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D. C. Spencer [ l ] υ considered under the name "complex almost-product
structure" the structure on the ^-dimensional differentiable manifold Vn defined
by giving two differentiable distributions T19 T2 which assign two complemented
subspaces of dimension > 1 in the complexified tangent space Tί at each point
x € Vn. G. Legrand [2] called such structure as a τr-structure and studied it by
generalizing most properties of the almost complex structure which can be regarded
as a special case of it [3].

In the following, we assume that on the manifold a structure is defined by
giving r (2 <> r <= n) differentiable distributions T19 , Tr which assign r com-
plemented subspaces of dimension > 1 in the complexified tangent space T%(T%
= TΊ + -f Tr: direct sum) at each point x € Vn. We call such structure
as an r-7r-structure if we want to express the number of the distributions
explicitly. Whereas we call it simply as a 7r-structure if we need not (or can not)
express the number r definitely. We generalize some properties of TΓ- structure in
the sense of Legrand to the r-7r-structure.

In this note we assume that the differentiable manifold Vn as well as the
distributions T19 , Tr are of class C°° unless we state it explicitly. It is also
assumed that the manifold is arc-wise connected and the second countability
axiom is satisfied.

1. Fundamental tensor of the ττ-structure. Suppose the differentiable
manifold Vn has a 7r-structure defined by r differentiable distributions T19 , Tr.
Let the projection operations from T» to TΛ be denoted as 5βα, then we have

(1.1) $! = ¥., W = 0(α + /S),

(1.2) 5&+ + &. = &

where £y denotes the identity transformation and the Greek indices vary from 1
to r. Define a transformation % on T» by the following:

(1-3) Sf = λ Σ w α $ Λ

1) Numbers in bracket refer to the reference at the end of the paper.
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where v is any vector in T£, λ is a non zero complex constant and wa(a = 1,...

..., r) are the r-th power roots of unity. It is obvious that

(1.4) %sv = \sΣ,™«%«v (lrgjfSr),

thus we have

(1.5) %rv = \rv, i. e, & = λr%.

On the manifold there exists a complex tensor field which induces $ at each

TS. Let this tensor field be denoted as Ff, then we have from (1. 5) the follo-

wing :

(1. 6) i / Ξ= Fhι

ιFh^Fh2

h2 F,h'-* = λ rδ/.

Conversely, if the manifold has a non trivial tensor Ff satisfying (1. 6), and

fj be the transformation induced at Ύ°x by 2?/, then it is obvious that the proper

values of % are among \wΛ (a. = 1, , r). If 5 has actually s(s^>2, because

Ff is non trivial) of them as its proper values, then the number s and the proper

values do not vary when the point x varies on the manifold, because of the

differentiability of the considered tensor field Ff and the connectedness of the

manifold. Consequently the manifold has s differentiate distributions constituted

of s proper subspaces in T£ at each point x. Thus we have

THEOREM I. I. The manifold is endowed xυith a τr-structure if and

only if the manifold has a non trivial tensor field Ff satisfying (1.6) for

some r: 2

A tensor satisfying (1.6) is said to be degenerate if the number of its

different proper values s < r. An example of degenerate tensor of the type (1. 6)

is given by:

(1.7) F/=(cos^)S/
l \ r ' \ r

where φf is assumed to be a tensor defining an almost complex structure on the
2

manifold, i. e., it is a real tensor such that φf = ΦhΦJ1 = — Sf. It is obvious
r

that i*1/ = — Sf and F/ has only two different proper values.

Now, if the manifold has an r-7r-structure, then the tensor Ff defined by

(1. 3) is non degenerate. For, from (1. 2) and (1. 4) we have

2) I was informed by Mr. Hatakeyama of the construction of a tensor Ff satisfying
Γ i i

Fj = —δj starting from the tensor defining an almost complex structure.
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from which it follows that

(1. 9) i$vΛ = (\τvΛ)vΛ9 where va = %v € T*.

From (1.9) and dim TΛ = wα > 0, it follows that λwα (# = 1, , r) is
actually a proper value of fj.

Conversely if the manifold has a non degenerate tensor field Ff satisfying
(1.6), then the r proper subspaces corresponding to the r different proper values
at each point induce r differentiable distributions which define an r-7r-structure.
Thus we have:

THEOREM I. 2. For the manifold to have an r-π-structure, it is neces-
sary and sufficient that the manifold has a non degenerate tensor Ff satisfying
(1.6).

The tensor corresponding to the r-7r-structure insisted in the above theorem
is called the fundamental tensor of the r-ir~structure as it plays an important
role in the study of r-τr-structure.

In the sequel, the following notations are used for the convenience sake:

(1.10) F^F**1 Ff-^Ff, F/ = h and Ff = δ/.

