ON SOME PROPERTIES OF 7-STRUCTURES
ON DIFFERENTIABLE MANIFOLD

CHEN-JUNG HSU

(Received May 17,1956)

D. C. Spencer [1]° considered under the name ‘“complex almost-product
structure” the structure on the n-dimensional differentiable manifold V, defined
by giving two differentiable distributions T';, 7T, which assign two complemented
subspaces of dimension = 1 in the complexified tangent space TS at each point
x € V,. G. Legrand [2] called such structure as a #-structure and studied it by
generalizing most properties of the almost complex structure which can be regarded
as a special case of it [3].

In the following, we assume that on the manifold a structure is defined by
giving » (2 < r < n) differentiable distributions T',...... , T, which assign 7 com-
plemented subspaces of dimension = 1 in the complexified tangent space T'9(T'S
=T, +...... + T,: direct sum) at each point £ € V,. We call such structure
as an r-w-structure if we want to express the number of the distributions
explicitly. Whereas we call it simply as a #r-structure if we need not (or can not)
express the number 7 definitely. We generalize some properties of #r-structure in
the sense of Legrand to the r-#r-structure.

In this note we assume that the differentiable manifold V, as well as the
distributions T,...... , T, are of class C~ unless we state it explicitly. It is also
assumed that the manifold is arc-wise connected and the second countability
axiom is satisfied.

1. Fundamental tensor of the =-structure. Suppose the differentiable
manifold V, has a #r-structure defined by r differentiable distributions 7’,...... s T
Let the projection operations from T to T, be denoted as P,, then we have

(1.1 B =Po, BuPp =0 (a=EH)
1.2 By 4. + B, =3,

where § denotes the identity transformation and the Greek indices vary from 1
to 7. Define a transformation § on T¢ by the following :

(1.3) Fv = A2 w,B,v,

1) Numbers in bracket refer to the reference at the end of the paper.
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where v is any vectorin 7%, A is a non zero complex constant and w.(a=1,...
...,7) are the ~th power roots of unity. It is obvious that

(1. 4) Fro=N2w/Bov I=s=<7),

thus we have
(1.5) Fv=ANv, ie, F=NG

On the manifold there exists a complex tensor field which induces & at each
T¢. Let this tensor field be denoted as Fj, then we have from (1.5) the follo-
wing :

(1.6) Fcyt = FhliFnzhthshz ...... thr—l = A8/

Conversely, if the manifold has a non trivial tensor F satisfying (1. 6), and
& be the transformation induced at T's by F/, then it is obvious that the proper
values of & are among Aw, (a = 1,...... , 7). If & has actually s(s = 2, because
F} is non trivial) of them as its proper values, then the number s and the proper
values do not vary when the point z varies on the manifold, because of the
differentiability of the considered tensor field Fy and the connectedness of the
manifold. Consequently the manifold has s differentiable distributions constituted
of s proper subspaces in T at each point x. Thus we have

THEOREM 1. 1. The manifold is endowed with a m-structure if and
only if the manifold has a non trivial tensor field F) satisfying (1.6) for
some r: 2= r<n.

A tensor satisfying (1.6) is said to be degenerate if the number of its
different proper values s < . An example of degenerate tensor of the type (1.6)
is given by:

1.7 F} = <c0s~w~) 8t + (sinl) ¢f2,
_ 1 r r
where ¢/ is assumed to be a tensor defining an almost complex structure on the
manifold, i. e, it is a real tensor such that 925,‘ = ¢,'¢ = — §}. It is obvious
that {:‘ f = —28, and F ¥ has only two different proper values.

Now, if the manifold has an r-a-structure, then the tensor F,' defined by
(1.3) is non degenerate. For, from (1.2) and (1.4) we have

2) I was informed by Mr. Hatakeyama of the construction of a tensor Fj' satisfying

-
i t . .
Fj =—8; starting from the tensor defining an almost complex structure.
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1 r=1 1 .
(1.8) EB“'”:TQW?“’
from which it follows that
(1.9) Fvs = (AMw,)va, where v, = Pyv e T,

From (1.9) and dim T, = n, > 0, it follows that Aw, (@ = L,...-.. ,7) is
actually a proper value of .

Conversely if the manifold has a non degenerate tensor field F satisfying
(1.6), then the r proper subspaces corresponding to the r different proper values
at each point induce 7 differentiable distributions which define an 7#-structure.
Thus we have:

THEOREM 1.2. For the manifold to have an r-w-structure, it is neces-
sary and sufficient that the manifold has a non degenerate tensor F satisfying
(1.6).

The tensor corresponding to the 7-7r-structure insisted in the above theorem
is called the fundamental tensor of the r-m-structure as it plays an important
role in the study of 7-a-structure.

In the sequel, the following notations are used for the convenience sake:
s 1 0
(1. 10) Fu'Fy.... . Fr1=F} Fl=F}! and F}=38/.
By use of these notations (1.5) is expressed as
1.5) F!=2N\3§/,

Moreover, if we define the following for a tensor satisfying (1.6):
—s8 ar—s
(1.11) F! = —7\‘1—”— F/ (a, s : positive integers, » > ar — s =>0),

then we have

S+t—7r

s t
FlF!'=X\ F /[
2. Adapted bases for an r-m-structure. In the sequel, we assume that
the indices take the following ranges :
1= ay by Cppeveeee = ny,

nm + 1= as by oo =n + n,
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whereas

1< 4, j, by =n,

1Za, B 9,...... =r
Moreover, we assume that du, Bus Cay..---. , (1 < a < ) take all integers [(7 — 74)
in number] between 1 and 7 except for 7, integers between 7, +-..... F 7y +1

and nq S T + Ng-1 + Ny

A basis (¢) in T; is called an adapted basis at x if e,, € T for all @ =

1,...... ,7. Since T, is the proper subspace corresponding to the proper value
Aw, of §, the tensor F, satisfying (1.5)" has the following components with
respect to such an adapted basis :

(2.1) Fit =aw.df F,=0 for a8
More generally, we have
3a ¢ s(l
(2.2) B, = (Mwa)'8,2, F,,; =0 for as=L 1<s<nr

The transformation from an adapted basis to any other adapted basis is
expressed as follows:

(2. 3) €y = Abflaleal, €y, = Ab'gageazy ------ » €y = Agrrear’
where

(2.4) A, = (Ap®), A, = (4, ...... , A, =(47)
is respectively an n, X n,, 1, X ng,...... , M, X n, non singular matrix.

