torsion) whose restricted homogeneous
holonomy group is the real representation of the complex symplectic group Sp
(n, C) or one of its subgroups. And conversely, we discuss to introduce in a
4/2-dimensional manifold an afnne connection (with or without torsion) whose
restricted homogeneous holonomy group is the real representation of Spin, C)
or one of its subgroups.

The almost complex symplectic manifold is equivalent to an almost qua-
ternion manifold (§ 3), but the natural affine connection (§4) in an almost
complex symplectic manifold is different from the natural affine connection
((φ, ψyconnection by Obata's terminology, [5]) in an almost quaternion mani-
f old2). They coincide if and only if the affine connection is a metric connection
(with or without torsion) with respect to a related Rίemannian metric (§ 3,
Definition).

1. Preliminary remarks. Let C2n be a complex 2w-dimensional linear
space. Complex symplectic group Sp(n,C) in C2n is the subgroup of GL(2n,C)
leaving invariant a bilinear form zs Λ ws+n = zszvs+n — zs+nws 3) where (za)
and (w") (<x= 1, , 2ri) are vectors in C2n. Therefore if M2n is a complex
(2/z, 2fl)-matrix giving a transformation of Sp(n,C), then M2nJ2ΊϊM2n — Λn>
where tM2n denotes the transpose of M2n and J2n is a matrix such as J =

( 0 E \4)

— F fΓ) ' Conversely if M2n satisfies the above relation, then it is a matrix

giving a transformation of Sp(n, C).
Next, we consider the real representation of Sp(n, C) in a real 4/z-dimen-

sional real linear space Rm.

Put 9JΪ = ( 2n — ), where M2n denotes the complex conjugate of M2n,\ 0 M2J
1) We shall show that this manifold must be necessarily an "almost complex symplectic

manifold" (§3).
2) Cf. Ehresmann [ΊO: Libermann C3J, ffl; Obata p j
3) S runs from 1 to n. In this paper we adopt the summation convention.
4) In this paper, EN denotes a unit matrix of degree N.
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then 3)ϊ satisfies

(i.i) a»-'(-^- ,•£> = (-'"£" JJ, 0-=-D
and

2n ^ W - I 2 w

π T I c ~~ I π
U J 2 w / WIf we perform a complex transformation to the matrix 9)Z by a complex

regular matrix of the form τ ~ \ (\ n~ )> Λen we obtain 90Ϊ' = τ~19JZτ =

( 2W —, 1 a n d the matrix f i n T ) is transformed into an anti-symmetric
V 0 ML ) V ° J2n/

regular complex matrix of the form! !Γ - ) Qσ2n —— σ2n). And 9JΓ satisfies

0 σ2n/ V 0 σ2j

Conversely, we can normalize this matrix Wl' to a complex matrix 9Jί —

V 0 ^ M / sat^sfy^n^ (l 2) by a suitable complex transformation.

Therefore, with respect to complex bases, a transformation sDΐ' belonging

to the real representation of GL (2n, C) gives a transformation of the real

representation of Sp (n, C) if and only if it satisfies (1.3) where σ2n is an anti-

symmetric regular complex matrix.

Suppose a complex matrix

E2n E2n\ ( _ W
τ j _

then we have

M = "-1 — I ^ 2 n

\Λ. 2 r ι

where M 2 n = // 2 n + iK2n, H2n and X2 n being real matrices of degree 2n and

M gives a transformation of the real representation of Sp {n, C) with respect
(1) (2)

to real bases. We also have real matrices F and F:

iE2n 0 \τ-i-( 0 E2

0 f £ j/ ^
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0) (2)

These F and F satisfy

(1) (2) 00 (1) (2) (1) (2)

(l.β) F2 = - EAn, Ψ = - F, \F F) = - (F F)

and on account of (1.1), (1.2), we see that

(i) 0) (2) (ί)

(1.7) M " 1 F M = F,tM F M = F.

Conversely, if a transformation M in a real 4 w-dimensional linear space
(1) (2)

i?4* transforms F, F of (1.4), (1.5) by (1.7), then we can introduce complex
(1)

bases in R4a in which M takes the form 9Ji since M leaves invariant the F,

and we can easily see that the transformation M belongs to the real represen-

tation of Sp {n, C).

2. Characterizations. Let AAn be an affinely connected manifold (with

or without torsion) of class C3 whose restricted homogeneous holonomy group

h° is the real representation of Spin, C) or one of its subgroups. At first,

assume that Ain be simply connected.

If we attach a suitable frame [i?0] at a point O of Ain, then the restr-

icted homogeneous holonomy group h\O) at O transforms the two matrices
0) (2)

F, F with components (1.4), (1.5) according to (l. 7). And we attach to each

point P of Ain a frame obtained from [i?0] by a parallel translation along

an arbitrary but fixed curve joining O to P. Then we have frames of refe-

rence on AAn and we see that there exist tensor fields F, F whose components

are given by (1.4), (1.5) respectively with respect to the frames of reference
(1) (2) ̂

under consideration. We remark that F is of type (1,1) and F is of type (0,2),

that is,
(1) (1) (2) (2)

F = (Ft

h), F = (Fihf.

These two tensor fields are of maximal rank 4n and of null covariant

derivative by virtue of (1.7).

With respect to general frames of reference, especially with respect to

natural frames of reference, we see that there exist two tensor fields F = (F/4),
(2) (2)

F = (F<Λ) satisfying

(2.1) F 4

a Fa = — S( , Fih = — Fhi, Ft Fah = — Fh Fai,

(1)

Fih being of maximal rank 4/z and

5 ) T h r o u g h o u t t h i s p a p e r , i f o t h e r w i s e s t a t e d , t h e l a t i n i n d i c e s Λ , i,./, k, a , b, c, - r u n
f r o m 1 t o 4τz.
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0) (2)

(2.2) VjF<* = 0 , ^ ^ = 0,

where \7j denotes the covariant differentiation with respect to the affine con-
nection Tj{

/1 of AAn

If A±n is not simply connected, consider the universal covering manifold

Ain of A4n in which there are introduced an affine connection naturally from

that of A4n. Then the conclusion for Ain induces the same conclusion for

A in.
0) 0 ) Λ (*2) (2)

Assume conversely that there exist two tensor fields F = (Ft ), F* = (Fih)
satisfying (2.1) and (2.2). Let h\O) be the restricted homogeneous holonomy

0) (1) (2)

group at O. Then h\O) leaves invariant two matrices Fo = (F/)o, FJ =
c-')

(F<A)o satisfying
(2) (?) (D (l)( ϊ) (1) (2)

(2.3) Fj--£4n, 'i^-FJ, F.f?=-W7
(1) CO 0 ) (2)

where F o, FJ denote the values of F, F* at O. We can choose a frame [i?0]

at O such that the components of F0 = (Fi

/ι)ΰ are given by the form ( ^ 4" )
\ — £L2n V/

( i )

and further, by a complex transformation of the frame, Fo changes into

0 i £ j j
(2) (2)

