FIBERINGS OF ENVELOPING SPACES II

SZE-TSEN HuV

(Received October 25, 1961)

1. Introduction In a recent paper [5]”, the author investigated the
initial projaction from the m-th enveloping space E,(X) of a topological space
X into X and proved that, under some local conditions on X, the initial pro-
jection is a fibering.

The purpose of the present paper is to study the terminal projsction from
E.(X). It turns out that the terminal projsction is a fibering without assuming
the local conditions on X.

2. Residual Spaces and Enveloping Spaces. In the present section, we
will recall for the sake of convenience the notion of the residual spaces and
that of the enveloping spaces introduced in [3].

Let us first consider a given imbedding

i: X->W

of a topological space X into a topological space W. By identifying such point
x of X with its image i(x) in W, we may consider X as a subspace of W
and the map i as the inclusion map. Thus, we obtain a pair (W, X)of a space
W and a subspace X of W.

By a path in W, we mean a continuous map o : I — W of the closed unit
interval I = [0, 1] into W. The set of all paths in W together with the usual
compact-open topology forms a topological space P(W), called the space of
paths in W, Then, the enveloping space E(W,X) of X in W is defined to
be the subspace of the space P(W) which consists of all paths ¢ :I—> W such
that ¢ (¢) € X if and only if £ =0. In other words, a path ¢ € P(W) is in
E(W, X) if and only if it issues from X and never comes back to X again. If
X consists of a single point w, of W, then E(W,X) becomes the tangent
space T(W, w,) of the space W at the point w, as defined in [2].

Now, let X be an arbitrary topological space. Consider the m-th (topolog-
ical) power

w=X"

of the space X; in other words, W denotes the topological product X X ---x X
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of m copies of X. There is a natural imbedding
d: X—->W

defined by d(z) = (x,--,x) € W for every £ € X. This imbedding d is called
the diagonal imbedding of X into its m-th power X". By means of d, the
space X can be identified with a subspace d(X) of X™, namely, the diagonal

of W= X". Thus, we obtain a pair (W, X) of a space W and a subspace
X of W.

For each integer m > 1, let us denote by
R, (X)=W\X=X"\X
the set-theoretic complement of X in its m-th power W = X" and denote by
E.(X) = EW, X) = E(X", X)

the enveloping space of the pair (W, X). The topological spaces R,(X) and
E,(X) are called the m-th residual space and the m-th enveloping space of the
space X respectively.

For completeness, we also define the first residual space R,(X) and the
first enveloping space E\(X) of a space X by taking

R(X) = X,
E(X) = T(X),

where T(X) denotes the total tangent space of X defined in [ 2] as the sub-
space of the space P(X) of paths in X which consists of the totality of paths
o in X such that ¢ (¢) = ¢ (0) if and only if £=0. This space T(X) was
introduced by John Nash [ 6] in his proof of the topological invariance of the
Stiefel-Whitney classes for a differentiable manifold.

According to [3, p. 343], the isotopy types of the residual spaces R,(X) and the
enveloping spaces E.(X),m = 1,2,---, are isotopy invariants of the given space
X. Therefore, every isotopy invariant of R,(X) or E,(X) is an isotopy invariant
of X. In particular, every homotopy invariant of R,(X) or E,(X) is an isotopy
invariant of X. This introduces a huge family of algebraic isotopy invariants of
topological spaces.

3. The Initial Projection. ILet X be a given topological space and
consider the m-th enveloping space E,(X), m =1, of X. In a recent paper [5],
we studied the natural projection

Pn El(X)—> X

defined as follows. Let ¢ € E,(X). By the definition of E.(X), o is a path in
X™ with ¢ (0) € X. Then, p,, is defined by taking
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Pnla) = a(0)
for every o in E,(X).
Since o (0) is the initial point of the path &, the natural projection p, will
be called the initial projection from E,(X) into X hereafter.
The following two lemmas are established in [ 5 ].