By use of these notations (1. 5) is expressed as

(1. 5)' Ff = λrδ/.

Moreover, if we define the following for a tensor satisfying (1.6):

—s -| ar— s

(1. 11) Ff = —— F f (a, s : positive integers, r > ar — s > 0),

then we have
s I s+t-r

tht f — λ Jb j.

2. Adapted bases for an /^i-structure. In the sequel, we assume that
the indices take the following ranges:

1 5Ξ a19 b19 Cι, ^Ξ n19

nx + 1 <; a2, b2, c2, ^ nτ + n2,

nx + + nr-x + 1 Sar, br, cr, ^ nx + n2 + + n
r,
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whereas

1 <; z, j, k, ^ n,

IS a, β, % ^r.

Moreover, we assume that aa, ba, ca, , (1 ̂  ct ̂  r) take all integers [(n — n«)

in number] between 1 and n except for nΛ integers between nτ + + na.Ύ 4- 1

and nx + + nΛ-Ύ + n«.

A basis (e{) in T£ is called an adapted basis at x if e,Λ € Ta for all a =

1, , r. Since TΛ is the proper subspace corresponding to the proper value

Xwa of $, the tensor Ff satisfying (1. 5)' has the following components with

respect to such an adapted basis:

(2.1) F£ = \wa8b"9 Fb% = 0 for aφβ.

More generally, we have

(2. 2) Ft* = (\wa)
sδ>, F> = 0 for a + A 1 ̂  5 ̂  r.

The transformation from an adapted basis to any other adapted basis is

expressed as follows:

(2. 3) ίVi = Λ'iαiέ?βl, £6'2 = Λ'2

α2tfα2, , *Vr = i C r e v

where

/O /I Λ /I / /I ctjλ Λ / Λ Φ£\ Λ ( Λ r \

is respectively an x̂ X wx, w2 X n2, , nr X wr non singular matrix.

Let (#0 and (0*') be respectively the dual cobasis of (et) and (et'\ then we
have

Denote Eπ(Vn) as the set of all adapted bases relative to all points in Vw

and p as the mapping which assigns each adapted basis in Tί to x. Then Ejy^)

is a principal fibre space having p as projection and a subgroup G(n19 n2, , nr)

of GL(n, C) as structure group. Here G(nl9 n2, , nr) is the group which consists

of all matrices of the following form

A o

(2.6)

0 Ar



^-STRUCTURES ON DIFFERENTIABLE MANIFOLD 433

where Ax € GL(nl9C), , Ar € GL(nr,C\ hence
GO*!, n29 , nr) ^ GL(n19 C) X GL(n29 C) X X GL(nr9 C).

3. Torsion of r-77-structure. Assume that Vn has an r-7r-structure. Consider
a local section of E,c(Vn) of class C°° in each neighborhood of Vn, then at every
point of the neighborhood U there is associated an adapted basis (e(). Let (θι)

be the dual cobasis of (e()9 then we have

(3.1) dθι=^-σikθ
} f\θ\

where

(3. 2) C Λ + C'w = 0.

Let [/' be any other neighborhood and (ff'\ O'yw are defined by the same

way, then for any x € U Π U' we have (2. 5). If we put

(3.3) A% = 0 for α + A

then (2. 5) is expressed as follows:

(3. 4) # = A/β*',

from which we have

(3. 5) dθι = dAS A θv + At>W.

Substitute (3. l) and the corresponding formula for (0*'), and then make use of

(3. 4), we have

(3.6) -l-CflfAy'AtW Λ θ*' = dAy1 A θy + -LA^'CJ^^' Λ θk\

Let i take the integers in the range of aΛ, and then compare the term 0V0

Λ 0βΎ (β ή= <x, y H= #) in the both sides, we have

ζ 5 γ ^ y = A^rf>c'γ (β 4= α, 7 H= α),

that is,

Hence, if we define tjί as follows:

(3. 8) tτ*? = <fΈ*-e tJk* = 0 for other indices,

then £jί is a tensor. We call this tensor the torsion tensor of the r-7r-structure

and call the following form the torsion form of the r-7r-structure:
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(3.9) V=±

4. Integrability of the r-7r-structure. By definition an r-τr-structure de-

fined by r distributions T\, , Tr is said to be integrable if at each point of

Vn there exist a neighborhood and n complex valued functions zι of the local

coordinates in the neighborhood such that each Ta is expressed by dza<* = 0 at

every point in the neighborhood.

Suppose that the considered r-ir-structure is integrable, then as Ta is expressed

by dza* = 0, 0* = dzι may be regarded as the dual cobasis of the adapted basis

given by a local section of E%(Vn) on the neighborhood. Hence (3. l) and con-

sequently the following relations hold for (f — dzι:

(4.1) dθa« = -^-Clyf* Λ θc« + C?^« Λ θτ« + Tα« (a = 1, , r),

where

(4. 2) Tα« = -J-Cj-β f* Λ ^ .