74w being given in §1. With respect to this complex frames, let %* = (!&th)υ

(2)

be the matrix corresponding to F* and put

(2) / r r\

(2) (2)

whene fx,f2,fz and / 4 are complex matrices of degree 2n. Since $? = (?}ίΛ)0 is
anti-symmetric in ί and Λ, we have

(l) (2) / •/• _ r \

and further since ?f0 S* = ( -J -J ) 1 S also anti-symmetric by virtue of
(2) (2)

(2.3) we have ιf2 = / 3 , and hence f2 = / 3 = 0. That is, 3* is °f t n e form ̂ J

- ( / • • ) Since

—l\Jι—Jι) Ji+Ji
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_ _ (2)

must be real, we see that / 4 = /, and hence §* takes the form

(2) /J Q\

Consequently we can normalize this ^J into the formί^ j J by a suitable

complex transformation given by a matrix of the form ( _ j under which the
\ v/ Ks /

(1)

form of 3"o is unchanged. And hence A°(O) is the real representation of
Sp(n,C) or one of its subgroups taking account of the preliminaries of § 1.
Thus we have

THEOREM 2. 1. The necessary and sufficient condition that the restri-
cted homogeneous holonomy group of a 4 n-dimensional affinely connected
manifold AAn (with or without torsion) be the real representation of Sρ(n,

(1) (2)

C) or one of its subgroups is that there exist two tensor fields F/\ Fih

satisfying
(1) α (1) Λ (2) (Ί) (l)fl (2) (1)a (2)

(I) F(

a Fa

ι =— Si, Fih = — FM> Ft

a Fah =- Fh

aFa(,
(2)

Fih being of maximal rank 4?n and
(0 (2)

(Π) V Λ ' = 0, V3Fth = 0.

F/1 gives an almost complex structure and Fth gives an almost (real)
(1) (2) (3) (3)

symplectic structure6). If we put Ft

a Fah = Fih, then Fih is anti-symmetric and
of maximal rank 4n. It is also of null covariant derivative by virtue of (II).
Hence we have

COROLLARY 2. I. Let the assumption for At* be the same as in the
Theorem. Then there exist in A^n three tensor fields satisfying

(1) (1) (2) (2) (3) (3)

tι ra = — όi, r(h = — rhi, t i h — — rht,
(1) (2) (1) (2) (3) (1) (3) (1) (3) (2)

i V ah — ~ ^ h £ at ~ ^ ih> r i * ah ~ ~ ^h # a( ~~~ * ih>

(2) (3)

Ft , Fih being of maximal rank and
(1) (2) (3)

(IT) V,Ft

h = 0, VjFift = 0. VjF(h = 0.

6) With respect to (real) symplectic structure, see Ehresmann [2~] and Libermann £3j,
especially Chap. IV.
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3. Almost complex sympectic structure. Let X^ be a real 4w-dime-
(1) (2)

nsional manifold of class C3 admitting two tensor fields F^, Fih satisfying (I)
(2)

where Fih is of maximal rank, or necessarily admitting three tensor fields
(2) (3)

satisfying (Γ) where Flh, Fih are of maximal rank. We call such a manifold
Xtn an almost complex symplectίc manifold (or briefly almost CS-manifold)

0) " (2)
and further we call the set of two tensor fields (i*V, Fih) (hence necessarily

0) (2) (3)

three tensor fields Ft , Fih, F(h) an almost complex symplectic structure (or
briefly almost CS-structure).

As is known, an almost quaternion structure in a real 4 w-dimensional
(1) (2)

manifold X±% is defined by a set of two tensor fields of (l,l)-type (Ft , F( )
(1) 0 ) (2) (2) (1) (2) (2) (1)

satisfying F{

a Fa

h = - δ?, Ft

aFa

h = - Sϊ, Fί

a Fa

h = - F{

a Fa\
7) And the exis-

tence of such two tensor fields of (1, l)-type implies necessarily the existence
of the third tensor field Ft of (l,l)-type which is an almost complex structure

O> (2)

and in quaternic relations with F^ and F^ :
(1) (2) (2) (1) (3) (2) (3) (3) (2) (1) (3) (D (1) (3) (2)

Ft

aFa

h = - Ft

aFa

Λ = Ft\ Ft

aFa

h = - F(

aFa

h = Ft\ F<aFa

h = - Ft

aFa

h = F(\

THEOREM 3.1. In a differentiable An-dimensional manifold X4Λ, a
given almost quaternion structure induces an almost complex symplectic
structure and conversely from a given almost complex symplectic structure
we can find an almost quaternion structure. That is, the two structures are
equivalent.

PROOF. Suppose at first that a differentiable X4ι admits an almost quater-
(1) (1) (2) (2)

nion structure (F = (Ff), F = (F{

h)) which satisfy

(1) (1) , fc (2) (2) (1) (2) (2) (1)

*t Pa =— Of,- r( r a = — 0/, r{ pa =— r t r a .

Or, in matrix forms
0) (2) (1X2) (2)(1)

F2 = - E, F* =- E, FF = - FF9

where we denote for brevity the unit matrix of degree 4n by E instead of

(3) ( ) ( ) ( ) ( )

If we put F Ξ= FF = — FF, then we get the following relations:
(3) (3)(1) (1)(3) (2) (2)(3) (3)(2) (1)

F2 =- E, FF = - FF = F, FF = - FF = F,

7) Ehresmann C^; Libermann [3], M ; Obata
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Π) (2)

by virtue of the given conditions for F, F. Since in our Xin there exists
always a positive definite Riemannian metric G = (#;<)? we put

1 (1) 0 ) (2) (2) (3) (3)

4

Then G* is also positive definite and it is simultaneously hermitian with
0) (2) (3)

respect to F9 F, F, i. e.
(1) 0 ) (2) (3) (3) (2)

FG*fF = G , . F G * ^ = G*, FG*'/?1 = G*,

or in tensor forms
(1) (1) (2) (2) (3) (2)

gU FjaF(" = g% g*aύ F;F(" = g% faFW = g%.

Hence, if we put

(2) (3) (2) (2)

FG* = F * (Ft"gtu = Fιh)
(2)^ (2)

then we can see that F* = (-FίΛ) are anti-symmetric and of maximal rank. And
we have

( )( ( ) (2)(1) (2) (1) ( ) (

FF* = FFG* = - FFG* = - FG*tF~1 = - KFF*\

or in tensor forms

(1) (2) (1)

F{ Fah = — ί 1

(1) (1) (2) (i)

That is, the tensor fields F = (F/), F * = (F(h) gives an almost complex
symplectic structure.

(1) CD (2) (2)

We will prove the converse. Let F = (F/), F* = (F{h) be an almost
complex symplectic structure:

(1) (2) (2) ( 7 X 2 ) ^ ( I ) ( 2 ) , ,

(2) (2)

F^ = (F(h) being of maximal rank. We remark that the third condition of
(])( 2) (2) (1)

(3.1) can also be written as FF* = F*Ψ.
o o

Consider an arbitrary Riemannian metric G = (gj() in XAl, then it is well

known
(l)o (1)1 o (l)o (1)

G = (gj() = -~(G + FG Ψ)

8) Cf. Obaίa £5], Section 14 Wakakuwa [7j, Lemma 1.3.
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O)

is a positive definite Riemannian metric hermitian with respect to F :

(3.2)

Further, if

G

we put

= (&) =

(1)

FG

(2)

0)
ψ =

( 2 )v

G.

