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1. In the course of the study of the crossed product of rings of operators,
it has been shown in [4] that an arbitrary countable group admits a faithful
representation as a group of outer automorphisms” of an approximately finite
factor on a separable Hilbert space.

Let G be an arbitrary countably infinite group. Let A be the set of all func-
tions a(g) on G: a(g) =1 on a finite subset of G and = 0 elsewhere, and A
is an additive group under the addition [a + 8](9) = a(9) + B(g) (mod 2), 0(g)
=0 (9 € G). Let A" be the set of all functions @(y) on A: @(y) =1 on a
finite subset of A and = 0 elsewhere. A’ is an additive group under the addi-
tion [@ + ¥1(y) = @(y) + ¥(y) (mod 2) and 0(y) =0 (y € A). For every
acl @o—>9”: ¢*(y) = @(y + a) is an automorphism of A’. Defining the
product (@, a) (¥, B) = (@® + ¥, @ + B), we have a locally finite countably in-
finite group @ of all elements (@, @) € (A’, A) with the identity (0, 0) and
(@, @)! = (% a). Let H be the Hilbert space /,(®), and for each (@, a) € ® let
Vi« be the unitary operator on H defined [Viy o £1((¥, B)) = AW, B) (@, a)).
Then the ring of operators M generated by all V, ) is an approximately finite
factor. Next, define an operator T(7,) on A(A"): [T,a] (9") = algy’) for all
a€A 9,9 €G; [T/l (v)=@(Tgy) for all @ € G, and g— T,(T,’) is an
anti-isomorphism of G into a group of automorphisms of A (A"). For each
9 € G, we define a unitary operator U, in H by [U,f] (@, a)) = f(T, @, T,a)),
and g — U, is a faithful unitary representation of G and for each ¢ € G(s=e¢)
Vigor > U™ Vio,a)U = Virlp,mm defines an outer automorphism of M.

The purpose of this paper is to discuss some algebraic properties of this re-
presentation.

2. From here to the end of this paper, G is a countably infinite group and
M is an approximately finite factor in H = [,(®) associated with G as in §1.
By the fixed algebra of H, a subgroup of G, we mean the subalgebra of M
composed of all elements of M which are simultaneously fixed under all members
of H (see [1]). In this section we shall determine the fixed algebras of some

1) An automorphism of a ring means a *-automorphism.
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normal subgroups of G. We denote by @, the element in A" which takes value
1 only at 0 € A. Then it is easily seen that T, '@, = @, for all g € G.

LEMMA 1. Let H be an infinite normal subgroup of G and ay, -..... , On
distinct non-zero elements in A. Then there exist an h € H and an i,
(1 =iy < n) such that ay, -..... , an, Tha, are all distinct.

PROOF. By hypothesis, G = H X K for a group K. The set F = U §(h,k)

i=1

€ G:af(h, k) =1} is a finite set. Let F, = {h € H: (h, k) € F fora k € K}.
We can choose a g, € H — F,. Picking up an (hg. ko) € F and (1 < iy < n)

such as ay,((ho, ko)) = 1, we get Typr'ay, F=a, for all j=1,...... , n because
a,((9o, ko)) =0 for all j=1,...... , n and [Tuoqgldio] (9o, ko) = a;((ho, ko)) = 1.
Hence ay, -..... s oty Tugr'ats, are distinct each other.

LEMMA 2. Under the same condition as in Lemma 1, let @, ...... , Pu
be distinct elements in A’ each of which is neither O nor @,. Then there
exist an h € H and i1 < iy < n) such that @, ...... , @0, Ty, are distinct
each other.

n

PROOF. As in the proof of Lemma 1, let G = H x K. The set &, = U

j=1

fa € A: g (a) =1} is finite, and so the set F = U {(h,B) € G: a((h, k)

aeAo

=1} is also finite and non-empty. Let F, = {h € H: (h, k) € Ffora k € Kj}.
We can choose a ¢, € H — F,. Pick up an (1 < iy < n), ay € 8y and (hy, k)
€ F such as @, (ay) = 1, ay((hy, ko)) = 1. As [Tnogglao] (90, k0)) = ato((ho, ko))

= 1, Tiwzis does not belong to A,. Thus ¢,(T,,090—1a0) =0 forevery j=1, ...,
n, and SO Tm;'ro'](pio =f= Pj fOI' all .7 = 1, """ s N since [TIL(:'J(;'I(pio](Th.oao—]an) = ¢lo(d0)
= 1. Therefore @, ...... , @, and T,,(:,,O-lgzio are distinct each other.