On the other hand, let Ts be the direct sum of all 7Vs except for Ts, then

Ts is expressed by J ^ 8 = 0 in the considered neighborhood. Thus the distribution

given by Ts is integrable, and dθXt belong to the ideal defined by θa' = dz\

Therefore from (4. l) we have Ta$ = 0, that is the torsion tensor of the r e -

structure vanishes.

Conversely, assume that the torsion tensor of the r-τr-structure vanishes and

moreover, that both the considered manifold and the r-7r-structure are of class

Cω. Under this situation, both the real and imaginary part of the tensor Ff are

real analytic functions of the local coordinates x{. Since Tα is spanned by the

proper vectors of $ corresponding to the proper value λtc«, it is expressed by

the following equations in the local coordinates:

(4. 3) (Ff - Xwα8f)dxj = 0.

As T α is /2α-dimensional, this system is of rank n — nα = nα. Hence (4. 3) is

equivalent with a system which consists of nΛ independent equations, say:

(4.4) Sα: BΪ*dα< = 0.

As Tx Π T 2 == {0}, the system

(4. 5) Sx + S2: Bfdx1 = 0, B?dxι - 0

has zero vector as its only solution. Thus the system Sλ -f- S2 is of rank n.

Consequently we can select nx forms θφ out of S2 such that the system consisting
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of Bl}dxl and θn is independent. Let (e() be the dual basis of this system and

<ebl, Θ%1> = 8bl

ai, then <ebv BTdxι> — 0, hence ebl form a basis of Tx. As

<ebι, θμi> = 0 and Ts(s > l ) is spanned by some vectors in (ebl), it follows

that θai are linear combinations of forms in Ss(s > 1). As ΘΊ>1 are linear com-

binations of forms in S2 and the system made up by S2 and St is of rank n, we

can select n2 forms θa>1 out of St such that the system (S2, ̂
2 ) is linearly independent.

By labeling the indices of ebl adequately we have <eb2, ff*z> = δb2

2, <eb29 Btι

dx(> = 0 and <eb29 6^2> = 0 . Thus eb2 form a basis of T 2 and θ12 are linear

combinations of forms in St (t =j= 2). As the rank of the system (S39 Sx) is also

n and 0*1, θ%2 are linear combinations of the forms in £3, we can select n3 forms

θa3 out of Sx — (6^2) and then continue the same processes as above. At last we

can split up the system Sx in ( — 1) subsystems (θa2\ (θa*)> , (0*» ) such that

(01') are linear combinations of the forms in St (t =j= s) and each system forms

the dual cobasis in T 2 , , Tr. Thus {ff1*) are linear combinations of forms in

Ss and the rank of the system is n — ns, hence the system (θa') is equivalent

with Ss. Now as we assume that the torsion tensor of the r-τr-structure t% = 0,

we have from (4. l ) and (4. 2) that

(4. 6) dθa« = —Caζcaθ
h« Λ ff* + C ζ ^ β 6 - Λ θ\

from which it follows that dθa<* are contained in the ideal defined by (θα«). I. e.,

the system

(4. 7) θα« = 0

is completely integrable (This means that the distribution T r t is integrable).

Therefore, there exist nΛ complex valued functions zα<* of class Cω such that the

system θα* = 0 is equivalent with the system dzα" = 0 (α = 1, , r). As the

system (Ff — "Xw^h^dx5 = 0 is equivalent with Sα which is in turn equivalent

with (0* = 0), which is again equivalent with dzα« — 0, it follows that the Tα

is expressed by dzα* — 0, i. e. the considered r-7r-structure is integrable. Thus

we have

THEOREM 4 . 1 . If the r-τr-structure is integrable, then the torsion tensor of

the r-ir-structure tji = 0. Conversely iftjΐ = 0 and moreover both the manifold

and the considered r-ir-structure are of class Cω, then the r-ir-structure is

integrable.

From the course of the above proof, it is also evident that the definition of

the integrability of an r-7r-structure stated above is equivalent to the one made

by Walker [4].
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5. A formula on torsion form of the r-7r-structure. Assume that the

manifold is endowed with an r-7r-structure (2 <Ξ r <̂  n). We generalize the

operations C and M considered by Lichnerowicz [3] and Legrand [2] as follows :

Let v19 9vt be any t vectors of T% and φ be a ί-form, then define

(5.1) Cφ(v19 ,vt) =

s t

(5.2) Mφ(v19 ,vt)=Σ<p(v19 9vk.l9 3svk, vk+1, ,vt),

(1 <£ s < r).