16-
(2)

then G is also positive definite, and consider the characteristic equation

\G-

Since G are and G both positive definite, the v different characteristic roots

pu(u — 1, ,v) are all positive and the elementary divisors are all simple

because the matrix (G — pG) is of (0, 2)-type. Let Ru(u = 1, ,z>) be the

characteristic root spaces corresponding to the different characteristic roots pu<
(2) (2) (2)

Put F^G'1 = F= (F/Λ) and let x = (xh) be an arbitrary vector in Ru>

i.e.,

xG = puxG or - x i ^ G - 1 ^ ^ = PuxG,
(1) (1) (2) (2)

then the vectors xF = (i^α

7^α) } x F ' = (F«Λj:α) are also in Ru. For, using (3. 1)

and (3. 2), we can see that

(1) ~ (D(2) (2) (2) (2) (2)

(xF) G = - xFF^G-'F* = - XF*Ψ G~τF*
(2) (1) (2) (2) (2) (1)

= - xF*G-τ ψ-1 F* = - xF*G-1F*tF~1

(1) (1)

F-1 = puxGli-1

0)

(1) (1)

and this shows that the vector xF = (Fa xa) is also in Ru. Similarly we can
(2)

see that xF lies in Ru, too.

Hence if we choose the frames of reference [e<] such that [_e(u] span the
(1) (1) (2)r (2>

root space Ru, then G = (^) , F = (F/1), F' = (Fίft) decomposes into v blocks

simultaneously, i. e , (gj{) = (gJιfl) + (ghh) + -f (^>,v), etc.,

Thus with respect to the frames of reference now introduced

G* = (g*ι) =

defines a positive definite Riemannian metric such that

9) Cf. Iwamoto £8] Lichnerowicz [ΊΓ].
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(Ό (1) (?) (2)

FG* *F = G*, - F*G*-τ F* = G*.

Therefore, if we put
(2) (2)

F*Q*-i = F)

then we can verify that

(1) (2) (l)(2) (2)0)

F2=-E, F2=-E, FF = -FF

by virtue of (3.1), or in tensor forms
0 ) (1) (2) (2) (I) (2) (2) (1)

F(

aFa

h = - δ?, F(

aFa

h = - δ?3 F(

aFa

h = - Ft

aFa\
(1) ( D Λ (2)

Consequently, we can find an almost quaternion structure F = (Ft

 ι), F
(2)

= (F/h) derived from the almost CS-structure. And hereby we have completed

the proof of Theorem 3.1.

On account of the proof of the above Theorem, we see that there exists

a positive definite Riemannian metric g% combining the almost quaternion
(1) (2) (1) (2)

structure (Ft , Ft

h) and the almost CS-structure (F( , Fth), such that

hence necessarily

(1) (1) (1) (2)

g*b FjaFt

b = g*j, Ft

ag*fι = Fth,

( 3 > α ^ (3)

F( gah = F(h.

DEFINITION. We call such an almost quaternion structure and an almost

CiS-structure to be naturally related and call g*ι he related Riemannian

metric.

4. Natural affine connections in almost complex symplectic manif-

old.
(1) (2)

Let X4n be an almost C/5-manifold with almost CS-structure Ft\ Fih\

(1) (7) (2) (2) (1) (2) (1) (2)

(4.1) Ft

aFa

h = - S?, Fίh = - FM, F(

aFah = - Fh

aFa(.

It is noted that in Xάι there exists the third tensor field of (0, 2)-type
(3)

Fih satisfying

(3) (3) (1) (2) (Γ) (2) (3) (1)(3) (1) (3) (3)

(4.2) Fih — — Fhi) F{

aFah = — Fh

aFa( = F£h, FiaFah — — Fh

aFai = — Fih

Fih being of maxiaml rank.
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There exists a related Riemannian metric g% (§ 3 Definition) such that

(1) (1) C-') (2) (3) (3)
s** ZT α ΊP b rJf rp ~χah τph jp Λ * α Λ jp hgLbt j bt = gμ, tiag = bt, ttag = r{,

(1) (2) (3)

where (Ft\ F(\ F/1) gives an almost quaternion structure. If we put
(2) (2) (S) (3)
EilΛ *iap Λ pin *iap h

(2) # (3\

then Fifι, Fifi are also anti-symmetric in t, h and we have

(4 3)
(2) (2) (3) (3)
rp τpO-h £h jp rpP-H

(2) (3) (3) (2) (1)

F< Fah = — F F*111 = Fh

We remark that although the related Riemannian metric g% is not
(2) (3) (2) (3) (2) (2)

unique, but the Fi/ι and Fih are both unique for Fih9 Fih since F ί α F α Λ = — δ?,
(3) (3) (2)

and Fia Fatι = — δf. Hence with no use of gfj we can define Fιh such that
(2) (2) (2) (3)

F(a(— F ) — hi, since such a Fi?ι is a tensor field. It is similar for F .

If the covariant differentiation Vj with respect to an affine connection
satisfies

(1) (2) (3)

VjF/'' — 0, VjFth — 0 and hence necessarily VjFik = 0,

then the restricted homogeneous holonomy group of the affine connection is
the real representation of Sp{n, C) or one of its subgroups. We call such an
affine connection a natral affine connection or briefly natural connection of
the almost complex symplectic manifold X4n.

We can easily verify that a natural affine connection in an almost CS-
manifold coincides with a natural affine connection in an almost quaternion
manifold {{φ, ^-connection by Obata's terminology, Obata [5]) if and only
if the connection is a metric connection {with or without torsion) with
respect to the related Riemannian metric.

In the similar way as those of Schouten and Yano [10] and Obata [5],
a)

we introduce the following operations making use of Ft\

Let Fjt be an arbitrary tensor field in X4n and we define113

10) These are the same as Oh"0> *O% of Schouten and Yano [10] cr Φv Φ2, Φ3, Φ4 of
Obata [5].
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CD. 0).
P to -L ( r> h Ί?b Tj a τ?h\

(1) (1)

( i )

(1)

O'

( i )

(1) (1)

F,aF(Ψab

k).

(2) (2) (3) (3)

And we also introduce anew by using Ft\ Fih and Fih, Fih the following

operations

/+
(2)

/ - Plb

aFa(F"")

= - 5 - ( P / + Pjb

aFutF*").
Δ

(1) (2) (3)

And we define operations ίj, ξj, ?J for an arbitrary afHne connection Γj£

Λ

as follows.
(1)

(2)

= r/-

/ = iy -
(3) (3)(3) 1 (a)

O J T I to ~r"\ to JL /«-^ EΓt

8rί(=r,-τ(vΛ,
(M)

Then, we see that the operations % (u = 1, 2, 3) <zre linear for an affine
connection Tjt

Λ and a tensor Pj(

h:

§(rj(

Λ + /V) = §r/ + $/y (« = i, 2,3).
(2)

These are shown by a direct calculation. For example, consider g.