THEOREM 1. The fixed algebra in M of any infinite normal subgroup
H of G is the set of all elements of the form NI+ pV 0 (N, p are scalars).

PROOF. It is obvious that all AT + uV, s belong to the fixed algebra of
H as T,p, = @, for all h € H. Let A be an element in M which is fixed
under all ¢ € H. According to Lemma 5. 3.6 in [2], there exists a unique fami-
ly of scalars {A a)} o ayes such that

1O A =2 wasMonVio

where D is taken in the sense of metric convergence in M. Thus we have

et
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@) ZpmerooVen =2 wockeoV e for all g € H.
By the uniqueness of the expression (1) we obtain
(3) X(%a) = )-(7';%1'”“) fOr aH ((p, a) (S @ and g (S H.

Now suppose that there exists a (Y, 8) € & which is neither (0,0) nor (g,,0)
such as Ay,p =#=0. If 840, by Lemma 1 we can find an infinite sequence {¢,}
in H such that all T, 8 are distinct elements in A. If 8 = 0, there exists an
infinite sequence {k,} in H such that T, Y are all distinct elements in A’ by
Lemma 2. Hence there is an infinite sequence {k.} in H and (T, T:B)’s are

all distinct elements in ®. Thus, by (3) we get > |MTw ¥, T%,8)|* = oo which

n=1

contradicts Y |Ag.ay|? < 0. Therefore Ay g = 0 except for (0, 0), (@, 0) and

(¢, @)@

A =00l + Mooy Vigon

Next we shall determine the fixed algebra in M of a finite normal subgroup
of G.

LEMMA 3. Let H be a finite normal subgroup of G. Then there exist
infinitely many distinct o € A (resp. ¢ € A) such that T,a = a (resp. T, @
= @) for all g € H.

PROOF. By the assumption, G = H X K for an infinite group K. Picking
up an infinite sequence of distinct elements {&,} in K, we define a, € A for
each n by a,((h, k,)) =1 for all h € H, and 0 otherwise. {a,} is an infinite
sequence of distinct elements in A, and it is easily seen that T,a, = a, for all
9 € H (n is arbitrary). Using these {a,} we define @, € A’ for each n by @,(a)
=1 if & = a,, and 0 otherwise. Then the sequence {@,} satisfies the require-
ment as T,a, = a, for all g € H (n is arbitrary).

LEMMA 4. Let H be as in Lemma 3. Then for any finite set § in ®,
there exists a finite subgroup &, of & containing § such that (T) @, T,a) €
&y for all g € H and (¢, a) € &,.

PROOF. Since ® is locally finite as shown in [4], {§ generates a finite
subgroup %, of ®. Then the set , = {(T,/p, T,a): (p,a) € T, 9 € H} is a
finite subset because of the finiteness of H, and so generates a finite subgroup
®, of ® again by the local finiteness of &. It is obvious that &, satisfies our
requirement.

Successive application of Lemma 4 leads to the following lemma, which
will be used in the next section and we omit the proof.
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LEMMA 5. Let G, be a locally finite subgroup of a group G and {G,}
a non-decreasing sequence of finite subgroups of Gy such as U G,= G, Then

n=1

there exists an increasing sequence {®,} of finite subgroups of & with the
following properties.

(i) For each n, (T, @, T,a) € G, if (@, a) € G, and g € G,.
(i) \UJ®©,=86.

n=l

Then we have the following result.

THEOREM 2. The fixed algebra in M of any finite normal subgroup H
of G is the approximately finite factor.

PROOF. Applying Lemma 5 to H and ®, we can find an increasing sequence

{®,} of finite subgroups of & such that & such that ® = U ®, and for each

n=1

g€ H, (T,)p, T)a) € 8, if (p, a) € ®,. Then for every n, the subalgebra N,

generated by all A = 3 NyaVia where for each (@, a) € ®,, Apa =
(@,8)e@n

Ao, for all g € H, is of finite order in the sense of Definition 4.5.1 in

[2], and each A € N, is fixed under all g€ H. An element A= Y

(0, ®)e®
Mo,a)Vipay in M is in the fixed algebra N of H if and only if Ay e = AT0,7,0)

for all ¢ € H ((p, @) is arbitrary). Hence, as ® = U ®,, the fixed algebra N
n=1

of H is generated by the increasing sequence {N,}. Since ® is infinite, N is
not of finite order and hence it is sufficient to show that N is a factor, by

Definition 4.6.1 in [2]. Let A= > Ay oViae be an element in N which

(p, @)@
commutes with all elements in N. If (T,/¥, T,8) = (¥, B) for all g € H, AV .5
= V.mA. Hence for such (Y, 8) we have

2 Moo Veouwsn = 2 MaaVaswn
(0,06 (@, 06

snd so

x(yz.w) = ).(‘p,ﬂ);l(q,,w)(\p,ﬂ) for all (¢, a) - (6]

We have to show that A, 4 = 0 for all (@, @)= (0,0). To do this we assume
that there exists a (@, a) 5= (0, 0) such as A, a == 0.