Let (¢") and (") be respectively the dual cobasis of (¢,) and (e;), then we
have

(2' 5) g = Aﬁa] gml, g = AD/Z!MHD'Q, ...... , Ba,. — A:rr ‘9’)'7.

Denote E.(V,) as the set of all adapted bases relative to all points in V,,
and p as the mapping which assigns each adapted basis in T's to . Then E(V,)
is a principal fibre space having p as projection and a subgroup G(n,, n,,-...-.. y 7y)
of GL(n, C) as structure group. Here G(n,, 7,,...... , 7,) is the group which consists
of all matrices of the following form :

A,
(2. 6) to. H
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where A, € GL(n,, C),...... , A, € GL(n,, C), hence
G(ny, nyy...... , 1) = GL(n, C) X GL(n,, C) X...... x GL(n,, C).

3. Torsion of r-m-structure. Assume that V, has an 7ar-structure. Consider
a local section of E.V,) of class C~ in each neighborhood of V,, then at every
point of the neighborhood U there is associated an adapted basis (¢,). Let (6)
be the dual cobasis of (e,;), then we have

(3.1) e = —;-Cl,kaf A 6,
where
(3. 2) Ciﬂc + Cik] = Q.

Let U’ be any other neighborhood and (#"), C"j+ are defined by the same
way, then for any x € U 1 U’ we have (2.5). If we put

(3.3) Aszs =0 for a =l= B,
then (2.5) is expressed as follows :

(3.4) ¢ = A.'¢",
from which we have

(3.5) do' = dAv' N\ 6" + Av'de".

Substitute (3.1) and the corresponding formula for (6), and then make use of
(3.4), we have

(3.6) %C,JA,:’AVW A6 =dAS N6+ -;Aﬁcmaf’ A 6.
Let ¢ take the integers in the range of as, and then compare the term 68
A6t (B+a, v+ a) in the both sides, we have
v b c o a’
Cbgc.YAbeﬂAc’yy = Aaa’twcb’gc'y (ﬁ =}= a, Yy =‘= a),
that is,

a’ a’ b [N}
(3- 7) C!/';c'y = AaawAbZAcsz;;cy-

Hence, if we define ;i as follows:
a,

(3.8) t,;:,;“ = C:—:% ; tw' =0 for other indices,

then ¢, is a tensor. We call this tensor the torsion tensor of the r-mr-structure
and call the following form the torsion form of the r-mr-structure :
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(3.9) T = —;—tﬂﬁﬂj A 6.

4. Integrability of the r-m-structure. By definition an r-#-structure de-
fined by 7 distributions T%,...... , T, is said to be integrable if at each point of
V. there exist a neighborhood and 7z complex valued functions zf of the local
coordinates in the neighborhood such that each T, is expressed by dz% = 0 at
every point in the neighborhood.

Suppose that the considered 7-r-structure is integrable, then as T, is expressed
by dz’s = 0, 6 = dz* may be regarded as the dual cobasis of the adapted basis
given by a local section of E,(V,) on the neighborhood. Hence (3.1) and con-
sequently the following relations hold for ¢ = dz':

(41  dffs= —;—c;‘;cwaba N G+ Co% o N\ o + T (@ =1,y 7),
where
4.2) T = %C‘;:E“ G N\ e,

On the other hand, let T, be the direct sum of all T,’s except for T, then
T, is expressed by d2™ = 0 in the considered neighborhood. Thus the distribution
given by T, is integrable, and d6“ belong to the ideal defined by 6% = dz™.
Therefore from (4.1) we have T'* = (), that is the torsion tensor of the 7--
structure vanishes.

Conversely, assume that the torsion tensor of the 7-sr-structure vanishes and
moreover, that both the considered manifold and the 7-a-structure are of class
C». Under this situation, both the real and imaginary part of the tensor F, are
real analytic functions of the local coordinates xf. Since T, is spanned by the
proper vectors of & corresponding to the proper value Aw,, it is expressed by
the following equations in the local coordinates :

(4.3) (F} — aw,8)dz’ = 0.

