SOME REMARKS ON A REPRESENTATION OF A GROUP

TEISHIRÔ SAITÔ

(Received April 2, 1960)

1. In the course of the study of the crossed product of rings of operators, it has been shown in [4] that an arbitrary countable group admits a faithful representation as a group of outer automorphisms¹⁾ of an approximately finite factor on a separable Hilbert space.

Let G be an arbitrary countably infinite group. Let Δ be the set of all functions $\alpha(g)$ on $G: \alpha(g) = 1$ on a finite subset of G and = 0 elsewhere, and Δ is an additive group under the addition $[\alpha + \beta](g) = \alpha(g) + \beta(g) \pmod{2}$, 0(g)=0 $(g \in G)$. Let Δ' be the set of all functions $\varphi(\gamma)$ on $\Delta: \varphi(\gamma)=1$ on a finite subset of Δ and = 0 elsewhere. Δ' is an additive group under the addition $[\varphi + \psi](\gamma) = \varphi(\gamma) + \psi(\gamma) \pmod{2}$ and $0(\gamma) = 0 \ (\gamma \in \Delta)$. For every $\alpha \in \Delta$, $\varphi \to \varphi^{\alpha}$: $\varphi^{\alpha}(\gamma) = \varphi(\gamma + \alpha)$ is an automorphism of Δ' . Defining the product $(\varphi, \alpha)(\psi, \beta) = (\varphi^{\beta} + \psi, \alpha + \beta)$, we have a locally finite countably infinite group \mathfrak{G} of all elements $(\boldsymbol{\varphi}, \boldsymbol{\alpha}) \in (\Delta', \Delta)$ with the identity (0, 0) and $(\varphi, \alpha)^{-1} = (\varphi^{\alpha}, \alpha)$. Let **H** be the Hilbert space $l_2(\emptyset)$, and for each $(\varphi, \alpha) \in \emptyset$ let $V_{(\varphi,\alpha)}$ be the unitary operator on **H** defined $[V_{(\varphi,\alpha)}f]((\psi,\beta)) = f((\psi,\beta)(\varphi,\alpha)).$ Then the ring of operators M generated by all $V_{(\varphi,\alpha)}$ is an approximately finite factor. Next, define an operator $T_g(T_g')$ on $\Delta(\Delta')$: $[T_g\alpha](g') = \alpha(gg')$ for all $\alpha \in \Delta$, $g, g' \in G$; $[T_g'\varphi](\gamma) = \varphi(Tg^{-1}\gamma)$ for all $\varphi \in G$, and $g \to T_g(T_g')$ is an anti-isomorphism of G into a group of automorphisms of Δ (Δ '). For each $g \in G$, we define a unitary operator U_g in **H** by $[U_g f]((\varphi, \alpha)) = f((T_g \varphi, T_g \alpha))$, and $g \to U_g$ is a faithful unitary representation of G and for each $g \in G(\neq e)$ $V_{(\varphi,\alpha)} \to U_g^{-1}V_{(\varphi,\alpha)}U_g = V_{(T_g'\varphi,T_g\alpha)}$ defines an outer automorphism of **M**.

The purpose of this paper is to discuss some algebraic properties of this representation.

2. From here to the end of this paper, G is a countably infinite group and \mathbf{M} is an approximately finite factor in $\mathbf{H} = l_2(\mathfrak{G})$ associated with G as in § 1. By the fixed algebra of H, a subgroup of G, we mean the subalgebra of \mathbf{M} composed of all elements of \mathbf{M} which are simultaneously fixed under all members of H (see [1]). In this section we shall determine the fixed algebras of some

¹⁾ An automorphism of a ring means a *-automorphism.

normal subgroups of G. We denote by φ_0 the element in Δ' which takes value 1 only at $0 \in \Delta$. Then it is easily seen that $T_{\sigma}' \varphi_0 = \varphi_0$ for all $g \in G$.

LEMMA 1. Let H be an infinite normal subgroup of G and $\alpha_1, \ldots, \alpha_n$ distinct non-zero elements in Δ . Then there exist an $h \in H$ and an i_0 $(1 \le i_0 \le n)$ such that $\alpha_1, \ldots, \alpha_n$, $T_h\alpha_{i_0}$ are all distinct.