LEMMA 3.1. If X is pathwise accessible, then the initial projection pn
maps E,(X) onto X for every m = 1.

LEMMA 3. 2. If X is locally homogeneous, then the initial projection p,
maps E,(X) onto an open subspace X, of X and E,(X) is a sliced fiber
space over X,, relative to p,, in the sense of [1,p.97].

Hence, E,(X) is a sliced fiber space over X relative to p, if X is both
pathwise accessible and locally homogeneous.

Let z, be an arbitrary point of X. The fiber over x,, i.e. the inverse
image p, %x,), is the subspace

F m(X: ‘TO)
of E,(X) which consists of all ¢ € E,(X) such that ¢(0) = x,. This subspace
F(X, z,) of E.(X) is called the fiber in E,(X) over the point x,.
In case m > 1, the fiber F, (X, z,) is the subspace of E,(X) which consists
of all paths ¢: I->X" such that
[ (O) = x(!,
a(t) € R(X), (0<=<1).
For the case m = 1, we have E,(X)= T(X) and hence the fiber F\(X, x)
becomes the tangent space T(X, x,) of the space X at the point x, as defined
in[2]

If the space X is completely regular at the point xp, then the homotopy
type of F,(X, z;) is a local invariant of the space X at the point x,. Precisely,
the following theorem is proved in [5, § 7].

THEOREM 3. 3. If X is completely regular at the point x, and if U is
an arbitrary open neighborhood of x, in X, then the inclusion map

im: Fm(U> xo) c Fm(X: xO)
is a homotopy equivalence.
If x, is a conic point of X and U a conic neighborhood of =z, in X as

defined in [5, §8]. Then, the m-th residual space R.(U) of the closure U of
U in X can be considered as a subspace of F,(X, x;) by a natural imbedding

' m: R > Fo(X, x)
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also defined in [5, § 8]. The following theorem is proved in [5, § 8].

THEOREM 3.4. If U is a conic neighborhood of a point x, in X, then
the wmbedding
n: RiU) = Fu(X, z0)

is a homotopy equivalence.
As an immediate consequence of (3.4), we have the following corollary.

COROLLARY 3.5. If a topological space X is locally Euclidean and
n-dimensional at a point x, € X, then we have for m > 1.

HQ(Fm(X, xo)) =~ Hq(S('”‘”"'*l )’
o Fu(X, x,)) = m (ST 1"71),

where S', r = (m — 1)n — 1, denotes the unit r-sphere in the (r + 1)-dimsenional
Euclidean space R ‘

4. The Terminal Projection. The main objsctive of the present paper
is the study of another natural projection of the m-th enveloping space E,(X)
of a given topological space X, namely, the terminal projection

qn : Ex(X) > R(X)
which is defined for every m = 1 by setting
‘Im(ﬁ') = 0‘(1) S Rm(X), S Em(X)-

Since E,(X) is a subspace of the space P(X™) of paths in X™ with the usual
compact-open topology, ¢, is obviously continuous.

The restriction of ¢, on the subspace F,(X, z,) of E,(X) defined in the
preceding section for an arbitrarily given point x, of X will be denoted by

Tm o Fm(Xs -’50) - Rm(X)

and called the terminal projection from F,(X, x,) into R.(X).

The topological space X is said to be pathwise accessible at the point x,
if there exists a path €: I > X such that £(0) = x, and &) ==z, for every
t > 0. If this is the case, the space F,(X, z,) is non-empty because it contains
the path ¢:I—> X" defined by

O'(t) = (E (t)s Zo, “'axﬂ)9 (t € I)-

The point x, of a topological space X is said to be a pathwise cut-point
of the space X if the residual space X\ {z,} obtained by deleting the point x,
from X fails to be pathwise connected. The pathwise cut-point x, of X is said
to be regular if the space X\{z,} has exactly two path-components; other-
wise, it is said to be singular.
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PROPOSITION 4.1. If the topological space X is pathwise accessible at
the point x, which is not a pathwise cut-point of X, then the terminal
projection

r . T(X, xo) —> X
maps the space T(X, z,) onto the residual space X\ {z}.