Denoting by Vi the covaraint differentiation with respect to Γ;ί

Λ + P^, we
see that

(2) -I P (2) (2)

^ ( Γ ^ + Pji) — (Γj( + Pj( ) — (VjF{a)Farι
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-I (2) (2) -I (2) (2) (2)

= Γ / + P / - J - ( V ί F < α ) F 0 Λ + - ± - { P H

c F c a + P c ) °
Z Z

1 (2) (2) -J (2) (2)

= I V - -λ-(v}F(a)F'1 + - i - ( P / - PJtl

aFa<F>h)
Z Z

(2) (2)

= giy +
The others are proved similarly.

LEMMA 4.1. For an affine connection or for a tensor,

(W) («)

3 2 = g (w= 1,2,3).
(1)

PROOF. For %, the property is alraedy known (for exp. [5]). We will
(2) (3)

prove for $• It is analoguous for %.

(2) (2) (2)

Put %V5i

ι = Γjt

h and denoting by Vj the covaraint differentiation with
(2)

respect to Γ^', then we see that

(2) (2) (2) (2) (2) -. (2) (2) (2)

Zl

) (2) (2) (2) -i

( V j ί t a )p

(2) ( 2) (2) C2) (2) (2) (2)

^c)^*)^. + ((V^αc)^4)] ^
(2) (2) -1 (2) (2) -i (2) (2)

= Γ / - ( V ^ ) r f t i ( ) - * i ζ ^ J F(
4

(2)1 (2) (2)

= r/ - _L(VjF,α)r
Z

We can also verify for a tensor P,/'. Q.E.D.
(tl)

The following Lemma is immediate from the definition of ?} (u = 1, 2, 3).

LEMMA 4.2. L ^ Γjf

Λ έe an affine connection in X4n and let Vj &̂  ί/̂

covariant differentiation with respect to TJt . Then, in order that V jF<*
(2) (3) (1) '2) (3)

= 0, V,Fth = 0 or V>Fih = 0 £5 ί t o ̂ Γ / = 0, g Γ / = 0 or 3Γ,,71 = 0
(i) (i)

This Lemma is already known for F/1, % (for exp. [5]).
(1) C2) (3)

LEMMA 4.3. The operations %,%,% for an arbitrary affine connection



ALMOST COMPLEX SYMPLECTIC MANIFOLDS AND AFFINE CONNECTIONS 187

satisfy

(tOO>) 1 (1) CD 1 (2) (2) I (3) (3)

4 4 4

(α 4= v; #, z> = 3, 2, 3).

(1) (2) (3)

Me operations %, %9 % for an arbitrary tensor field Pβ satisfy
U)(v) -I (1) (1) (2) (2) (3) (3)

% dP/ = — O V ~ W Λ * - Pjh

aFaiF>h - Pjb

aFa(F
ύh)

4

(u=^rv; u9v= 1, 2, 3).

PROOF. If we put

IV =
(2) (2)

) "

(2) (2)

and denote by V̂  the covariant differentiation with respect to Tj( , then we

see that
(1)(2) (1)C?) (2) -i (2) Π) (1)

(2ϊ -, Γ (1)

2

(2) (2)

I (1)

= Γ/ - - | - (V^
(1) (1)

0)

1

4

_1_

4

2

V v

(2)

(2)
\T7iCi

(1

(V,

(2) >

(v,

(2)

3 ία.

(1)

. $ .

(2)

(2)

)Fah

(2)

\fΓa

. (2)

+

(3)

—

( 1 ) α

(3)

4

• ( 1 ) δ

^4~

4

X

+

X

JL

•

(2)

(V

( S ,

(2)

v ( j

(3)0 / (

δ ) ί 1

6

α μ P α

Λ

J

(2) (2)

(3)

() () () ()

We can verify that the other 5 ftΓ/, g ^Γ^Λ, etc. are all equal to this
quantity. The latter part of the Lemma is proved similarly.

From Lemma 4.1, 4.2, 4.3, we have the following Theorem

THEOREM 4.1. Let Tj(

n be an arbitrary affine connection^ in an almost

11) An affine connection always exists in our Xin.
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complex symplectic manifold Xm with almost complex symplectic structure
( 1 ) h ( 2 > Λ ( 3 )

(Ft , F( , F(h) and let v y denote the covariant differentiation with respect
to TJ(

h. Then the affine connection
I (1) CO 1 (2) ( 0 1 (3) (3)

IV = Γ/ - - L (V,F(

e)Fe* - -I- (V,F<o)F
α" - 4 - (VyF,.)*1"*

4 4 4
zs α natural affίne connection of X4n, that is, its restricted homogeneous
holonomy group is the real representation of Sp(n,C) or one of its subgroups.

THEOREM 4.2. The necessary and sufficient condition that an affine
(ω)(υ)

connection Yit of X4n be a natural affine connection is that δSΓ^ = TJ(

ι

(u + v; u, v = 1,2, 3), that is,

(1) (1) (2) (2) (3) (3)

(V,F (")Fβ* + (VjFta)Fah + (V,F t o )F α Λ = 0,

where Vi denotes the covariant differentiation with respect to Γyί

Λ.

The following Theorem is. immediate from

δ 3<Γ/ + />/) = d OίΓ/ 4- 5 &P/ ( « + ^ « ^ = 1, 2,3)

and from Lemma 4.3, Theorem 4.2.

THEOREM 4.3. Let TJt

h be a natural affine connection of an almost
complex symplectic manifold XAn and let P# be a tensor field over X 4 n.
Then the necessary and sufficient condition that the affine connection TJ(

h

+ Pjf be again a natural affine connection is that PH

ι satisfy ^%Pit

h = Pjt

ι

{u H= v u, v = 1, 2, 3), that is,

(1) 0) (2) (2) (3) (3)

3 P/ + Ft

bPJb

aFa

h + PJb

aFaiF
bh + PJb

aFaiF
bh = 0.

This condition is equivalent to the following two conditions:
(1) (1) , (2) (2)

P/ + F(

bPjb

aFa

h = 0, P/ + PJb

aFa(F
bh = 0,

(i) (l) CO CO.

which is verified by contracting FkFh* and FhlcF
a to the equation indicated in

the Theorem.
The following Theorem is also immediate from Lemma 4.1, 4.3 and

Theorem 4.3.

THEOREM 4.4. Let Yj(

n be a natural affine connection in an almost
complex symplectic manifold Xin and let Q5t be an arbitrary tensor field
over Xm. Then
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(« + v;«,tι = 1, 2, 3)

is also a natural affine connection.

0) (2) (3)

5. Nijenhuis tensor of Ft* and tensors FJih9 Fj(h. We introduce the
0) (i)

Nijenhuis tensor NJ(

ι of the almost complex structure Ft :

0) I 0) 0) (i) (1)

/ s -

and if Γ^Λ is an arbitrary affine connection in X 4 n, we can write

si 2 V U

(i) <n 0) a ) •.