PROOF. By hypothesis, $G = H \times K$ for a group K. The set $F = \bigcup_{i=1}^n \{(h,k) \in G: \alpha_i((h,k)) = 1\}$ is a finite set. Let $F_1 = \{h \in H: (h,k) \in F \text{ for a } k \in K\}$. We can choose a $g_0 \in H - F_1$. Picking up an $(h_0, k_0) \in F$ and $i_0(1 \le i_0 \le n)$ such as $\alpha_{i_0}((h_0, k_0)) = 1$, we get $T_{h_0 o_0^{-1}} \alpha_{i_0} \neq \alpha_j$ for all $j = 1, \ldots, n$ because $\alpha_j((g_0, k_0)) = 0$ for all $j = 1, \ldots, n$ and $[T_{h_0 o_0^{-1}} \alpha_{i_0}]((g_0, k_0)) = \alpha_{i_0}((h_0, k_0)) = 1$. Hence $\alpha_1, \ldots, \alpha_n, T_{h_0 o_0^{-1}} \alpha_{i_0}$ are distinct each other.

LEMMA 2. Under the same condition as in Lemma 1, let $\varphi_1, \ldots, \varphi_n$ be distinct elements in Δ' each of which is neither 0 nor φ_0 . Then there exist an $h \in H$ and $i_0(1 \le i_0 \le n)$ such that $\varphi_1, \ldots, \varphi_n, T_h' \varphi_{i_0}$ are distinct each other.

PROOF. As in the proof of Lemma 1, let $G = H \times K$. The set $\Delta_0 = \bigcup_{j=1}^n \{\alpha \in \Delta : \varphi_j(\alpha) = 1\}$ is finite, and so the set $F = \bigcup_{\alpha \in \Delta_0} \{(h, k) \in G : \alpha((h, k))\}$ is also finite and non-empty. Let $F_1 = \{h \in H : (h, k) \in F \text{ for a } k \in K\}$. We can choose a $g_0 \in H - F_1$. Pick up an $i_0(1 \leq i_0 \leq n)$, $\alpha_0 \in \Delta_0$ and $(h_0, k_0) \in F$ such as $\varphi_{i_0}(\alpha_0) = 1$, $\alpha_0((h_0, k_0)) = 1$. As $[T_{h_0g_0^{-1}}\alpha_0] ((g_0, k_0)) = \alpha_0((h_0, k_0)) = 1$, $T_{h_0g_0^{-1}}\alpha_0$ does not belong to Δ_0 . Thus $\varphi_j(T_{h_0g_0^{-1}}\alpha_0) = 0$ for every $j = 1, \ldots, n$, and so $T_{h_0g_0^{-1}}^{-1}\varphi_{i_0} \neq \varphi_j$ for all $j = 1, \ldots, n$ since $[T_{h_0g_0^{-1}}^{-1}\varphi_{i_0}](T_{h_0g_0^{-1}}\alpha_0) = \varphi_{i_0}(\alpha_0) = 1$. Therefore $\varphi_1, \ldots, \varphi_n$ and $T_{h_0g_0^{-1}}^{-1}\varphi_{i_0}$ are distinct each other.

THEOREM 1. The fixed algebra in M of any infinite normal subgroup H of G is the set of all elements of the form $\lambda I + \mu V_{(\varphi_0,0)}(\lambda, \mu \text{ are scalars})$.

PROOF. It is obvious that all $\lambda I + \mu V_{(\varphi_0 \ 0)}$ belong to the fixed algebra of H as $T_h \varphi_0 = \varphi_0$ for all $h \in H$. Let A be an element in \mathbf{M} which is fixed under all $g \in H$. According to Lemma 5.3.6 in [2], there exists a unique family of scalars $\{\lambda_{(\varphi,\alpha)}\}_{(\varphi,\alpha)\in S}$ such that

(1)
$$A = \sum_{(\varphi, \alpha) \in \mathcal{G}} \lambda_{(\varphi, \alpha)} V_{(\varphi, \alpha)}$$

where \sum is taken in the sense of metric convergence in M. Thus we have

$$(2) \quad \sum_{(\varphi,\alpha)\in\mathfrak{C}} \lambda_{(\varphi,\alpha)} V_{(\varphi,\alpha)} = \sum_{(\varphi,\alpha)\in\mathfrak{C}} \lambda_{(\varphi,\alpha)} V_{(T'_{\alpha}\varphi,T_{\alpha}\alpha)} \qquad \text{for all } g \in H.$$

By the uniqueness of the expression (1) we obtain

(3)
$$\lambda_{(\varphi,\alpha)} = \lambda_{(T'_{\alpha}\varphi,T_{\alpha}\alpha)}$$
 for all $(\varphi,\alpha) \in \emptyset$ and $g \in H$.