If φlχ it are components of φ with respect to a basis at a points, then
s s

the components of Cφ and Mφ are respectively as follows:

(5. 3) (Cφ\ ί£ = Fh

h Fh

jtφjl s%9

s ι s

(5.4) (Mφ)h ,, =E**V«i ι»-i*ι*+i it
J f c - 1

Let (6̂ ) be the dual cobasis of an adapted basis at x9 then we say that the form

is pure of the type (/>1? ,pr) if the only non zero term in the above

expression is the term which is of degree pa, with respect to θa<* (pi = 1, , r).

It is evident that this definition is independent of the adapted basis used at x.

Let <pPhP>2)...,pr be pure of the type (ρlfρ2, 9pr)> then from (2.2), (5.3) and

(5.4) it follows that

s

As we shall concern principally with 2-forms in the sequel, we list here

some relations on the operations C and M which hold only when applied on

2-forms. Let φ be a 2-form with components <pPQ9 then

8 S S

(5. 7) (Mφ)fk = (S/Fk

Q 4- Sk

QF/)φPQ9

(5 8) (Cφ)Jk = F*f

Hence

(5. 9) (CMφ)fk = (F/Λβ +
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From these relations we have immediately

M = 2, C = 1,
ar+b b

(5.10) M=XarM,

M=2 λor,

where a is any positive integer and 0 5Ξ b < r. Moreover, we have

ar+ύ 6

c = λ2 α rc,
ar

C = λ2"1-,

s ί s+l s l-s

(5.11) MM = M + CM,

hence

(5.12)

and

(5. 13)

From the last relation we have

S U S U + S 2S + U

CM = MM - M.

(5.14)

and

(5.15)

s u u+s-rr-u

CM=Xr C M for u + s > r, u > r, s

CM = VM.

Now assume that the manifold is endowed with an r-τr-structure, and let

Tι be the torsion form of the structure. Denote

<p°T = φ(T =(5.16)

for any 1-form φ, then we have the following:

/ t 1 1 r~ι

(5. 17) r2\rdφ ( ± W

tθ1 Λ 0*

t 1 1 r~ι s ί+2r-2s\ r-t

- rM + -±- "VWΣ C M )

If we extend the definition of M so as (5.7) to hold also for negative

integer, then instead of (5.17) we have

(5.18)

PROOF. Let φ be a pure form of the type (1,0, , 0), say ψ = ^ 1 | 0 0

= φαiθ
αι, then by (3. l), Ĵ > = dψα^1 + φαidθαΊ is the. sum of the pure form
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of the type ^,o,...,o [i e., ρ1 = 2, ρ2 = = ρr

 = 0] pure forms of the type

9>i,o,...,o,i,o,...,o [i e., px — 1, p2 = = ρr = 0 except for an integer s(2<:S<^r)

and />s = 1] pure forms of the type ψo,...,0,2,0,...,0 [i e., pi = = /V = 0

except for an integer s (2 ^ 5 <Ξ r) and />s — 2] and pure forms of the type
/Ψo,...,o)i,o,...,o,ilo1. .,o[i e > />i= = =Pr=0 except for two integers s, t, s=^t (2<:S,

t ^ r ) and ρs = Pt = 1] Whereas 93 0X1 i s the sum of pure forms of the type

Ψo,...lola,o,...,o a n ( i P u r e forms of the type Ψb,...lo,iIo,...1o As φ = ^1,0,...,0 is a pure

form, with respect to the adapted basis given by the local section, we have

(5. 19) dCφ = w™\

Therefore the coefficients of

(5. 20)
ί ^ . o . ^o ^i,i,o, ,o

^ ro,2,o, ,oj r0,1,1,o, ,o>

s ί—2? r—t
in — C M i Cφ are respectively the following:

(5. 21)
2

T

Taking the summation ^ ^ of each term in (5.21), we get the following
ί = l 5-0

^ r r ~ 1 s ί—2s r-ί
respective coefficients of (5. 20) in -~ Σ ΣC MdCφ :

(5'22) I T - o5

ί r-t

On the other hand the coefficients of the four forms of (5. 20) in —rMdCφ

are respectively

(5. 23) wx

Taking the summation ^ of each term in (5. 23) we get the following respective
1=1

r t r-t

coefficient of the forms of (5. 20) in XX — r)MdCφ :
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0 ; 0.

From (5. 22) and (5. 24) it follows immediately that the respective coefficients

of the forms of (5. 20) in the left hand side of (5.18) are respectively

(5.25)
0 0;

r 2λ r.

Whereas the corresponding coefficients in φ°T are respectively

) ; 0 ;

l ; l
(5. 26)

Therefore, the relation (5.18) holds for φ = φx 0 ... 0 because we can get

similar results for the other forms appearing in both sides of (5.18). It is easily

seen by the same way that (5.18) holds also for any other pure forms £>o, ,o,i,o,

... } 0 [i. e., px = = pr = 0 except for an integer s (2 ^ s fg r) and ρs = 1].