"Γ * î< & 2 \j £)ib]Γa JΓJ Γi Oab ,

where yα denotes the covariant differentiation with respect to ΓJt

h and SJt

h is

the torsion tensor of ΓJt

Λ.
(2) (3)

As to Fih and Fth9 we put

(2) -, (g) (2) (2)

(3) (3) -ĵ  ( 3> ( 3 ) f 3 )

Fjih Ξ 3ii-P<Λi = -^~ (djF(h + 3ίF Λ / + dhFJt).
o

(2) (3)

Then, F i < Λ and F, ί Λ are both tensor fields in Xin and for an arbitrary affine

connection Γ,/* in X4», we can write

(2) (2) 2 α (2) OC'2> α ( " 2 )

(5.2) Fjih = VijFih] + — - (Sj(

aFah + Sih

aFaj + Shj

aFai),
ό

( 3 ) ( 3 ) 2 ( 3 ) α ( 3 ) -, α ( 3 )

(5.3) F i ί Λ — Vti^Λ] + *-r- (SJ{

aFah + Sih

aFaj 4- Shj

aFai).
ό

From these equations, we easily have

(-!) (2) (2) (2) 9 (?) (2) (2) (2)
Z? I ? 0 ' * —, I? ττ«αΛ ώf / o h . C α 17 JT f̂t C α C1 I 7 * Λ \

O

(3) (3) (3) (3, 9 (3) (3) (3) (3)
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If SJt

Λ is the torsion tensor of a natural connection, then we get

0) u 1 (i) (i) (i) α)

(5.4) N/ = -i- (S/ - 2Ft/St]Fa

h - Ffr'Sj),

(2) (2) o (,) (2) (2) (2)

(5.5) FJtaF
afi = - - § - ( V + Sjo

aFaiF"- - S^F^F*'1),
ό

(2) (3) o (3) (3) (3) (3)

(5.6) ^ fαFo" = - 4 - (S/ + V V " - S(b

aFaJF»").

For a tensor P^Λ, we have
(1) (1) I (1) (1) (1) (1) (1) (1)

δ δ ' P / = — (P/ - FjbP{b

aFa

h' + F»Pjb

aF:1 - F F
4

and we obtain the following theorem.
(1)

THEOREM 5.1. The Nijenhuis tensor NJ(

h can be represented by means
(2) (3)

of the tensors Fm, FJih as follows:

(1) H O (O 0 ) (2) (2) (3) (3)

N/ = - -f- %*&(FJ(aF
ah + Fj(aF°h)

q (i) (i) (i) (i) (i) (l)

= - -f-ttV - F P. F: + Ft*pn

aFΛ

h - F FΪPJ),
o

(2) (2) (3) (3)

where P/ = FjtaF
ah + FjiaF

a\

PROOF. Let ΓJt

h be an arbitrary natural connection with torsion tensor
(1) (1) (2) (2)

S/ and at first we calculate $* W(FβaF
a/ι) taking account of (5.4), (5.5)

and (5.6).
(1) (1) (2) (2)

(2) (2). (2) (2)

h

aFaiF
bh - S(b

aFa(F
in)

(1) (2) (2) (2) (2) (1)

- F / O V + Sid

cFcbF"a - SM

cFclF
M)Fa'

ί

(1) (2) (2) (2) (2) (1)

Λ V S c F S c F M ) "
(1) (1) (2) (2) (2) (2)

, - F FXSJ + SjFcbF
dh - SM

cFcaF
dΛ)l

1 , (2) <2> (V (2)

= ~~ ί(S/ + Sjb

aFatF»h - SISF.JF")
Ό

(1) (1) (3) (3) (1) (2) (3)

- (F;sίb

aFa

A - std

cFCJF
dΛ + F S^F^)
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(1) (1) (3) (3) (1) (2) (3)

+ (Ft>Sit

aFa* - SM

cFclF
Λh + F/SJF^F"")

(1) (1) (1) (3) (2) (1) (3) (2)

- (FWSJ + F;SjFctF*h - F(

bSM

cFciF
Λh)-\

1 0) (1) (!) (1) (1) (1)

4 K V / ' h > s a Λ SJ)
α ( 2 ) ( 2 ) h a ( 2 ) ( 2 ) Λ,

(3) (3) (2) (3)

— {oβ + o i δ ^ α ί r — o(b r aji< )

(1) (1) (2) (2) (2) (2)

" j " i \ * ^ α δ ~τ~ ^ad •*• cb*? *^δd •*? ca,Γ )

(1) (1) (3) (3) (3) (3)

Γ j Γi \Oab + Oα r f /'dδ-Γ — Oδ r f -Γcα-Γ JJ

1 r (1) q (2) (2) q (3) (3)

o L z <ώ

q (1) (1) (2) (2) o (1) (1) (3) (3)

2 J 2 i αδc

1 (Ό 1 (2) (2) (1) (1) (2) (2)

3 Ji 4 Jia S

1 ( 3 ) ( 3 α/ t

 ( 1 ) α ( 1 ) ( 3 ) ( 3 c

Analoguously we get

(1) (1\ (3) (3)_ 1 ( 1 )
 Λ 1 (2-l ( 2 ) Λ 0 ) α ( 1 > l 2 ) (2)cΛ

3 H 4 iία i € αδc

I (3) (3) (1) (1) (3) (3)

+ _L- \F t Fatι — F,F*b(F h F°h)l
4

Consequently we have

(1) q (1) (1) (2) (2) (3) (3)

Q. E. D.

(2) (3)

THEOREM 5.2. TA^ tensors FHh and Fm can be represented as follows:

(2)

(3)

(1) (2)

2P(N/Flalh) -

(1) (3)

2P(H jt* F \a\h) +
2

1)

(3)

(2) 1 ( 1 )

α ( 1 )

o ( 1 ) (1)

(3)

(2)

'' '

where
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P(τm) = 4-<T i < Λ + τth) + τhH),

for a tensor Tjth.

PROOF. Let Tjf

h be an arbitrary natural connection with torsion tensor

5 i f

Λ. Then by virtue of Theorem 4.4,

O (1) (1) (2) (2) (3) (3)

Γ ' Λ - p / t ώ / π A r i f t r r α τri Λ C f α Z ? 2?δΛ C α Z7 J7&ΛΛ

ϋ — xy< "" -^-(A# "~ -̂ ί *V -̂ α ~ δJb rair — o,δ rair )
o

is also a natural connection and taking account of (5.4), (5.5), (5.6), the

torsion tensor S'n
h of Γjz

Λ is calculated as follows :

1 (i) α) (i) (i)

Sn = - M O V - Fj>Stb

aFa» + F(%°Fa

n)
o

(2) (2) (2) (2)

(3) (3) (3) (3)

+ OS/ + S^F^F** - 5<6°Fo,F
sft)]

1 (1) (1) (1) O (2) (2) o (3) (3)

= -i- (2N/ + Fj'FSSaf - 4 " ̂ c-ί"* - 4 " F " α r } '

from which we get
, α ( 2 ) -i (1) (2) (1) (1) (2) ^ (2) ^ ( 3 ) ( 1 )