As T, is ns-dimensional, this system is of rank 7 — 7, = n,. Hence (4.3) is
equivalent with a system which consists of 7, independent equations, say :

4. 4) S,: Bladz' = 0.
As T, N T, = {0}, the system
(4.5) S, +S,: Bidx'=0, B*dz' =0

has zero vector as its only solution. Thus the system S, + S, is of rank #.
Consequently we can select n, forms 6" out of S, such that the system consisting
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of B'dz' and 6" is independent. Let (e,) be the dual basis of this system and
<ew, "> = 8,", then <ey, Bidz'> = 0, hence ey, form a basis of T,. As
<es, 07> =0 and T,(s > 1) is spanned by some vectors in (es), it follows
that 6 are linear combinations of forms in S,(s > 1). As #™ are linear com-
binations of forms in S, and the system made up by S, and S, is of rank », we
can select 7, forms ™ out of S, such that the system (S,, §) is linearly independent.
By labeling the indices of e; adequately we have <en, 6%> = 8,2 <ew, B
dz*> = 0 and <es, 82> = 0. Thus e, form a basis of T, and ™ are linear
combinations of forms in S; (¢ == 2). As the rank of the system (S;,S,) is also
n and %, 6% are linear combinations of the forms in S;, we can select 7; forms
g% out of S, — (#®) and then continue the same processes as above. At last we
can split up the system S; in (» — 1) subsystems (%), (6),...... , (") such that
(6™) are linear combinations of the forms in S, (£==s) and each system forms
the dual cobasis in T,...... , T,. Thus (™) are linear combinations of forms in
S, and the rank of the system is # — n,, hence the system (6%) is equivalent
with S;. Now as we assume that the torsion tensor of the r-zr-structure #% = 0,
we have from (4.1) and (4.2) that

(4.6) dffe = ——Clie e N\ 6 + Cirs e A\ 6,

from which it follows that d@"» are contained in the ideal defined by (6%). L e.,
the system

“4.7) f% =0

is completely integrable (This means that the distribution T, is integrable).
Therefore, there exist 7, complex valued functions z% of class C* such that the
system #%» = Q is equivalent with the system dg"* =0 (a = 1,...... ,7). As the
system (F} — Aw,8/)dz’ = 0 is equivalent with S, which is in turn equivalent
with (6% = 0), which is again equivalent with dz" = 0, it follows that the T,
is expressed by dz% = 0, i.e. the considered 7-m-structure is integrable. Thus
we have

THEOREM 4. 1. If the r-w-structure is integrable, then the torsion tensor of
the r-m-structure tii = 0. Conversely if t;i = 0 and moreover both the manifold
and the considered r-m-structure are of class C°, then the r-mw-structure is
integrable. )

From the course of the above proof, it is also evident that the definition of
the integrability of an 7--structure stated above is equivalent to the one made

by Walker [4].
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5. A formula on torsion form of the r-m-structure. Assume that the
manifold is endowed with an ra-structure (2 <7 <#n). We generalize the
operations C and M considered by Lichnerowicz [3] and Legrand [2] as follows :

Let v,,...... , v, be any ¢ vectors of T and @ be a t-form, then define
(5.1) Co(vy,...... ,0) = @(Fvg,...... , Fo,),
s t
(5.2) Mep(v,,...... y0) =2 @(Vgse.... >y Vo1 & Vi Ugarseerrns , Uy,
k=1
aAss<n).
If @,...... i, are components of @ with respect to a basis at a point x, then
s $
the components of Cep and Mg are respectively as follows :
(.3) CPierveg, = Fihevro B iy
s t s
(5. 4) (M¢){1 ...... i = ZFikh¢ll ...... [ P PR X
k=1

Let (#") be the dual cobasis of an adapted basis at x, then we say that the form

is pure of the type (py,...... ,p») if the only non zero term in the above
expression is the term which is of degree p. with respect to 8% (a = 1,...... 7).
It is evident that this definition is independent of the adapted basis used at =.
Let @y pm,...,n, be pure of the type (pi, pos...... , P»), then from (2.2), (6.3) and
(5.4) it follows that

S
—_ 8 S S S(P1+DP2+.. . +D,
(5 5) C¢m,m,...,p,. = W, ”‘wz L W, Prp (1 r)¢pl,pz,...,11,.’
s
s s s r
(5. 6) Moy, p,... o = (lel + Py, ...l + P, N Pr1,02,...,0pe

As we shall concern principally with 2-forms in the sequel, we list here

s s
some relations on the operations C and M which hold only when applied on
2-forms. Let @ be a 2-form with components @,, then

(5- 7) (M‘P)nc = (aijkq + slchj“)¢:’q,
(5 8) (C¢)_ﬂc =F JPF kq¢pq-
Hence

Stl=s

s 13 s t
(5. 9) (CM¢)"¢ = (Fijkq + F]fF,”)?yq-
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From these relations we have immediately

0 0

M =2, C=1,

ar+b ar+b b
(5.10) x"M C = \"C,

M = 27\", é = A7,

where a is any positive integer and 0 < & < r. Moreover, we have

S+t st-s

.11) MM =M+ CM,
hence

.12) (MY =M + 2, é:%za\})uﬁ;,
and

S u+s 28+ U

(5.13) CM = MM — M.

From the last relation we have

(5.14) Csfl\ul=>\,ru5_r§\—lu for u+s=nru>rns;
and
(5.15) CM = N'M.

Now assume that the manifold is endowed with an #-a-structure, and let
T* be the torsion form of the structure. Denote

(5.16) @oT = @, Tt = %¢¢t§k0j A

for any 1-form ¢, then we have the following :

r-1

s t4+2r=2s\ 7r-
G.17)  rNde +}:(— e D )dC¢ PN @oT.

t=1 s=0

If we extend the definition of ]\sl so as (5.7) to hold also for negative
integer, then instead of (5.17) we have

r=1 54 2 r—t
. 18) rNdg +z(— oM + LZCM)achp PN goT.

t=1 $=0

PROOF. Let @ be a pure form of the type (1,0,...... ,0), say @ = @1,4... 0
= @4,60", then by (3.1), dp = d@a.,6" + @a,df™ is the. sum of the pure form
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of the type @u0,...0 [1- €5 p1 =2, Py =...... = p, = 0]; pure forms of the type
Bio,e 01,000 L€ p1 =1, py =...... =p,=0 except for an integer s 2<s=r)
and p, = 1]; pure forms of the type V.. o0z0,....0 [I. €5 P1=...... =p.=0
except for an integer s (2 <s <) and p, = 2] and pure forms of the type
Vo, 01,00 .40,1,0,. .0 [1- €5 Pr=eeerrn =p,=0 except for two integers s, ¢, s==¢ (2<s,
t<r) and p, = p, = 1] Whereas @oT is the sum of pure forms of the type
Yy,....02,0,....0 and pure forms of the type ¥y...01,0,....00 AS @ = @1,...,0 is 2 pure
form, with respect to the adapted basis given by the local section, we have
r—t

(5.19) dC e = w,""\"gp.