Thus we have the relation (5.18) for any 1-form.

6. Components of the torsion tensor of an r-7r-structure. Let φ be
s s

any 1-form, then as (Cφ\ = F^φ-m, we have

(6.1)

where we have put

(6. 2) fe = -

dCφ = f oφ + ©,

(6.3)

Moreover, if we put

(6.4) φ

then we have

(6.5)

0

{ f = 0,

ξ,

\ (S,W) (W,S) S

I $ + ξ> = C

ar+s' s'

& = λαr®,

(*',«')
β

for w > s,
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s t s+t (s,t)

M® = ® + ξ),
U (S,ί(, ) ( , ) ( , )

C © = ξ>9 C ξ> = ξ>.

Putting (6. 1) in the left hand side of (5.18) and then make use of (6. 5).we have

(6.6)

r / t 1 r ~ " 1 s t-ls\ r-t

A = r'X'dφ +T\[-rM + ~-TiCM )dCφ

= r*Xrdφ +(-rM + -^-
ί 1 r " l s ί-2s\ r-t

ί-Λ Z 5=0 ^

ί 1 r - 1 st—2s\r-t

)

As it is shown below, we have

/ r 1 r - 1 5

=-r2\rdφ-(-rM +-~Σ,C(6.7) β =
t

we get

(6.8) A = Σ ( - r M + - ^ Σ C M ) fop.

From (6. 8), (5.18), (5. 7) and (5. 9) we have

t 1 - I
' t - 1 '

1 r~ι s

 h

 s

ί = 0

t

r%Fh +
t-2S

t

i-2s | r-ί r - ί
(6.9)

The proof of (6. 7) is as follows: Making use of (6. 5) we have

!(t,r-t)

5 = 0

It is shown below that

(6.10) = (r-DΣ έ
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Hence we have
r - 1 ( t , r - ί ) 1 (0,r) 1 | ^

(6.11)

(0,r) (r,0) (0,0)

As § = <ξ> = λ r ξ> = \rdφ, from (6. 5) and (6.11) we have

= - r*\rdφ

Finally, the proof of (6.10) is as follows:

r ' λ t («',r-β')

C = X) Σ ^ (putting 5' = t — s in C)

Since
0 (s',r-s') r~t (i_r+s",2r-f-s")

J2 ξ> = Σ § (putting s — t — r+s in left hand side)
s'π.t—r+ι S"B1

*̂"" (ί+s^jr-f-s'') r (M,r—M)

we have

= Σ(Σ -"•""'

7. An application of the relation (5.18). Let the infinitesimal transfor-
mation defined by the vector field X be denoted by X-f where / is a function.
Let u, v be any two vector fields, φ be any 1-f orm, then it is known that the
following relation holds:

(7. 1) dφ(u, v) = wφ{v) — vφ{u) - φ([u, v}),

where [«, v\ is the Poisson's bracket of the two vector fields u> v. Making use
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of this formula we have

(7. 2) dCψ{u, v) = u φiW-'v) - vφ(%r-ιu) - φiWΛu, vj),

from which we have moreover the following:

MdCφiμ, V) = dCφi&U, v) + dCφ(u, tfv)

'v) - %tV φ{%r-tu)
(7.3)

+ \r\dφ(u,v) + <p(iu,v~])\

- φWXWu, vj) - φφ-Ίu, &VD.

Hence

CMdCφ{u, v) =

Since the value T(u, v) of the torsion form of an r-τr-structure for the vector
fields u, v defines a vector field, we have from (5.18) the following:

r t r't

r2\rφ(T(u, v)) — r2\rdφ(u, v) + 2Z (— r)MdCφ(u, v)
(7.5)

2 r r-1 s t-2sr-t

Putting (7.3) and (7. 4) in the right hand side of the above formula, we have

V'Wu, vj) +
ί = l

(7.6) +-]
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(7.7)

As it is shown below that

r r-1

(7.8)
ί=l (BJ

from (7.6), (7.7) and (7.8) we have the following

(7-9)

- 4 - Σ Σ laf-'Gί'-a, δ f ] + y-'[δf«, δ -v]}.

To prove (7. 8), put t = t — s, then we have

0 r-l

4" Σ Σ Wu

If we put ί" = t + r, then the last term of the above formula turns out to be

ί"=2ί»r+l-t"

= 4 " Σ (*" - 1) W'u φ®r-t"v) - ^"vφ^Γ—u
ί"-2

Hence we have (7.8).
For giving an application of (7. 9), we first calculate some formulas to be

used:
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From (1. 4) we have

and S-ΪS'-Ί*, svi =

From these two formulas we have respectively

(7. 10) ilW-Wu, v] = rXr

r r-1

(7.11) Σ ΣS-1F-'«. δsf] = r»
t = l s=0 α=l

It is obvious that

(7.12) [",*>] = Σ 3 U > > ^

Substitute (7.10), (7. 11) and (7. 12) in (7. 9), we have
r

(7.13)

a=l

Let N(PΛ) be the Nijenhuis tensor of the projection tensor Pf induced by 5β«.