SnaFah = - — (2 NjtaFah + FjaFt

bSab

eFch - I — — F i ί Λ — — - FJ(aFh

a)
O Δι ΔJ

and hence

(1) O (1) (2) -i (1) (1) (2)

(3)

Since S)f

Λ is the torsion tensor of a natural connection, we have from (5.2)

' α ( 2 ) 1 ' α ( 2 ) ' α 2 ) ' α(2)-, 1 ( 2 )

P(SjiaFah) — - — (SjiaFafι + S'ιh
aFa( + Sjh

aFat) = - — F i i / 4 ,

and further from (5.3) we get
0 ) o ( D c(2) -̂  (1) o (1) (2) 0 )

α

( Ό

 c

( 2 ) ( 1 ) α 0 ) c ( 2 )

jaF{

bSia\\b\c Fch=) — - (FjaF{

bSab

cFch + F(

aF,bSab

cFcj + Ffι

aFjbSab

cFci)
ό

Consequently, we obtain
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1 (2) o (1) (2) -, (1) (1) (1) (3)
-L 77» ^ T)/ XT Ct 771 \ J. 775 Q> 771 δ 771 c E 1

Λ -Γ fih ~ L\ *-Vji -Γ \a\h) J7 j J7{ f fa I*abC

2 5 10
i O 771 O TJ/ 771 7-1 α\

or Ί θ " J<Λ ΊcΓ ̂  •""" h)

f2) (1) (2) o (1) (3) -, (1) (!) (Ί) (3)
T? o Ό( AT a Ί? \ ** T>( Z? α Z71 \ -1- ZΓ'α7J |δ7J»cZ7 l

î<Λ — ^ AiViί /Ί'*IΛ; - —t\rh r \a\ji) — -£-** *t b κ ^abc

(3)

The representation of Fm is also obtained by a quite similar way.
Q. E. D.

COROLLARY. If we put

(2) (2) (1) (1) (2) (3) (3) (1) (1) (3)

tnen ( 2 ) o) β (i ) (i) (3) (3) ( 1 )

α

( 1 ) ( 1 ) c ( 2 )

PROOF. From the second equation of Theorem 5.2, we have

(1) 0 ) (1) (3) (1) (1) (1) (2)
771 o rp b 77» c 7j» o t V JJ1 d IP e AT a TP \
Γj Γi rh r a b c — — Δr\ri rt iVĵ uβi " \a\h)

3 0) (l)β(2) I (2)

* \Fj -Fi •& \ιl\\e\h) •£* jifty

hence subtracting this equation from the first equation of the Theorem, we
get

(2) (1) (1) (1) (3) (1) (1) (1) (2)
771 ^_ 77» O> Tp b jp C TVi _^ c\ "Dί( "\T C i 771 d 771 6 \ T C\ 771 \

fifi t ~^ i •*" hi ̂  Qibc ~~ ̂  ^ \\ ̂  * j i * 5 i l ^ l l ^ l ) I c | Λ ^

(1) ^(3) j 0 )

α

( 1 ) ( 1 )

 c

( 3 )

2 ' ' Λ αδc

(1) (1) (2) -t (2)

2

But since

(1) (1) Π) (1)

JV/ + F F N,; = o
hlods true (Cf. [5], p. 55, Corollary 1), we obtain

1 (2) Q (1) 0) (2) -j (1) (1) (1) (3) Q

77* & ZV TP dτpe rp \ 1 ΊP a TP b TP c rp o
( ) α ) ( ) c ( ) 3 ( ) c ( )

F/F(

bFh

cFabc — ~—-P(Fh

cF\c\jί)

O Γ (2) (I) 0) (2) (1) (1) (1) (3) (1) (1) (3)

Fm - 3PiFjaFt

eFmel*) = F;Ft

bF,:[Fabe - 3lKFa

άFb

eF mtic)l Q E.D.

From Theorem 5.1 and 5. 2, we have
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(1) (2) (3)

THEOREM 5.3. If any two ofNj{

h, Fjih, Fjih vanish, then the remaining
one also vanishes.

THEOREM 5.4. There exists in XAn a natural connection Γ'/' whose

torsion tensor S'μΛ is given by

1 O) C (2) (2) (3) (3) -i (1) (1) (2) (2) (3) (3)

5 / = - f iV/ ~ -^-(Fjtar
h + FJ(aF*») -^F;FeχFaicF*n + FabcF*).

O lO ID

PROOF. Let TJt

Λ be an arbitrary natural afEne connection in XAn, then by

virtue of Theorem 4.4,

1 (1) (1) (2) (2) (3) (3)

Γ / = Γ / + - ^ ( ( 2 / - FSQJFS - Q/FaiF** - QJb

aFa(F*h)

is also a natural affine connection, where Qj(

h is an arbitrary tensor field. If
we take

where Sjf is the torsion tensor of Tβ

h, then we can calculate

1 (1) (1) (2) (2) (3) (3)

^ ( Q / S Q J S Q a * h Q a * "

(1) (1) 0) 0) (1) (1)

0 ) (1) CO (2) (1) 0 ) (3) (3)

- 5(V + F FSS^F^F"" -(55,/ + F F^S^F^F*11]
1 (1) 0 ) (1) (1) (1) 0)

= - -ί-[5 5 / + F^S^ - 5F(

bSjb

aFa

n + F;Sct"Fa

h

(2) (2) (1) (2) (3) (3) (3) (1) (3) (2)

- 5Slb

aFa(F»* + FJ

cScd

aFa(F<lh - 5Sjb

aFa(F»h - F/SJF^F"

•i (l) cn (i) 0 ) (i) ( i )

= - -^-[12 5 / - ( 2 5 / - F/SM

aFa

h + 5F(

bSJύ

aFa

u - 2F,aFt

tSat

h)

/ I (2) (2) \ /I (3) (3) χ

- 5 (±- S/ + SjSFaiF**) ~ \-γS/ + S)b

aFatF
b^

(1) (1) / 1 (2) (2) χ (1) (1) / -, (3) (3)

— Γj Pi [ —^ab +Oadt<cbl< J - t5 Pi I — - O α δ +ϊ)adl<cbl<

Hence we get

Ί r (1) (1) (1) (1) (1) (1)

iy = iy - 5/ + -ί- Γ (25/ + F S^FS + SF S F ; - 2 F FS
l ώ L
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-i (2ϊ (2) \ / 1 (3) (3)

— îί + ^ V J+5( — O,, +bjbtat£

0) Λ 0 ) / 1 2) (2) \ 0) (1) / -I (3) (3)

Let 5/7* be the torsion tensor of ΓJΛ then from (5. 4), (5. 5), (5.6) we see

that

1 Γ 0 ) 15 ( 2 ) (2)α 15 ( 3 ) (3)α

12 L 3i 4 i ί α 4 i ί α

Q 0) (1) (2) (2) Q (1) (1) (3) (3)

Thus Tj/1 is a natural affine connection with torsion tensor Sji*1 of the
required form. Q. E. D.