PROOF. Since X is pathwise accessible at the point x,, it follows that the
tangent space
Fl(Xa xo) = T(X,xn)
at x, is non-empty and hence there is a path &:I— X such that §0) = x,
and &(¢) 5=z, for every :>0 in I. Let z; = £(1). Then z, € X\ {=z}.
Consider an arbitrary point = of the residual space X\{z,}. Since =z, is

not a pathwise cut-point of X, the residual space X\ {x,} is pathwise connected.
Hence, there exists a path

a:l— X\{x}
such that @(0) = x, and a (1) = x. Define a path o:I— X by setting
£ (20), (0=¢= %)

o-(t) =

Then, obviously we have ¢ € T(X, z,) and (o) = a(1) = x.
Since it is clear that

rl(T) = T(l) :# IO,
it follows that 7, maps T(X, x,) onto X\ {x,}. This completes the proof of

(4. 1).
The following corollary is a direct consequence of (4. 1).

COROLLARY 4. 2. If the topological space X is pathwise accessible at
two distinct points x, and x, which are not pathwise cut-points of X, then
the terminal projection

g T(X)—~> X

maps the tangent space T(X) of X onto X.
PROPOSITION 4. 3. If m > 1, then the terminal projection

rm . Fm(X: xﬂ) - Rm(X)
maps F (X, z,) onto R,(X) provided that the following two conditions are
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satisfied :
(i) The space X is pathwise accessible at the point zx,.
(ii) The m-th residual space R,(X) of the space X is pathwise connected.

PROOF. Since X is pathwise accessible at the point z,, it follows that the
space F,(X, z,) is non-empty. Let & bz an arbitrary point of F,(X, x,). Then,
€ is a path in X™ such that £(0) = z, and £(¢) € R,(X) for every ¢ > 0 in I
Let «u = £E(1) € R (X).

Let v bz an arbitrary point of R,(X). Since R,(X) is pathwise connected,
there exists an arc @ in R, (X) such that @(0) =« and a(l) = v. Define a
path o:I— X™ by setting

£
o)

sf(Zt), <O§t
a2t — 1), (é— TE!

1A

a'(t) = ' ~

Then, obviously we have o € F, (X, x,) and
rule) = o(1) = v.

Hence, 7,, maps F,(X, x,) onto R, (X). This completes the proof of (4.3).
The following corollary is an immediate consequence of (4. 3).

COROLLARY 4.4. If m > 1, then the terminal projection
qn + Ex(X) > R(X)

maps E,(X) onto R,(X) provided that the following two conditions are
satisfied :

(i) The space X is pathwise accessible at least one point of X.

(ii) The m-th residual space R,(X) of the space X is pathwise connected.

5. Pathwise Connectedness of R, (X). In (4.3) and (4.4) of the prece-
ding section, we have used the pathwise connectedness of the m-th residual space
R,(X), m > 1, for the terminal projsction to be subjzctive. In the present
section, we will give a few sufficient conditions for R,(X) to be pathwise con-
nected.

For convenience, we will introduce, for any two points z and v in R, (X),
the notation u ~ v to stand for the fact that # and v can be joined by a path
in R (X). :

First of all, let us consider the case m = 2.

THEOREM 5.1. If X is a pathwise connected Fréchet space (= T\-space)

which has no regular pathwise cut-point, then the second residual space R,(X)
of X is pathwise connected.
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PROOF. Let (a,b) and (c,d) be any two points of Ry(X). Then a==5b and
c+4d. We are going to prove

(a,8) ~(c, ).

For this purpose, let us first consider the special case where a = c. Since
X has no regular pathwise cut-point, it follows that either the point @ is not a
pathwise cut-point or the point a is a singular pathwise cut-point of X.