As it is known that

(7.14) N(Pa) (u, v) - - 5ββ[5ββ«, v] - 5βΛ[w, 5βΛt;] + 5ββ[«, v] + [5ββ«, Sβ v],

we have from (7.13) the following

(7.15) T(u, v) = - £ Sβ JV(Λ) («, v).

8. 7r-connections on the differentiable manifold endowed with an r-
7r-structure. Let Vn be a differentiable manifold having an r-7r-structure. By
definition a 7r-connection on Vn is an infinitesimal connection defined on the
principal fibre space Eπ(Vn). Let Ec(yn) be the principal fibre space consisting
of all complex bases at all points of Vn, and having GL(n, C) as its structure
group. It is evident that JBΛ(VΛ) can be seen as a subspace of Ec(Vn), so a local
section in Ex(Vn) can also be regarded as a local section in Ec(Vn). Thus a TΓ-
connection can also be regarded as a complex linear connection, that is an infinite-
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simal connection on Ec(Vn). If a complex linear connection is determined by

complex valued Pfaff forms (ωf) with respect to the local section in Eπ(Vn),

we say that (ωf) defines a connection relative to the adapted basis of the r-rr-

structure. A complex linear connection (ωf) defined relative to the adapted bases

of the r-7r-structure can be regarded as a 7r-connection if and only if the values

of the forms (ωf) belong to the Lie algebra of the structure group G(n19n2,...

...,wr) of 25Λ(Vn), that is to say, the following condition are satisfied:

(8.1) « £ e = 0 ( α = l , 2 , , r ) .
Ob

Let VFf be the absolute differential of the tensor Ff with respect to the

connection (ωf), then we have

(8. 2) VFf = dFf + ωJF* - ωfFjf.

Referring to an adapted basis of the r-7r-structure and then make use of (2. l)

we have

VFla

a = \wΛω*l - \waω
aζ = 0,

(8. 3) VFζ = λuv»ζ - λuy»ζ = \(wβ - wβ>"

(cuβ= 1,2, , r ; Λ + /S).

Therefore (8. l) is equivalent to

(8. 4) VFf = 0.

Thus we have the following:

THEOREM 8.1. A complex linear connection can be regarded as a ir-

connection if and only if the absolute differential of the tensor Ff (the funda-

mental tensor of the r-ir-structure) with respect to the considered connection

vanishes.

From (1. 3) and (1. 8) we have the following for the tensor fields P«f induced

by 5βrt:

r

Ff = λΣ»Λ/»

Hence (8.4) is equivalent with the following:

(8.5) VP.f = 0 (α = 1, , r).
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From (8. β) we can see easily that a 77-connection is the connection with

respect to which each of the considered r-distributions is parallel (See Fukami

[5]).

LEMMA. Let (G>/) be any complex linear connection defined relative to
the adapted basis of the r-π-structure, then the following forms (πf) deter-
mine a ir-connection :

(8.6) *r»; = ®& * ξ = 0; (α = l, , r).

For the proof, the only thing must be shown is that (TΓ/) defines a complex
linear connection. But this is easily seen from its transformation rule with respect
to the adapted basis.

The connection (ir/) stated in the above lemma is called the τr-connection
induced by the complex linear connection (β>/). Let

(8.7) «/ = 7ί*β*, irf = W,

where (#*) is the dual cobasis of the adapted basis at each point defined by the
considered local section.

Put

(8 8) τ% = 1% - y'Jk,

then τ f̂c is a tensor, and we have the following with respect to the adapted basis:

(8. 9) τ£ = - yζ , τly = 0 («+ β).

As the covariant derivatives VfcF/ of Ff with respect to the connection
are defined by the following:

(8.10) VF} = V*F/0fc,

from (8. 3) we have

(8.11) V*f£ = 0, VkFl; = X(wβ-w

Making use of (2. 2) we have generally

(8.12) vjϊ*u = o, vΛ; = \s{(wβγ - (

From the above formulas we have

hence

1 r~l s r-s

(8.13) .r Σ(V*-F6pi^* = — γ'Λ = rΛ (α: 4= /δ a, β = 1, , r).
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From (8.12) we have moreover,

I r -i sc r-sa

Therefore, it is evident that the tensor r)k has the following components in

the local coordinate system:

- .. r-l g r_g

(8.15) τ)k = ~ -^Σ, (V*F/)FΛ

Thus we have the following:

THEOREM 8. 2. Let yι

ίk be the parameters of a linear connection in the

local coordinate system, then the following are parameters of a ir-connection :

r-l s r_g

(8.16) 1% = γ% + — T Γ

This connection is the π-connection induced by the linear connection y)*

(Tachibana [6]).