Now suppose that there exists a $(\psi, \beta) \in \mathfrak{G}$ which is neither (0, 0) nor $(\varphi_0, 0)$ such as $\lambda_{(\psi,\beta)} \neq 0$. If $\beta \neq 0$, by Lemma 1 we can find an infinite sequence $\{g_n\}$ in H such that all $T_{g_n}\beta$ are distinct elements in Δ . If $\beta = 0$, there exists an infinite sequence $\{h_n\}$ in H such that $T'_{h_n}\psi$ are all distinct elements in Δ' by Lemma 2. Hence there is an infinite sequence $\{k_n\}$ in H and $(T'_{k_n}\psi, T_{k_n}\beta)$'s are all distinct elements in \mathfrak{G} . Thus, by (3) we get $\sum_{n=1}^{\infty} |\lambda(T'_{k_n}\psi, T_{k_n}\beta)|^2 = \infty$ which contradicts $\sum_{(\varphi,\alpha)\in\mathfrak{G}} |\lambda_{(\varphi,\alpha)}|^2 < \infty$. Therefore $\lambda_{(\psi,\beta)} = 0$ except for (0,0), $(\varphi_0,0)$ and $A = \lambda_{(0,0)}I + \lambda_{(\varphi_0,0)}V_{(\varphi_0,0)}$

Next we shall determine the fixed algebra in \mathbf{M} of a finite normal subgroup of G.

LEMMA 3. Let H be a finite normal subgroup of G. Then there exist infinitely many distinct $\alpha \in \Delta$ (resp. $\varphi \in \Delta$) such that $T_{\sigma}\alpha = \alpha$ (resp. $T_{\sigma}\varphi = \varphi$) for all $g \in H$.

PROOF. By the assumption, $G = H \times K$ for an infinite group K. Picking up an infinite sequence of distinct elements $\{k_n\}$ in K, we define $\alpha_n \in \Delta$ for each n by $\alpha_n((h, k_n)) = 1$ for all $h \in H$, and 0 otherwise. $\{\alpha_n\}$ is an infinite sequence of distinct elements in Δ , and it is easily seen that $T_{\sigma}\alpha_n = \alpha_n$ for all $g \in H$ (n is arbitrary). Using these $\{\alpha_n\}$ we define $\varphi_n \in \Delta'$ for each n by $\varphi_n(\alpha) = 1$ if $\alpha = \alpha_n$, and 0 otherwise. Then the sequence $\{\varphi_n\}$ satisfies the requirement as $T_{\sigma}\alpha_n = \alpha_n$ for all $g \in H$ (n is arbitrary).

LEMMA 4. Let H be as in Lemma 3. Then for any finite set \Im in \Im , there exists a finite subgroup \Im_0 of \Im containing \Im such that $(T_g/\varphi, T_g\alpha) \in \Im_0$ for all $g \in H$ and $(\varphi, \alpha) \in \Im_0$.

PROOF. Since \mathfrak{G} is locally finite as shown in [4], \mathfrak{F} generates a finite subgroup \mathfrak{F}_1 of \mathfrak{G} . Then the set $\mathfrak{F}_2 = \{(T_{\mathfrak{g}}'\boldsymbol{\varphi}, T_{\mathfrak{g}}\boldsymbol{\alpha}) : (\boldsymbol{\varphi}, \boldsymbol{\alpha}) \in \mathfrak{F}_1, \ g \in H\}$ is a finite subset because of the finiteness of H, and so generates a finite subgroup \mathfrak{G}_0 of \mathfrak{G} again by the local finiteness of \mathfrak{G} . It is obvious that \mathfrak{G}_0 satisfies our requirement.

Successive application of Lemma 4 leads to the following lemma, which will be used in the next section and we omit the proof.

LEMMA 5. Let G_0 be a locally finite subgroup of a group G and $\{G_n\}$ a non-decreasing sequence of finite subgroups of G_0 such as $\bigcup_{n=1}^{\infty} G_n = G_0$. Then there exists an increasing sequence $\{\mathfrak{G}_n\}$ of finite subgroups of \mathfrak{G} with the following properties.

(i) For each n, $(T_g'\varphi, T_g\alpha) \in \mathfrak{G}_n$ if $(\varphi, \alpha) \in \mathfrak{G}_n$ and $g \in G_n$.

(ii)
$$\bigcup_{n=1}^{\infty} \mathfrak{G}_n = \mathfrak{G}$$
.

Then we have the following result.

THEOREM 2. The fixed algebra in M of any finite normal subgroup H of G is the approximately finite factor.