If the point @ is not a pathwise cut-point of X, then the space X\f{a} is
pathwise connected and hence there exists a path

a:l— X\{a}
such that @ (0) = & and a(1) = d. Define a path
E - Rz(X)

by taking & (¢) = (a, a(t)) for every t in I. Obviously, £ is a path which joins
(a,b) to (a,d).

On the other hand, if @ is a singular pathwise cut-point of X, then X\ {a}
has at least three path-components.

If the points & and d are in one and the same path-component of X\ {a},
then there exists a path @:I— X\{a} with @(0) = b and a (1) = d. As above,
this gives rise to a path &:I— Ry(X) joining (a, b) to (a, d).

If the points & and d are in different path-components U and V of the
space X\ {a}, then there exists at least one path-component W which contains
neither & nor d. Pick a point ¢ in W. Since X is pathwise connected, there
exists a path

B:I->X

with 8(0) = a and B8(1) = &. Since X is a Fréchet space, the point a forms a
closed subset {a} of X. Hence, it follows from the continuity of 8 that the
inverse image 87 () is a closed subset of the unit interval I Let

= sup {8 (a)}.
Then B(A\) = a and B(t) € U for every t > A\ in I Define a path
f:I-X
by taking f(¢) = B[(1 — A)t + A] for every ¢ in I. Then we have
f0)=a, f1)=b, ADcUU {a}.
Similarly, there exist paths
g h:I—>X

satisfying the conditions :
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90)=a, g()=d, gDV U fa};
h0) =a, hQQ)=-e hI)< W U {a}.
Define a path 7:I— R,(X) by taking

(h(42), B), (lf 0<t< i-)
o (e, A2 — 42)), (it —%— <ts<-1)

(e, gt — 2)), (if 5 Sts —2—)

(h(4 — 48), d), (if % <:1=<1 )

Then 7 is a path which joins (a, b) to (a, d). Hence, (a, ) ~ (a, d). This proves
the special case that a = c.

Similarly, one can establish the special case that b = d.

Now, let us consider the general case where a==c¢ and b=d.

If a3=d, then it follows from the special cases proved above that

(a,b) ~(a,d) ~(c,d).
This implies (a, &) ~ (¢, d) and proves the case a == d. Similarly, one can prove
the case b==c.
It remains to prove that every point (a,d) of Ry(X) can be joined to (b, a)
by a path in Ry(X). In fact, since X is a pathwise connected Fréchet space, it
must consist of more than two points: There exists a point ¢ of X witha=+e

and &= e. Then, it follows from the cases which have already been proved
that

(a, b) ~ (e, b) ~ (b,a).

Hence (a,b) ~ (b, @). This completes the proof of (5. 1).

That the conditions in (5. 1) are essential can be observed from the follow-
ing counter examples. The second residual space Ry(X) of X consists of exactly
two path-components if X is the real line R, the closed unit interval I = [0, 1],
or the space {a,b} of two points topologized by either the discrete topology or
the topology composed of three open sets: [J, {a}, and {a,b}. With the
exception of the discrete {a, b}, these spaces are pathwise connected.

Let Y denote the star of order 3, that is to say, Y is a simplicial complex
which consists of four vertices v, v, Vs, Vs together with three 1-simplices
Ty V1, Uy Vs, and vyvs. The vertex v, is called the center of the star Y.

THEOREM 5.2. If X is a pathwise connected Hausdorff space into which
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the star Y of order 3 can be imbedded, then the second residual space Ry(X)
is pathwise connected.

PROOF. Since Y is compact and can be imbedded into the Hausdorff space
X, we may consider Y as a closed subspace of X.

As in the proof of (5.1), it suffices to prove that any two points of the
second residual space R,(X) of the form (a,b) and (a,d) can be joined by a
path in Ry(X), i.e.

(1) (a,8) ~(a, d).

If a is not a regular pathwise cut-point of X, then one can prove (i)
exactly as in the proof of (5.1).