Next, let TΓ/ be any 7r-connection and let 7r/ = l)^- Put

(8.17) σ% = ϊ% - Vjt,

then σ)k is a tensor. As π!/* = τr&* = 0, we have following with respect to the

adapted basis:

(8.18) σζk = 0.

This is also the sufficient condition for ΪΓ/ and 7r/ be both the 7r-connection.

Since

( a i 9 )

with respect to adapted bases, we have

(8.20) ]

, ^rΈF>fyFZ =-<£;« (even if
5 = 1

Hence it follows that
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(
(8-21) ]

Thus if (8 18) is satisfied we have

(8.22) jrU;«+-f Σ ̂

From (8. 21) and (8. 22) it is evident that if σ)k satisfies (8. 18), then its
components with respect to a local coordinate system are as follows:

1 / 1 r'τ

(8.23) f(σ;U^
Conversely, for any tensor σ% the tensor having (8. 23) as its components

satisfies (8. 18). Thus we have

THEOREM 8. 3. Let y)k be the parameters of a linear connection in the
local coordinate system, then any TΓ- connection can be expressed as follows:

(8. 24) y')k + ~jr -^ Σ(V»Λ W + -jrfa + Y

where σι

ίlc is a tensor [6].

9. Distinguished 7r-connections.

LEMMA. Let ωf = y^θ10 be any complex linear connection defined relative
to the adapted basis of the TΓ-structure, then the following forms (πf) deter-
mine a TΓ-connection:

(9.1) wί = «£-%"•> β8-. ^ α = 0.

For the proof, the only thing must be shown is that %*b define a tensor.
a <x

But this is easily seen.

Now assume that ωf = y^β* is a symmetric linear connection (complex or
real) defined relative to the adapted basis. Then as it is without torsion, we have

dtf1* = θj Λ ω/«

(9* 2 ) = ?* Λ ωl'm + rfcjf* Λ ^ + ~γ(%X - yh) θ*« Λ <?.-.

Let T€ be the torsion form of the considered r-7r-structure, we have
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(9.3) T»- = - L (y°\ - yζB ) ^ - Λ β5- (α = 1, , r).

Let Sc be the torsion form of the 7r-connection (w /), then we have

(9. 4) £ β « = Λ0X« - 0 ^ Λ w£ .

Substituting (9.1) in the above formula, we have

(9. 5) Za« = dfl** - 0*« Λ ω> - ffa

Έ\ θ*« Λ #V

Then from (9. 2), (9. 3) and (9. 5) we get

(9.6) 3> = Tα«, α = l, ,r.

Thus we have

THEOREM 9. 1. There exists a 7r-connection having the torsion tensor of
the considered r-π-structure as its torsion tensor. Hence the r-π-structure is
without torsion if and only if there exists a symmetric IΓ connection.

The connection insisted in the above theorem is called the distinguished 7r-
connection for the simplicity of statements.

Since 7r-connection is a connection with respect to which each of the r
distributions of the 7r-structure is parallel, we have from Theorem 4.1 and
Theorem 9.1 the following:

COROLLARY. For an r-π-structure, there exists a connection making each
of the distributions parallel and moreover which is symmetric if the IΓ stru-
cture is integrable (See Walker [4]).

We are now in the stage of obtaining the parameters of the distinguished

7r-connection πf — l)kθh defined in (9. l). From (9. l) we have

( 9 7 )

where wf = Vfljf is the 7r-connection induced by the symmetric connection
Let %* be the torsion form of the τr-connection TΓ/, then we have

V = ( T Γ / - ω*) A θ > = - T^Θ1 Λ θ*.

From (8. 9)
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θbβ Λ θ°y - Λ y)

Let S)k be the torsion tensor of the 7r-connection (77-/), that is,

(9.10) V = - 5 ^ Λ θ\ (S)k = - 51,),

then we have

(9. 11)

On the other hand, since (8. 21) holds for any tensor σjto it follows that

(9. 12)

'.ψ

r- 1 *

V
From these formulas, it is evident that the parameters of the distinguished con-

nection in the local coordinates are as follows (because 1% — l]k is a tensor) :

(9.13) 1 j( j1% = 1% - -jτ(sU + -jr-ΣF/S^Jή.

Thus we have the following:

THEOREM 9. 2. Let 1% be the π-connection induced by a symmetric con-

nection and let Sjk be its torsion tensor, then the connection defined in (9.13)

is a distinguished ir-connection {in the local coordinates).