Therefore the coefficients of

(5.20) {¢2,o,---.o > P1,1,0,--+,0 >

Vo,2,0,+++,05 Vo, 1,1,0,0+,05
8 t—28 r—t

in % C Md Ce are respectively the following:

M %{( W, >’+<_w2 )‘( w, )S}N;
w w w
(5' 21) t ' t s1 ’ t s
) s gA(ie) () + () () e
wl 2 wl w2 wl ws
r r-1
Taking the summation ) > of each term in (5.21), we get the following
t=1 8$=0
1 St seas vt
respective coefficients of (5.20) in 5 > 72 CMdCop:
t=1l 8=0
r*\"; 0;
5. 22 {
(5.22) 0 0

r-t

t
On the other hand the coefficients of the four forms of (5.20) in —rM dCop
are respectively

t
—2r\"; —r{l +(——~w2>}7\,';
w,

t
- 2r( We )tx”; — r{(—w2 )t+( Ws ) }x’.
w, w, . W,

.
Taking the summation Y of each term in (5.23) we get the following respective
t=1

coefficient of the forms of (5.20) in >_(— r)I\tl dE;:

t=1

(5. 23)




#£-STRUCTURES ON DIFFERENTIABLE MANIFOLD 439

—27r3\; — r\;
(5. 24) { "

0; 0.

From (5.22) and (5.24) it follows immediately that the respective coefficients
of the forms of (5.20) in the left hand side of (5.18) are respectively

0; 0;
5.25 {
( ) r\; r
Whereas the corresponding coefficients in @oT are respectively
0; 0;
5.26
( ) { 1; 1.

Therefore, the relation (5.18) holds for @ = @,,,...,, because we can get
similar results for the other forms appearing in both sides of (5.18). It is easily
seen by the same way that (5. 18) holds also for any other pure forms @, ... ¢ 1,0,
veeo [ €y pr=.ce.. = p, = 0 except for an integer s 2 <s=<r) and p, = 1].
Thus we have the relation (5.18) for any 1-form.

6. Components of the torsion tensor of an r-7-structure. Let ¢ be

any 1-form, then as (Cp), = F,"@n, we have

(6. 1) dé¢ = §o¢ + é,

where we have put

(6. 2) i = —;‘“(aJF 5w — Ol !m)’ (f°¢)ﬂc = —;_'(aIF w — Oul ;m)¢m:

(6- 3) ®jk = %(kaa,¢m - ijaka)-

Moreover, if we put

(s,t) s t s t
(6. 4) Hp = %(F;kamazr?’m - quFJmaﬂ’rn),

then we have

(1] 0 ar+s’ s’
f=0, & = do, & =A"Q,
(0,0) [(X7) t

S=dp, H=6,

(ar+s’,br+t’) s’ ) (s,5) s
b

(
= h(u+b)r @ ‘S — Cd?,
(6 5) ) () s u-s
] H+9H =CMdp for u=s,
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st S+t (s,t)
[ MG =06 + 9,
st (8,8+1) % (S,t)  (8+u t+u)
G =9, CH=9
Putting (6.1) in the left hand side of (5.18) and then make use of (6.5).
we have
) r ¢ 1= -1 gt-25\ r—
A=rVdp + 3~ M+ X.CM )dCp
t=1 s=0
1 =1 sr-os
= rNdp +(— M + 5 LM )do
(6.6)

r-1 t 1 -1 g p-2s\ r—t
+ Z(— ™ +—5-2_ CM )@5
t=1 $=0
r-1 1 r=1 g4 25 r_t
+ Z(— M + ~ZCM)
t=l §=0
As it is shown below, we have

-1 r-1

6.7 Bs;i_z(——r Zs ) =—rNdp— ( rM+ ZCM

$=0
we get
r=1 r=1g t—zs>r-t

(6.8) A= Z(— M+ -3 CM ) T

§=0

From (6. 8), (5.18), (5.7) and (5.9) we have

8 t=28

r-1
the = r"l)\, Z{_ r(B,”F x T Squ i)
(6 9) 8 r—t r—-t
b X RARNGIRS + 88,0 0. - 00,

=0

The proof of (6.7) is as follows: Making use of (6.5) we have

) do,

r=1¢ r— 7= r-1r-1 (t—s ret+8)
= - Wdp 2 B+ L - DE T+ A TS
t=1 8=0 t=l 8=0
It is shown below that
r-lr-1 (t—s r—t+8 ) (u r—u)

(6.10) =>> 8 (r— 1)2

t=18§8=0
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Hence we have

. Les, r—s)

B——r(r—l)?»dtp-rZ” %(r 1)®+2(r—1)z 2
(6. 11) =

r,0

(r—l)}_, 83 + (r—1)é§>

U=1
o, (0

As =9 = 7\’(?9()): Ndep, from (6.5) and (6.11) we have

"1, r=t)

—(r—DWdp —2 0

r r=1 g pgs
= —r’\Nde + rMdp — ZCM de.