COROLLARY. In order that we can introduce in XAn a natural affine

connection without torsion is that the Nijenhuis tensor Nj{

h of F{

/1 and the
(2) (3)

tenrors Fjih, Fjth all vanish.

PROOF. The necessity is evident from (5.4), (5.5), (5.6). We can also prove
the sufficiency by virtue of the Theorem.

(1) f

6. Complex frames and complex analytic cases with respect to Ft

A.
In general, let A2m be a 2w-dimensional almost complex manifold with

natural affine connection12), then the restricted homogeneous holonomy group is
the real representration of GL (m, C) or one of its subgroups.

If we choose complex frames of referfnee [eΛ, eΰj3) in A2m, the connection
of A2m can be given by

(6.1) dP = 7r*ea + τr«eΰ, deβ = m%ea\ conj.

where e* = eH, π* = π*. And if we put

1 , , . <x 1 , , . . , v

i (ω*
V Z

12) The natural aίR.ie connection means the connection with respect to which the almost
complex structure is of null covariant derivative.

13) The ranges of Greek indices are as follows.

a , β , y > ' > λ . , μ , v , •• = ! , •••ftn; a , β , 7 , •••, λ , μ , v , • •• = a - h m y β - \ - m , •••, \ - \ - m , μ + m •••.
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then the real Pfaffians ω", ω*9 ω$( = ω%)f ω^ ( = — ω|) give the connection of

A2m with respect to real frames of reference [e'a, ei\(e\ = a^{x) i, a =

1,..., 2m).

If m ~ 2n and if the restricted homogeneous holonomy group h° of
A2m = AAn is the real representation of Sp(ns C), then with respect to the
connection (6. 1), an anti-symmetric tensor field14) of the form

(6.2) (f* °), (U=7^; det|/μλ|+0)'«

is of null covariant derivative (Cf. § 1). And according to § 1, we see that:
Let AAn be an almost complex manifold with natural affine connection and
consider complex frames of reference such as (6.1). Then the necessary and
sufficient condition that the restricted homogeneous holonomy group h° of
Ain be contained in the real representation of Sp(n, C) is that there exists
an anti-symmetric tensor fieldΊ5) with null covariant derivative whose com-
ponents are given by (6. 2), with respect to the complex frames of reference
under consideration.

We can normalize the tensor (6.2) by a suitable complex change of
frames of reference.

(D f t

Now, let X4n be an almost CS-manifold with almost GS-structure (Ft\
(2) 0)

Fih) and consider the case where XAn is complex analytic, Ft

h giving, the com-
(1) (1)

plex analytic structure of Xin. The Nijenhuis tensor NJt of Ft necessarily
vanishes.

We call such an Xin a complex almost symplectic manifold and in this
(1) (2)

case we call the structure (F(

h, Fih) a complex almost symplectic structure.
(̂ )

And further, if Fjih = 0 in complex almost symplectic X4n, then we call
such an X4n a complex symplectic manifold with complex symplectic struc-

(1) (2) (3)

ture {Ft\ F{/1). In this case, we have necessarily Fjih = 0 by virtue of The-
orem 5. 3.

In a complex almost symplectic manifold Xim if we introduce a complex

analytic coordinate system (z*, z"), (z* = z*,) then the tensor field Ft takes

14) The components are complex, the real and imaginary parts being functions of the
initial real coordinate system.

15) In case of m = 2n, the Greek indices run as follows:

a , β , γ , ' 9 \ t μ , v , ' = l 9 2 n ; α , j 8 , - , λ , μ, ••• = α - h 2 r c
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) and we denote this tensor field
0 iEj

anew by / = (//')• With respect to the complex coordinate system under consi-
(2) (2) /A B\

deration, put F = (Fih) = ( j , where A,B,CJD are complex matrices of

degree 2n. Then since (Fih) is anti-symmetric, we have

'A = -A,tD = -D,tB=- C,

-iB\

iC
of the almost CS-structure, we have

(2) / — iA — iB\ .
and further since IF = ( (is also anti-symmetric from the definition

V iC ID)

(2)

Therefore, if we denote the tensor (Fih) with respect to the complex coordinate

and hence B = C = 0.

Therefore, if we de
system by f = (f(h), we see that

where f^ = fμλ (z, z ) and f^i = fa (z, z) are anti-symmetric in λ, μ and λ, μ
respectively. Since (f{h) must have real representations it is self-adjoint:

yV.OJ J \JihJ 1 JΓ / ' ^-''* λ J μλ y J μ.\ J λμ/

Hence in a complex almost symplectic case, we denote the complex almost
symplectic structure with respect to a complex coordinate system by (I(

h,fih)9

(fih) being of the form (6. 3).
Hereafter we confine ourselves to such complex analytic coordinate systems

if otherwise stated.
If we put

fjih ~ diβjihb

(2)

then of course this fjih is no other than the Fjih in general real coordinate

system. fjih is also self-adjoint, and

1
f— /r\-T x * Γ*OΠ 1

J yμ\ C/ĵ μΛj ^vlilj.

O

taking account of (6. 3).
A tensor field whose mixed components vanish is called pure. And we
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can easily see that: The necessary and sufficient condition that fμ\{fμj) do
not contain z*(za) is that the tensor ff(h be pure. Hence if the manifold is
complex symplectic, i.e., if fβh = 0, then fμK = fμλ(z), /~χ =fμκ(z).

If we put

/ = (/Λ) = {i /j = C^.f) - (- i/Λ
(3)

then fih corresponds to the Fih in the real case and

fjih =

(3)

corresponds to the Fjih. We see that

flμκ ~ — ifvμk, conj.

/ V = ~V 3lΓΛλ ^ ~ ~^Γ 9 ^ λ = ~ *f*^; con-i*

Hence we have

PROPOSITION 6.1. In an XAn with complex almost symplectic structure

(I/\ fh, fin), we have

fvμk = — ίfvμλ, fvμk = ~ ίf^μλ', COnj.

This corresponds to Theorem 5.2 or to its Corollary.
In general, in a complex analytic manifold with complex coordinate system

(**, z*), the natural affine connection is given by (Γ,μ\ Γ ^ ) , the other Γ's
being all zero. And we remark that (Vvμ

λ, V-μ

Λ) give also components of
a natural affine connection and (Γ,;μ

λ, Γ ^ ) are components of a mixed tensor.

PROPOSITION 6.2. Let AAn be a complex analytic manifold with com-
plex coordinate system (za, za) and with natural affine connection (Γ i u

λ, Γ/^).
Then the necessary and sufficient condition that the restricted homogeneous
holonomy group kΌ is contained in the real representation of Sp(n, C) is
that there exist an anti-symmetric self-adjoint tensor field (/μλ, fμι) (fμj
= fμ\ ~ 0) with null covariant derivatives.

That is, the Ain is necessarily a complex almost symplectic manifold and
the connection is a natural affine connecton with respect to the complex almost
symplectic structure (/Λ f i h ) .

The condition VA/^ = 0 are written out fully as follows :

(Avf^ = Vι//μλ = 0; conj. (identically satisfied)

(6.4) V . Λ A = a/μΛ - Γ^ω/ωλ - Tv>Tfμω = 0; conj.