From (9.3) we have the following expression for the torsion tensor t%

V = —ήtθ* Λ θ70) of the restructure :

(9.14) tl;Cy = (y>βCy - y

Again from (8. 21) we have

+ &β

= 0

= - 2 -Svv (ft Φ A a Φ y),
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(9.15)

Therefore, from these formulas and (9. 11), (9. 14) we get

(9.16)

Hence it is evident that the torsion tensor of the r-7r-structure has the following
components in the local coordinates:

1 r "" 1 ί t r-t

where Sjk is the torsion tensor of the 7r-connection induced by a symmetr'c con-
nection.

10. Some other expressions of the torsion tensor of r-7r-structure. Let
r-t r-ί

VpFq

m be the covariant derivatives of the tensor Fq

m with respect to the linear
connection Γ$fc, then we have

(10. 1)

where

(10. 2)

- F/ΓJ)

1 <7P/

is the torsion tensor of the connection Yh

m,

Put (10. l) in (6. 9), then by some straightforward calculation we have

(10. 3)
ί—25 \ r-t

- VA")
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y Σ « ( W + W)f^FΓ +^j(r- l>(2r- ϊ)\rSJt

r ' X t r-t r -"- 1 e-, r-ί+s

Thus, if Γ;* is symmetric we have

m L _ £ ί p*
ί=i *

(10.4)

By some straightforward calculation, the right hand side of the above formula

can also be written as follows:

(10.5) '•' t='is'1
- r-2 r-1 s f _ s g t _ s r_t r__t

! -*- V~™* ^Γ"* / 7^ Pτp Q i Tp ̂  Tp PΛ\. fΎ7 TΓ m T7 W mΛ

• o / . / . \Γ j J? Ίc "T" " Ίc " j ) I V XP" Q VQ"P /•
ί=lS=ί+1

If Γ̂ fc is a 7r-connection, we have

(10.6)
r-1 t r_t r-1 r-l f

— 1 X 2 Γ -

As it can be seen by some simple calculations, the right hand side of the above

formula can also be written as follows:

1 ' 2 ( r - :

(10.7) r ί ^ ^ t , , , - , ,
i \ Λ \ Λ / rp Pjp Q j JΓ Q Γ? P\ CΛ TT* m ι \ Λ \ "* f Έ7* PIP Q ι IT* Q TT p\ Oft C1 m I

+ Z^ 2 ^ V ̂ i f̂c + ^ * ̂ . / J^pqΓ h + 2_̂  2^\^ J ?* ~T~Fk "jjbpqΓh Γ
M=lί=w+l w=2 ί=i '

Or more simply,

V-LU. Oj tiic — SPSP O jfc,

where the operations Φ and Φ' are defined as follows:
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(10.9) ΦS% = ST*-~

(10.10) Φ'55 = S%

Finally we add a remark: Denote

(10.11) ψoN=Cdφ +• dcίίφ - MdCφ; s - 1, , r - 1,

where φ is any 1-form. Then it can be easily seen that for the cases r — 3, 4,
s

5,6, ^oT1 can be expressed by φ°N (s = 1, , r — l). For example, we have

(10.12) -

But the same does not hold good generally. For example, it is easily shown that
for the case r~79 φ*T can not be expressed by the same way.

11. Characteristic forms of r-τr-structure. Groups of holonomy. Follo-
wing Legrand [2] we can define the characteristic forms of r-7r-structure and
obtain some analogous results. Let (TΓ/) be a τr-connection defined relative to
the adapted bases of the considered local section. Its curvature forms are as
follows:

(11.1) Sϊ/ = dπ} + ir*' Λ TΓ/,

where i% = 0 {a = 1, , r). Put
CO

(11. 2) ψa = λwβfl£ (« - 1, , r),

then it is easily seen that each of the 2-forms ^(called the characteristic forms
of the 7r-connection) is closed and that the cohomology class of the characteristic
form ψa is independent of the 7r-connection used. Moreover, it is also easily

seen that 'ΨΊ -f- + ψr is homologous to zero.
wx wr

It is trivial that for the manifold having an r-7r-structure the group of
holonomy with respect to an adapted basis is the subgroup of G(n19n29 , nr).
In relation to the characteristic forms of the ir-connection, the following theorem
is easily proved:
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THEOREM l l . 1. For the restricted homogeneous group of holonomy to be
a subgroup of SaG{n1, ,nr), it is necessary and sufficient that the a-th
characteristic form ψ^ vanishes on Vn.

In the statement of the above theorem, SaG(n19 , nr) means a group
consisting of the elements of the form:

A2 0 \

o ΆJ
in which the determinant of Aa (ct: fixed) is equal to 1.
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