§=0
Finally, the proof of (6.10) is as follows:

r-1 (s’,r=8")

cC=> > 9 (putting s =¢ — s in C)

t=l s/ =t-r+l

=l b (st rest) O (,r=5")
=Z(z% T+ = ).
t=1 ‘§’=1 S’ mp=r+l
Since
0 (st r=s) Tt (pops?t 2=t =5"") . , .o .
95 =39 (putting s'=¢t—7r+s" in left hand side)
S/ mt—r+1 § =1
r-1 (L4387 r=t=s'") T (u,r—u) .
=2 9 =2 95 (w=t+s)
57 =1 u=t+1
we have

1 t r

c= z(z DN

t=1 ‘s'=1 U=t+1

(8, r—8

r-1 T (u,r-u)

-2 (£%7)= - 0x¥

t=1 ‘u=1

(w, r-u)

7. An application of the relation (5.18). Let the infinitesimal transfor-
mation defined by the vector field X be denoted by X-f where f is a function.

Let u, v be any two vector fields, @ be any 1-form, then it is known that the
following relation holds :

(7.1) do(u, v) = w(v) — v-@(u) — o[y, v])

where [u, v] is the Poisson’s bracket of the two vector fields u,v. Making use
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of this formula we have

7.2)  dCo(u,v) = wo(F ") — vo(Fu) — p(FTu, v]),

from which we have moreover the following :

ret

MdC @(u, v) = dC_':p(é}“u, v) + dTC—';D(u, F'v)
= %tu_¢(%1‘—tv) — %tv_¢(%7‘—fru)

(7.3)
+ N{dp(u, v) + @([u, v])}
— @(F [, v]) — @@ Tu, ).
Hence
éﬁiiz't¢(u, v) = tf\zlsdré;:(%’u, F'v)
.0 = 5 p(F-00) - § g

+ Fu-p(F ) — Fv-p(F°un)
—_ ¢(%T—t[gt—8u’ %sv]) — ¢(%T—t[%su, %t—sv]).

Since the value T'(u, v) of the torsion form of an 7-m-structure for the vector
fields u, v defines a vector field, we have from (5. 18) the following:

r’No(T(u, v)) = r*N'de(u, v) + ZT (— r)]\tldré:p(u, v)
(7.5) !

1 *or-1 g g5 r—t

+ > > CMdCe(u, v).

t=1 §=0

Putting (7.3) and (7.4) in the right hand side of the above formula, we have

rNo(T(u, v)) =2 (— n){u @ ") — Fvo@ " u)} — r’Ne(u v]

t=l

+ TZ {p@ 8" v]) + @& Tu, 0]}

r op-1

7.6) F 52 ST weF ) — FropFw)

t=1 s=0

r r-l

+ '—Z > S up(F v) — Fo-p(F " u)}

t=1 §=0

r rel

- —Z > {@F IS u §'v)) + 2§ [F u 0]}

t=1 s=0
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It is seen immediatley that
—Z > (3w pF ) — Fo-p(F )
7.7 t=1 5=0

= ‘—rz (8w p(F~0) —

v @ u)l.
As it is shown below that
D=5 3 5 (3 wg@ ) — - volF )
(7.8) e

_ —rZ "u-@(§ ') — Fv-p(F w)},

from (7.6), (7.7) and (7.8) we have the following

N T(u, v) = ~ r*N[u, v] + r2_{F (3% v] + F [u, Fol}
(7’ 9) 1 r r—1 =
52 2 AT, §o] + I w, 0}
t=1 s=0
To prove (7.8), put ¢ =t — s, then we have
r r-t/
Z 2 {8 u () — Fv-p(F " u)}
t'=1 s=(
1 & DL ,
to X T el ) — §ve@ W)
/== (r=2) S=1—t’
If we put £ = ¢ + r, then the last term of the above formula turns out to be
r=1

1 ’ 77 g opy’’
1Y T e )
t/ =2 Smr4+l-t’’

_ %z"-rv.¢(%zr—wu)}

;( - D {8"up@"v) —

& v (" w)}

=5 X = D wa@ ) - Fve@ .
Hence we have (7.8).

For giving an application of (7.9), we first calculate some formulas to be
used :
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From (1.4) we have

B o] = ¥ 2 5 () ]

B=1 a=1 wﬂ
rotrcyt—s s _rrrr ws \'/ Wa \°
and B e B = NS S S (o) (o) BBt Bavl
From these two formulas we have respectively
(7- 10) Z%T_t[\&zu, 'U] = rXrZEBa[EEau, v]’
t=1 @=1
r r-1 r
(7.11) 20 28w, Fol = 2N 20 BalBuau, Buvl
t=1 s=0 a=1

It is obvious that

(7.12) [u,v] = Zr"léa[u, v].

Substitute (7. 10), (7.11) and (7.12) in (7.9), we have

r?x‘rT(u’ 'U) =r’\ Z { - %w[zﬁ ‘Z)] + EBaDBau: 'U] + s‘Bw[u:sz‘U] - S:Bw[;'Ewu,EBw'U]}
(7.13) !

=\ Z PBot — Balwe, v]+ Pa[ Bars,v] + Bal 1, Bav]—[Bare, Bav ]}

Let N(P,) be the Nijenhuis tensor of the projection tensor P, induced by P..
As it is known that

(7- 14) N(Pw) (u, 'U) = — %m[%uu, ‘U] - %a[u’ ?E,ﬂ)] + EBa[u’ 'U] + [EBwu’ ?Bm'v]:
we have from (7.13) the following

(7. 15) T(u,v) = — Zi BN(Py) (2, ).