Case 1. @==0. By Lemma 3 we can find an infinite sequence of distinct
elements {a,} in A such that T,a, = a, for all g € H. Then, as easily seen,
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f@®} contains an infinitely many distinct elements of A'(cf. footnote 2) in [4]).
On the other hand, (0,8) Y@, @) (0,8) = (2", a). Hence ) |[Ayg|?= o

B8
which is a contradiction. Thus A, ) = 0 in this case.

Case 2. @ = 0: Let {®,} be a sequence of infinitely many distinct elements
of A’ constructed in the proof of Lemma 3. Then {@} + @,} contains an
infinitely many distinct elements (see footnote 3) in [4]). As (¥, 0)"%(0, @) (¥, 0)
=@ +v,0)and T, p, = @, forall g € H, we have > |Ay,p|? = o, which

(,8)e@
is a contradiction, and A« = O.

Therefore A = Ag,nV,n and N is the approximately finite factor.

Following [1], we say that an automorphism of a ring of operators is freely
acting if any non-zero projection contains a non-zero projection which is not
fixed under the automorphism. This concept can be seen as a relaxation of the
notion of ergodicity, where an automorphism of a ring of operators is ergodic
if it does not leave any non-trivial projection fixed. It is obvious that an ergodic
automorphism is freely acting. As an immediate consequence of Theorem 2 in
[3] we have the following fact.

LEMMA 6. Every outer automorphism of a finite factor is freely acting.”
Hence from Theorem 1 (or Theorem 2) we get

COROLLARY. There is an automorphism of the approximately finite
factor which is freely acting and not ergodic.

In fact, in Theorem 1, any ¢ € G, is freely acting by Lemma 6, and the

projection % 1+ % Vw0 is left invariant under ¢g. Hence ¢ is not ergodic.

3. In this section we shall specialize the group G and pursue the crossed
product of M by G.

THEOREM 3. If G is a locally finite group, the crossed product of the
approximately finite factor M by G is also approximately finite.

PROOF. By definition, the crossed product (M, G) is generated by operators
Vs (@, a) € ®) and U9 € G) on the Hilbert space H &) 7,(G) defined by

17(«,,,,) (Z I ® 811) = Z V(w,w)xn® En,

heG neG

2) This fact has been informed the author by Mr. N.Suzuki.
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Eg(th®eh> = ZUaxh®eah'

\ heG neG

By Lemma 5, there exist the increasing sequences {®,} and {G,} of finite
subgroups of & and G respectively which satisfy (i) and (ii). Denote by P, the

ring of operators generated by 17(4,,,,), a, with (@, @) € 8, ¢ € G, for each n.

It is obvious that P, &P, & ... =P, = ---, and every P, is of finite order by
the property (i). Since U@n =® and UG,, =G, (M, G) is generated by
n=1 n=1

{P,}. Hence the crossed product (M, G) is the approximately finite factor, since
the crossed product (M, G) is a factor of type II, by Theorem 4 in [5].

REFERENCES

[1] H.A.DYE, On groups of measure preserving transformations I, Amer. Journ. Math,,
81 (1959), 119-159.

[2]1 F.J. MURRAY AND ]J.VON NEUMANN, On rings of operators IV, Ann. of Math, 44
(1943), 716-808. )

[3] N.Suzukl, On automorphisms of W+*-algebras leaving the center elementwise in-
variant, Tohoku Math. Journ., 7 (1955), 186-191.

[41] , A linear representation of a countably infinite group, Proc. Japan
Acad., 34 (1958), 585-579.

[5] , Crossed products of rings of operators, Tohoku Math. Journ,, 11
(1959), 113-124.

[6] , Certain types of automorphisms of a factor, Téhoku Math. Journ.,

11 (1959), 314-320. 12(1960),171-172.

MATHEMATICAL INSTITUTE, TOHOKU UNIVERSITY.