PROOF. Applying Lemma 5 to H and \mathfrak{G} , we can find an increasing sequence $\{\mathfrak{G}_n\}$ of finite subgroups of \mathfrak{G} such that \mathfrak{G} such that $\mathfrak{G} = \bigcup_{n=1}^{\infty} \mathfrak{G}_n$ and for each $g \in H$, $(T_g'\varphi, T_g\alpha) \in \mathfrak{G}_n$ if $(\varphi, \alpha) \in \mathfrak{G}_n$. Then for every n, the subalgebra \mathbf{N}_n generated by all $A = \sum_{(\varphi, \alpha) \in \mathfrak{G}_n} \lambda_{(\varphi, \alpha)} V_{(\varphi, \alpha)}$ where for each $(\varphi, \alpha) \in \mathfrak{G}_n$, $\lambda_{(\varphi, \alpha)} = \lambda_{(r_g'\varphi, T_g\alpha)}$ for all $g \in H$, is of finite order in the sense of Definition 4.5.1 in [2], and each $A \in \mathbf{N}_n$ is fixed under all $g \in H$. An element $A = \sum_{(\varphi, \alpha) \in \mathfrak{G}} \lambda_{(\varphi, \alpha)} V_{(\varphi, \alpha)}$ in \mathbf{M} is in the fixed algebra \mathbf{N} of H if and only if $\lambda_{(\varphi, \alpha)} = \lambda_{(r_g'\varphi, T_g\alpha)}$ for all $g \in H$ ((φ, α) is arbitrary). Hence, as $\mathfrak{G} = \bigcup_{n=1}^{\infty} \mathfrak{G}_n$, the fixed algebra \mathbf{N} of H is generated by the increasing sequence $\{\mathbf{N}_n\}$. Since \mathfrak{G} is infinite, \mathbf{N} is not of finite order and hence it is sufficient to show that \mathbf{N} is a factor, by Definition 4.6.1 in [2]. Let $A = \sum_{(\varphi, \alpha) \in \mathfrak{G}} \lambda_{(\varphi, \alpha)} V_{(\varphi, \alpha)}$ be an element in \mathbf{N} which commutes with all elements in \mathbf{N} . If $(T_g'\Psi, T_g\beta) = (\Psi, \beta)$ for all $g \in H$, $AV_{(\Psi,\beta)} = V_{(\Psi,\beta)}A$. Hence for such (Ψ, β) we have

$$\sum_{(\varphi,\alpha)\in \S} \lambda_{(\varphi,\alpha)} V_{(\varphi,\alpha)(\psi,\beta)} = \sum_{(\varphi,\alpha)\in \S} \lambda_{(\varphi,\alpha)} V_{(\psi,\beta)(\varphi,\alpha)}$$

snd so

$$\lambda_{(\varphi,\alpha)} = \lambda_{(\psi,\beta)^{-1}(\varphi,\alpha)(\psi,\beta)}$$
 for all $(\varphi,\alpha) \in \mathfrak{G}$

We have to show that $\lambda_{(\varphi,\alpha)} = 0$ for all $(\varphi,\alpha) \neq (0,0)$. To do this we assume that there exists a $(\varphi,\alpha) \neq (0,0)$ such as $\lambda_{(\varphi,\alpha)} \neq 0$.

Case 1. $\varphi \neq 0$. By Lemma 3 we can find an infinite sequence of distinct elements $\{\alpha_n\}$ in Δ such that $T_q\alpha_n = \alpha_n$ for all $g \in H$. Then, as easily seen,

 $\{\varphi^{\alpha_n}\}$ contains an infinitely many distinct elements of $\Delta'($ cf. footnote 2) in [4]). On the other hand, $(0, \beta)^{-1}(\varphi, \alpha)$ $(0, \beta) = (\varphi^{\beta}, \alpha)$. Hence $\sum_{(\psi, \beta) \in \emptyset} |\lambda_{(\psi, \beta)}|^2 = \infty$ which is a contradiction. Thus $\lambda_{(\varphi, \alpha)} = 0$ in this case.

Case 2. $\varphi = 0$: Let $\{\varphi_n\}$ be a sequence of infinitely many distinct elements of Δ' constructed in the proof of Lemma 3. Then $\{\varphi_n^{\alpha} + \varphi_n\}$ contains an infinitely many distinct elements (see footnote 3) in [4]). As $(\psi, 0)^{-1}(0, \alpha)$ $(\psi, 0) = (\psi^{\alpha} + \psi, 0)$ and $T_g'\varphi_n = \varphi_n$ for all $g \in H$, we have $\sum_{(\psi, \beta) \in \emptyset} |\lambda_{(\psi, \beta)}|^2 = \infty$, which is a contradiction, and $\lambda_{(\varphi, \alpha)} = 0$.