8. r-connections on the differentiable manifold endowed with an r-
m-structure. Let V, be a differentiable manifold having an 7r-r-structure. By
definition a #r-connection on V, is an infinitesimal connection defined on the
principal fibre space E.(V,). Let E{V,) be the principal fibre space consisting
of all complex bases at all points of V,, and having GL(n, C) as its structure
group. It is evident that E.(V,) can be seen as a subspace of E«(V,), so a local
section in E.(V,) can also be regarded as a local section in E{V,). Thus a =
connection can also be regarded as a complex linear connection, that is an infinite-
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simal connection on E(V,). If a complex linear connection is determined by
complex valued Pfaff forms (@) with respect to the local section in E.(V,),
we say that (o) defines a connection relative to the adapted basis of the r-or-
structure. A complex linear connection (®,') defined relative to the adapted bases
of the r-r-structure can be regarded as a sr-connection if and only if the values
of the forms (@) belong to the Lie algebra of the structure group G(n,, n,,...
....n,) of EAV,), that is to say, the following condition are satisfied :

(8.1) 0t =0 (@ =12 ..., 7).

Let VF/ be the absolute differential of the tensor F,' with respect to the
connection (@,), then we have

8.2) VF} =dF} + o/F} — o F/.

Referring to an adapted basis of the rm-structure and then make use of (2.1)
we have

VEF,? = Mwaw,? — AMw,@,” = 0,
®.3) VFus = Mooy — Mo,y = Mwp — w,),,
(a,B=1,2,...... ,r; askB).
Therefore (8.1) is equivalent to
(8.4) VF/=0.

Thus we have the following :

THEOREM 8.1. A complex linear connection can be regarded as a m-
connection if and only if the absolute differential of the tensor F, (the funda-
mental tensor of the r-m-structure) with respect to the considered connection
vanishes.

From (1.3) and (1.8) we have the following for the tensor fields P, induced
by Ba:

F} =7 w.P.},
@=1

Hence (8.4) is equivalent with the following:

(8.5) VP!=0 (a=1,..... > 7).
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From (8.6) we can see easily that a sr-connection is the connection with
respect to which each of the considered r-distributions is parallel (See Fukami

[5D).

LEMMA. Let (®)) be any complex linear connection defined relative to
the adapted basis of the r-w-structure, then the following forms (w}) deter-
mine a wr-connection :

ﬂu - a a _ . _
8.6) Ty, = W7, w;: =0; (a@a=1,...... , 7).

For the proof, the only thing must be shown is that (m/) defines a complex
linear connection. But this is easily seen from its transformation rule with respect
to the adapted basis.

The connection (7)) stated in the above lemma is called the ar-connection
induced by the complex linear connection (@,). Let

(8.7) of = 9iub, )=,

where (¢°) is the dual cobasis of the adapted basis at each point defined by the
considered local section.

Put
8.8 The = U — Ve
then 7%, is a tensor, and we have the following with respect to the adapted basis :
8.9) T% = — Y Tk =0 (@A)

As the covariant derivatives V,F,' of F, with respect to the connection (@)
are defined by the following :

(8.10) VE/} = V,F/¢",
from (8.3) we have

®.11)  ViFr =0, ViFo¥ = Nws — wanh (a2 B).
Making use of (2.2) we have generally

8.12)  ViFyr =0, ViFye =\ {(wp) — (wu)'ive% (@ By s =Ly 7).
From the above formulas we have

@ =i ) = 1ol

@

hence

1 = Se =% ¢ a
(8.13) Wszﬂ(kabg)Fc; = —m%=74% (@FB8;aB =11
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From (8.12) we have moreover,

(8- 14) xr Z(Vkam)Fc“ -_ 0 _— Tb IG (a = 1, ------ ’ r)-

§=1
Therefore, it is evident that the tensor 7¥ has the following components in

the local coordinate system :

r—1 R
(8. 15) rhy = = = 3 (VF)FY
8=1

Thus we have the following :

THEOREM 8. 2. Let v be the parameters of a linear connection in the
local coordinate system, then the following are parameters of a mw-connection :

(8.16) Iy = ¥ + 11_ 7\'1 Z(VEFJI)FI .
§=1
This connection is the w-connection induced by the linear connection v’
(Tachibana [6]).
Next, let 7, be any #r-connection and let 7 = I6°. Put
8.17) ol = Z}lc — %,

then o is a tensor. As 7% = e = 0, we have following with respect to the

B 8
adapted basis :

(8.18) o% = 0.
This is also the sufficient condition for #{ and #f be both the #r-connection.
Since
Sq ,a
Fb o'u k c = Xa'bwk,
(8.19)

(] r P
Fbpo'aﬁFﬂ—X<wls) p"

with respect to adapted bases, we have

T=lp_s S, a
ZFz a'a:kFc: = (7‘ - l)a'o:k,
(8. 20) . ,fir_s

ag e

Sa a . a
v Z‘_;F b a‘dngc: = — o (even if %er == 0).
§=

Hence it follows that
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a 1 T—l,_sa e, Sa a
J (o + e L seoinliee) = ai
(8.21)

1 a, 1 "Slag ¢, T
l (e + 5 S F elrl) = 0.

Thus if (8 18) is satisfied we have

1 dg © S .
(8.22) . (a,,ﬁk 2 ZF 5 aa;kFc;) = a2

From (8.21) and (8.22) it is evident that if ¢’ satisfies (8.18), then its
components with respect to a local coordinate system are as follows:

1 1 &
(8.23) (e + S SR,
Conversely, for any tensor o’ the tensor having (8.23) as its components

satisfies (8. 18). Thus we have

THEOREM 8.3. Let ¥ be the parameters of a linear connection in the
local coordinate system, then amy w-connection can be expressed as follows:

1
(8‘ 24) 'Y;k + ,1, x Z(Vijl)Ft 1 (o-]k + ZF!da'ng )

§=1

where o is a tensor [6].