If @ is a regular pathwise cut-point of X, then the space X\ {a} has exactly
two path-components, say U and V. If the points & and d are contained in
one and the same path-component of X\{a}, then (i) follows as in the proof
of (5.1).

It remains to prove the case that the points & and d are in different path-
components of X\ {a}, say

be U, deV.

Now, consider the center v, of the star Y in X.

Assume that v, = a. Since a==56 and a=3=d, we may choose the star so
small that 5 & Y and d & Y. Since X is pathwise connected, thore exists a
path

E:I1-X
with €(0) = a and &€(1) = b. Since Y is closed in X, it follows from the con-
tinuity of € that the inverse image £ %(Y) is a closed set of the unit interval
I=1[0,1] Let
A = sup{&~* (Y)].
Then 0 <A<1, EQN) €Y and () &Y for every ¢ > A in I Replacing the

part €|[0, A] of the path & by the line-segment joining v, to €(A) in Y, we
obtain a path

fiI->X
such that f(0) =@, K1) =5, and AI) N Y is either the point @ or a segment
of one of the three 1-simplices vyv;, vyvs, Vovs. Similarly, there exists a path
g:I->Y
such that ¢(0) = @, g(1) = d, and g(I) N Y is either the point @ or a segment
of one of the three 1-simplices vov;, vyvs, Vovs. -Since b € U and d € V, it
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follows that

AD N g(I) = {a}.

Hence, there is an i = 1,2 or 3 such that the 1-simplex v,v; meets AI) U g(I)
only at the point v, = a. Let e = v, and hA:I—> X denote the path defined by
the line-segment vyv;,. Then the path #%:I— R,(X) defined as in the proof of
(5.1) joins (a, b) to (a,d). This proves the case v, = a.

Next, assume that v, 3= a. Then v, is in one of the two path-components,
say vy € V. We can choose the star Y so small that

YcV.
As in the proof of (5.1), one can establish the existence of a path
f:I-X
such that f(0) = a, f(1) = v, and fH) <V U {a}. The inverse image f(Y)
is a closed set of the unit interval I. Let
p=inf {f¥(Y)}.

Then 0 < u<1, f(w) €Y and f(#) &Y for every t < w in I. Replacing the
part f|[u, 1] of the path f by the line-segment joining f{u) to v, in Y, we obtain
a path

g:I1->X
such that g(0) =a, g(1) =, g) SV U {a}, and g() N Y is either the

point v, or a segment of a 1-simplex vov; of Y. Let j==1i, then

gD N (vovy) = {wo}.

The existence of the path ¢ implies that

(ii) (@, b) ~ (v,, ).
By the cases which have already been proved, we have
(iii) (0, &) ~ (vo, vy).
Again, the existence of the path ¢ implies that
(iv) (0o, v;) ~ (@, vy)-
Finally, since v; and d are in the same path-component V of X\{a}, we have
(V ) (a’ v}) -~ (d, d)

Since the relation ~is transitive, (ii)— (v ) imply (i). This completes the
proof of (5.2).
Next, let us consider the case m = 3.
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THEOEM 5. 3. If a topological space X is pathwise connected, then so is
the m-th residual space R,(X) for every m = 3.
PROOF. Consider any two points
a= (ab'"; am), b= (bl,""bm)

of R.(X). We are going to prove a ~ b.
Since @ is in R,(X), there exists an integer j with 1 < j < m and a, ¥ a;.
If j > 2, then the pathwise connectedness of X implies a ~ &  where a’ = (ai,

-+, @n) is defined by

a;, Gf i4=2),
aj, (lf 1= 2).

ai =

Since a; == a;, we may assume without loss of generality that
‘ a, + as
Similarly, we may assume that
b, = b,.
Since a, == a,, the pathwise connectedness of X implies
a~c
where ¢ = (¢, *,cn) is defined by

. _{a;, Gf i==3),
e, Gfi=23)
Then we have c; == c;. This and the pathwise connectedness of X imply
c~d
where d = (d,,"-*,d,) is defined by
d ={b1, Gf 2 =1),
\Ciy (f i3=1).