- Γ,7μ

ω/ωλ - IVA-A- = 0; conj.
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Since dvfμk = 0 if and only if fjih is pure, we can easily obtain from (6.4).

PROPOSITION 6.3. Let X4n be a complex almost symplectic manifold
with complex almost symplectic structure (I/\ f i h ) . Then in order that there
exist a natural connection of the type (Tvμ\ ΓV̂ λ) with respect to (//\ f i h ) ,
it is necessary and sufficient that the tensor fjih be pure.

Hence, in a complex symplectic XAn (fJih — 0), there exists always a natural
connection of the type (ΓVμ

λ, IVX) with respect to the structure (I/1, f i h ) .
We can define a tensor/'* such that f(a(- fah) = δf since such an fih

has a tensor character, and we see that fίtι is also self-adjoint and anti-sym-
metric in i, h.

PROPOSITION 6.4. In an Xin with complex almost symplectic structure
(//'', fih\ there exists a natural connection with respect to (I/1, fih) whose
torsion tensor Si" is given by

C' λ _ _ 1 / rook O' λ _ _ 3 r roo\.

PROOF. Let I1,/* = (Γ i μ

λ, Γ^x) be an arbitrary natural connection with res-
pect to (//*, f i h ) 9 then it satisfies (6. 4). Since (Γ1/μ\ Γ--λ) is an affine connection
leaving invariant the //* and (T^, Γμ-

X) is a tensor, an affine connection (Γ}αλ

Γ'tf) such that

ίr;/ - V - -J- ( V - S,β*fΛJ»); conj.

V - IV - GV ~ &β«f«»fβK) ^ \ ^ + \ IV/Λμ/*λ; conj.

is also an affine connection leaving invariant the 7/\ And further we can see
that this affine connection is indeed a natural connection with respect to (It

h,
fiκ)> by a simple calculation making use of (6.4). Taking account of (5.5) and
(6.3), the components of the tensor S]ιh are given by

Q. E. D.

REMARK. This Proposition corresponds to the Corollary of Theorem 5.4.
The natural connection (Γ}μ\ Γ ^ ) possesses a freedom of tensors such as P/
symmetric in j and i and satisfying PVμ

ωfω\ + Pv\
ωfμω = 0; conj.
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APENDIX

In connection with the almost complex case, we state several propositions
on affinely connected manifolds with restricted homogeneous holonomy Sp(m,
R), the real symplectic group in 2 m-dimensional real linear space or one of
its subgroups. Hereafter the class of the manifolds in consideration are C2. The
following Proposition is easily obtained.

PROPOSITION 1. The necessary and sufficient condition that the restri-
cted homogeneous holonomy group of a 2 m-dimensional affinely connected
manifold A2m(with or without torsion) be Sρ(m, R) or one of its subgroups
is that there exists over A2m an anti-symmetric tensor field Fih of maximal
rank 2 m satisfying

(1) ViF<Λ = 0,

where v^ denotes the covariant differentiation with respect to the affine
connection of A2m.

A tensor field Fih anti-symmetric in i and h of maximal rank in a 2m-
dimensional manifold is called a null-system. A differentiate manifold admit-
ting a null-system Fih (— — Fhi) or an exterior 2-form Fih dxι Λ dxh of maximal
rank is called an almost symplectic manifold (variete presque symplectique)
([2]; [3], especially Chap. IV), and the null-system or the 2-form is called almost
symplectic structure.

In an almost symplectic manifold, we can always introduce a positive
definite Riemannian metric such that Fia Fhhg

ab = &Λ([9], Section 14) and Ft

h

— Fiag
ah gives an almost complex structure for which the metric gih is herm-

itian. If we put gaίFa

h = Fih, then FiaF
ah - - δf. We call an affine connection

satisfying (l) for an almost symplectic structure Fth a natural affine connection
of Fth. The restricted homogeneous holonomy group of a natural affine connection
is Sp(m, R) or one of its subgroups.

We also remark that the above Riemannian metric gih is not unique, but
Fvι is uniquely determined from the given Fih since FiaF

ah = — δ? (Cf. § 5 and
§6).

We can prove the following two propositions and a corollary by direct
calculations.

PROPOSITION 2. Let Tj(

h be an affine connection in an almost symplectic
A2m admitting an almost symplectic structure Fih. Then the affine connection
Γjth such that
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is a natural affine connection of Fih, that it, a connection whose restricted
homogeneous holonomy group is Sp(m, R) or one of its subgroups.

PROPOSITION 3. Let Y/ be a natural affine connection of Fih and let
Pj{

h be an arbitrary tensor field. Then,

Zl

is also a natural affine connection of Fih.

COROLLARY. For an arbitrary natural affine connection Γj(

h, in order
that

Γ;,Λ - IV + Q/ (Q/ : a tensor)

be also a natural affine connection, it is necessary and sufficient that the
tensor QJ(

h satisfy

Q/Fah + Qj/t

aFia - 0 or Q/ + QJb

aFaiF
bh - 0.

Now, put

Fjijt, — djFih] = —— (djFth + 3iFhJ + dkFjt),
ό

then FJih is a tensor field. If Γ,/' is an arbitrary affine connection in A2m with
torsion tensor Sβ\ then we have

Fj(h = V[î <Λi + -~z~ (βJt

aFafi + Sifί Faj + Shj

aFai).
o

If Tβ

h is a natural affine connection of Fth, we get

~Γ~ Fjih = Sj( Fah + Sifι Fal + ShJ Fυi,
Δ

from which

° - FmFah = - S/ + Sib

aFajF
bh - Sjb

aFaίF
b\

2

On the other hand, if we put

Γ ' h " P Λ Z / ςi h, C a IP Z7 δΛ\

Ji — l jt — Wjί ~ " *̂ δi fait1 ),
O

then T'j/1 is also a natural connection by virtue of Proposition 3 and iτs torsion
tensor Sj? is given by

Sjί1 = Tf

m

h = - i - (S/ + S3b

aFaiF"h - S(b

aFaίF
bh)

ό
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Thus we have

PROPOSITION 4. The necessary and sufficient condition that it be

possible to introduce a natural affine connection of Fih without torsion in

A2m is that the tensor Fjih = dLjFih] vanish identically.

COROLLARY. In our A2m, there exists a natural affine connection of

Fih with torsion tensor

Q' tι 1 T7« jpah

Oji, — — Γ jia Γ .

If FjΛ — dijFih] — 0, then the 2-f orm Fihdxl Λ dxh is closed and in this

case Fih is called a symplectic structure and the manifold is called a symplectic

manifold.

EXAMPLE. Consider an almost Kaehlerian manifold with metric tensor gSi

hermitian with respect to its almost complex structure φ/1. Then the almost

symplectic structure φ3i = Φ/gai satisfies dLjΦih] = 0, hence by Proposition 4

there exists a symmetric natural affine connection of φj(, but this natural conn-

ection does not leave invariant the individual gj{ and φ/1 unless φ{

h is inte-

grable, i.e., unless the manifold is pseudo-Kaehlerian.
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