9. Distinguished »-connections.

LEMMA. Let of=4%6° be any complex linear connection defined relative
to the adapted basis of the wm-structure, then the following forms (") deter-
mine a w-conneciion :

Ay, i [ - Al
9.1) m = 0, — ;% 6s, ”
o @ @ @

o

= 0.

For the proof, the only thing must be shown is that 'y;"‘,,“ define a tensor.
@
But this is easily seen.

Now assume that o = ¢,6° is a symmetric linear connection (complex or
real) defined relative to the adapted basis. Then as it is without torsion, we have
d e = Gj /\ w‘;l“
(9- 2) " g e gy c 1 Ya P,
=G Aoy + oy, 60 N 0“+—2—('75wc "Yc 5 )0 A6

Let T* be the torsion form of the considered r-sr-structure, we have
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9.3) T% = ‘;—(7;:% - 'yg:,;“) o Nba  (@=1,.....,7.

Let T be the torsion form of the m-connection (7,"), then we have
N . N

9.4) Ta = df's — G’ N\ ).

Substituting (9. 1) in the above formula, we have
& > g Ly )

(9. 5) S = df'e — 6« \ 02 — 7%, ' N\ B,

Then from (9.2), (9.3) and (9.5) we get
N\

9.6) Lo = T%, a=1,...... , T

Thus we have

THEOREM 9. 1. There exists a mw-connection having the torsion tensor of
the considered r-wr-structure as its torsion temsor. Hence the r-mw-structure is
without torsion if and only if there exists a symmetric m-connection.

The connection insisted in the above theorem is called the distinguished -
connection for the simplicity of statements.

Since #r-connection is a connection with respect to which each of the r»
distributions of the #-structure is parallel, we have from Theorem 4.1 and
Theorem 9.1 the following :

COROLLARY. For an r-m-structure, there exists a connection making each
of the distributions parallel and moreover which is symmetric if the m-stru-
cture is integrable (See Walker [4]).

We are now in the stage of obtaining the parameters of the distinguished

ar-connection 7r;' = i1.6% defined in (9.1). From (9.1) we have

ra a a a a ra a 43
i lh::B = 'Y/):cﬂ - ')’c:m = lb:cﬁ - %;ZG, lb:ca == Vb:cw = lb:cw’
sa o sa a
(9' 7) lb:«:y =0 = lb‘;cyy lbgnw =0 = lbg”w’
(@B, a+y)

where 7} = [[46* is the m-connection induced by the symmetric connection ®/f.
Let 2f be the torsion form of the ar-connection 7', then we have
V=@ —0H)NF=—"1 N6

From (8.9)
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©.9) =%, ~ Vi) 08 N 67 + Sl 00 A T (@48, )

Let S}, be the torsion tensor of the sr-connection ("), that is,
(9. 10) = — Suf A6, (Si= — S,

then we have

1

a
(7
——Vogea

a“__l T T
Saﬁny = 7(')'%«: y chbﬁ)s prc“ = 2

9.11)
Sbc — U (a#‘—'ﬂy a=}='y)'

On the other hand, since (8.21) holds for any tensor ¢%, it follows that
2 a Ay G“ a,
e T(Sb:cﬂ ZF Sd c ) "'ZSD‘Mcp 'ch l’) c lbwc t]

a =8, Sa a Aa a
9.12) { — 2(Se. + %ZF St o) = =280, =0=l, ~ L%,

(S:k'l" N ZF Saka> 0= l bﬁk

s=1
From these formulas, it is evident that the parameters of the distinguished con-

nection in the local coordinates are as follows (because % — I% is a tensor):

N 2 1p_s
. 13) l§k = l,iilc - T( )J' ZF >

s=1
Thus we have the following :

THEOREM 9. 2. Let l% be the wr-connection induced by a symmetric con-
nection and let Sy be its torsion tensor, then the connection defined in (9.13)
is a distinguished mr-connection (in the local coordinates).

From (9.3) we have the following expression for the torsion tensor #i

(T‘ = %tﬁ-ka" A 0’“) of the r-sr-structure :

(9.14) tito, = (%, — Yoy Loy =0 (a8, asm).

Again from (8.21) we have

[ =5 Z(Fbﬁsqy + 31,BF V)Sh”‘ r- nn = — 23{,‘;7 (a=+B, a=Ey),

g1
ot 8%y
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0.1 | i(F BB+ S FSi e = (r — Sk, (@ B)

1
b

t q = a a
Z(F;’:SZ: + 8eF)Syk Fal = 2(r — 1)S,% .
t=1

Therefore, from these formulas and (9. 11), (9. 14) we get

1 o 1t 1 e
DS~ . S+ B Syey Fro =i = — -t
i ] —1_7"'1 tﬂqm pﬁzm m " lu
(9.16) {7 {(r_ 2)S:ﬂ”a_ by Z(F:ﬂ 8c, + ugle, )S,’L’a"m ~ g loge
t
% {(7‘-“ Z)S:z% )\. Z (F”usqw + ab”ch) pmqw = —S::cm =0=— %t::cw.

\

(@==8 a7

Hence it is evident that the torsion tensor of the r-sr-structure has the following
components in the local coordinates :

r 13
9.17) — —Z—tﬁk =(r— 2)Sk — N Z(F,”Sk + 8 "Fk")S"' Fh,
t=1
where S% is the torsion tensor of the #r-connection induced by a symmetr'c con-
nection.