Therefore $A = \lambda_{(0,0)}V_{(0,0)}$ and **N** is the approximately finite factor.

Following [1], we say that an automorphism of a ring of operators is *freely acting* if any non-zero projection contains a non-zero projection which is not fixed under the automorphism. This concept can be seen as a relaxation of the notion of ergodicity, where an automorphism of a ring of operators is *ergodic* if it does not leave any non-trivial projection fixed. It is obvious that an ergodic automorphism is freely acting. As an immediate consequence of Theorem 2 in [3] we have the following fact.

LEMMA 6. Every outer automorphism of a finite factor is freely acting.²⁾ Hence from Theorem 1 (or Theorem 2) we get

COROLLARY. There is an automorphism of the approximately finite factor which is freely acting and not ergodic.

In fact, in Theorem 1, any $g \in G$, is freely acting by Lemma 6, and the projection $\frac{1}{2} 1 + \frac{1}{2} V_{(\varphi_0,0)}$ is left invariant under g. Hence g is not ergodic.

3. In this section we shall specialize the group G and pursue the crossed product of \mathbf{M} by G.

THEOREM 3. If G is a locally finite group, the crossed product of the approximately finite factor \mathbf{M} by G is also approximately finite.

PROOF. By definition, the crossed product (\mathbf{M}, G) is generated by operators $\widetilde{V}_{(\varphi,\alpha)}$ $((\varphi,\alpha)\in \mathfrak{G})$ and $\widetilde{U}_{\varrho}(g\in G)$ on the Hilbert space $\mathbf{H}\otimes l_2(G)$ defined by

$$\widetilde{V}_{(arphi,oldsymbol{lpha})}\Bigl(\sum_{h \in G} x_h igotimes oldsymbol{arepsilon}_h\Bigr) = \sum_{h \in G} V_{(arphi,oldsymbol{lpha})} x_h igotimes oldsymbol{arepsilon}_h,$$

²⁾ This fact has been informed the author by Mr. N. Suzuki.

$$\widetilde{U}_g \Big(\sum_{h \in G} x_h \bigotimes \mathcal{E}_h \Big) = \sum_{h \in G} U_g x_h \bigotimes \mathcal{E}_{gh}.$$

By Lemma 5, there exist the increasing sequences $\{\mathfrak{G}_n\}$ and $\{G_n\}$ of finite subgroups of \mathfrak{G} and G respectively which satisfy (i) and (ii). Denote by \mathbf{P}_n the ring of operators generated by $\widetilde{V}_{(\varphi,\alpha)}$, \widetilde{U}_q with $(\varphi,\alpha)\in\mathfrak{G}_n$, $g\in G_n$ for each n. It is obvious that $\mathbf{P}_1\subseteq \mathbf{P}_2\subseteq \ldots\subseteq \mathbf{P}_n\subseteq \cdots$, and every \mathbf{P}_n is of finite order by the property (i). Since $\bigcup_{n=1}^{\infty}\mathfrak{G}_n=\mathfrak{G}$ and $\bigcup_{n=1}^{\infty}G_n=G$, (\mathbf{M},G) is generated by $\{\mathbf{P}_n\}$. Hence the crossed product (\mathbf{M},G) is the approximately finite factor, since the crossed product (\mathbf{M},G) is a factor of type \mathbf{H}_1 by Theorem 4 in [5].

REFERENCES

- [1] H. A. DYE, On groups of measure preserving transformations I, Amer. Journ. Math., 81 (1959), 119-159.
- [2] F. J. MURRAY AND J. VON NEUMANN, On rings of operators IV, Ann. of Math., 44 (1943), 716-808.
- [3] N. SUZUKI, On automorphisms of W*-algebras leaving the center elementwise invariant, Tôhoku Math. Journ., 7 (1955), 186-191.
- [4] _____, A linear representation of a countably infinite group, Proc. Japan Acad., 34 (1958), 585-579.
- [5] _____, Crossed products of rings of operators, Tôhoku Math. Journ., 11 (1959), 113-124.
- [6] _____, Certain types of automorphisms of a factor, Tôhoku Math. Journ., 11 (1959), 314-320. 12(1960),171-172.

MATHEMATICAL INSTITUTE, TÔHOKU UNIVERSITY.