10. Some other expressions of the torsion tensor of 7-7-structure. Let
r—-i r—t
V,F,;" be the covariant derivatives of the tensor F," with respect to the linear

connection I'%, then we have
r—-t r—tm r—tm r—-t m r=1 r—t r—t
(10. 1) Fy" — OgFy" = (VoF " — V Fy ) — (F'Tpy — thl—‘q;nn) + 2 S FW",
where

(10. 2) Sty = —;@zq — )

is the torsion tensor of the connection I
Put (10.1) in (6.9), then by some straightforward calculation we have

1 = -1 1 =l t-2s
8= iy | rOPFS + 8F)) + 5 S FpFS(EE,
t=1 s=0

r—1

m 2 3 t
(10. 3) Fh)}(Vqu - Vqu ) + RN Z{ T(Sijkq + 8,chjp)
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1 r=1 e .
+ S PFR@LFL + SF|SLE" + 5o {(r — D 2 — DVSE
$=0
r-1 t r=t r—1 r'lt—s r—tas
+ P FIRISE — S SOFY F;S;,"q}.
t=1

t=1 s=1

Thus, if T is symmetric we have

¢ t
tfk; —_ r-zx Z { r(SJpFL-q + quFjp)
(10.4) 1
1 1y t—2s r=t
+ 5 Z F}]F;'él(s}’lel + 8 11)} (Vqu — V™).

S=(
By some straightforward calculation, the right hand side of the above formula

can also be written as follows :

r—1 t—1

r—-1
1 { O DE/FS + 8F7) + 5> S (FFS + FARP)

r:" t=2 s=1
(10.5)
1 -2 r-1 r—t —
+~Z Z (Fjp o+ quFj )}(Vqu — VoI m)
t=1§s=t+1

If T is a =r-connection, we have

r—1 r-1 r—t
= iar | — B R+ 8F)) + 5 L P FEFL+ S F D SLE
t=1 s=0
(10.6)
1 =1 4 g Telr=ly oo tss
o | = D@ DV SR P R RST— S RS
t=1 t=1 s=1

As it can be seen by some simple calculations, the right hand side of the above

formula can also be written as follows:

r—1 =1

ﬁix{z(r—l)m m LS FRAST—2r—1) 3 (8, F + 8, F ) ShF"
t=1 t=1

(10. 7) r=2 -1 =1 u-1
+3 S (FPRI A RAEDSE+ S S (F P+ FOF ) SF," }
u=1t=u+1 uU=2 t=1

Or more simply,

(10.8) =2 =V opsy,
r

where the operations ® and @  are defined as follows:
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1 1%
(10.9) @Sﬁ=5}7c—r—_TTZFk an s
1 -1 r—s
(10. 10) DSk = p— x ~ = FiShFa"

§=1

Finally we add a remark : Denote

(10.11) @°N=Cdp + dCMep — MdCp; s=1,.......r—1,
where @ is any 1-form. Then it can be easily seen that for the cases r = 3,4,

5,6, @oT can be expressed by ¢0]\j' (s = 1,...... ,7 — 1). For example, we have
r=3: ¢0T:_1_{(2l(2?+—1—1\14>( ON)+<2 C+ )(¢°N)}
9A® 3 7\,

(10.12) {r=4: @oT=

L (3L c-C)@em+ (L L Cat+3) o)

(3 c— —c>(¢oN)}

But the same does not hold good generally. For example, it is easily shown that
for the case =7, @°T can not be expressed by the same way.

11. Characteristic forms of r-7-structure. Groups of holonomy. Follo-
wing Legrand [2] we can define the characteristic forms of z-or-structure and
obtain some analogous results. Let () be a mr-connection defined relative to

the adapted bases of the considered local section. Its curvature forms are as
follows :

(11. 1) th = dW'j‘ + 77'7: N k’
J

where 72° = 0 (a = 1,...... , 7). Put

(11.2) v, = Aw, Q.

then it is easily seen that each of the 2-forms Yr,(called the characteristic forms
of the #r-connection) is closed and that the cohomology class of the characteristic
form VY, is independent of the 7r-connection used. Moreover, it is also easily

seen tha

Y. is homologous to zero.
r

It is trivial that for the manifold having an 7-s-structure the group of
holonomy with respect to an adapted basis is the subgroup of G(ny, 7,,...... s M)
In relation to the characteristic forms of the =r-connection, the following theorem
is easily proved :
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THEOREM 11.1. For the restricted homogeneous group of holonomy to be
a subgroup of SuG(ns,...... , M), it is necessary and sufficient that the a-th
characteristic form ¥, vanishes on V,.

In the statement of the above theorem, S,G(n,...... ,7M,) means a group
consisting of the elements of the form:
4,
Az O
0 A,/

in which the determinant of A, (a: fixed) is equal to 1.

ACKNOWLEDGEMENT : I express my profound gratitude to Prof. S. Sasaki
for his kind guidance and many valuable suggestions.

REFERENCES

[1] D.C.SPENCER, Differentiable manifolds, Mimeographed notes, Princeton University.

[2] G.LEGRAND, Etude d’une généralisation des structures presque-complexes sur les
variétés différentiables, Rendiconti del Circols Matematico di Palermo, VII
(1958), VIII(1959).

[3]1 A.LICHNEROWICZ, Théorie globale des connexions et des groupes d’holonomie, Ed.
Cremonese Roma, (1955).

{4] A.G.WALKER, Connexions for parallel distributions in the large, Quart. J.Math,,
Oxford (2), 6(1955).

[5] T.FUKAMI, Affine connections in almost product manifolds with some structures,
Tohoku Math. Jour., 11(1959).

[6] S.TACHIBANA, A remark on linear connection with some properties, Natural Sci.
Report of the Ochanomizu Univ., 10(1959).

TOHOKU UNIVERSITY AND
NATIONAL TAIWAN UNIVERSITY (FORMOSA).