Since d is in R,(X), there is an integer j with 1 < j <m and d, 3=d.
If j =2, then d ~d where d’ = (di, -, d,) is defined by

di: : (if 1=i= 3)’

d; (if i = 3).

Heqce, we may assume j > 2. This and the pathwise connectedness of X imply
g . . o

where e = (e,,,e,) is defined by

a-|



FIBERINGS OF ENVELOPING SPACES II 115

_(ds Gf 7= 2),
b,, Gf i = 2).

€

One observes that e; = b, and e, = b,. Since b, ==b,, the pathwise con-
nectedness of X implies ’

e~b.

Thus we obtain @ ~ ¢~ d ~ e~ b. This completes the proof of (5.3).
The pathwise connectedness of the given space X in the theorems (5.1)—
(5. 3) is necessaty. In fact, we have the following proposition.

PROPOSITION 5. 4. If R, (X) is non-empty and pathwise connected for
some m = 2, then the given space X is pathwise connected.

PROOF. Since m = 2 and R,(X) is non-empty, it follows that X consists
of more than one point. Since R, (X) is a subspace of the topological power
X™, the projection of X™ onto its first coordinate space X defines a continuous

map

R, (X)—> X

Let x be an arbitrary point of X. Since X consists of more than one point,

there exists a point y of X with x=9=y. Consider the point u = (ui, -, #,) of
X™ with ‘

. (f i = 1),
u =
F y, Gf i > 1)

Since x4y, u is in Ry(X). Since m(u) = x, it follows that = maps R, (X)
onto X. As a continuous image of a pathwise connected space R,.(X), the given
space X must be pathwise connected. This completes the proof of (5.4).

6. The Fibering Theorem. First, let us recall the path lifting property
(abbreviated PLP) as follows.

Roughly speaking, a map p: E— B is said to have the PLP if, for each
e € E and each path f:I— B with f(0) = p(e), there exists a path g: I — E
such ¢g(0) = e, pog = f, and that ¢ depends continuously on e and f. For a
precise definition, let P(B) and P(E) denote the spaces of paths in B and E

respectively. Let Z denote the subspace of the product space E X P(B)
defined by

Z = {(e,f) € E x P(B)| ple) = f(0)}.
Define a map 7 : P(E) > Z by taking
m(g) = (9(0), p°9)
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for each g:I— E in P(E). Then p: E— B is said to have the PLP if there

exists a map
A:Z—> P(E)

such that #roA is the identity map on Z.

It is well-known that, if a map p: E — B has the PLP, then E is a fiber
space over B relative to p,[1,p. 831

The main objzctive of the present section is to prove that the terminal
projections

n : En(X) = R(X)
Tm: Fm(‘X; xﬂ) - Rm(X)

have the PLP for every m = 1.
‘For simplicity of notation, let

B=R,(X), E=E(X), F=F/X x)

Further, let
Z = {(e,f) € E x P(B)|g.(e) = f(0)},
W = {(e,f) € F x P(B)|ru(e) = AO)}.

Since F C E and 7, = q,|F, it follows that W C Z.
Since F C E, we have P(F) < P(E). Let

o : (P(E), P(F))~ (Z, W)
denote the map defined by
7(g) = (9(0), gn°g)
for each g:I— E in P(E).
LEMMA 6.1. There exists a map
A:(Z, W) - (P(E), P(F))

such that the composition mo\ is the identity map on the pair (Z, W).

PROOF. Let M denote the topological product [%, 1} X I of the closed

intervals[%, l]and I =1[0,1]. Consider the subspace

L=<%XI> u([% 1]><0.>u(1 % I)

of M. QObviously, L is a retract of M; let
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p:M~— L
be a fixed retraction of M onto L.
For the construction of A, consider an arbitrary point 2 = (e, f) of Z. Then
e:I1->X" f:I-R,(X)

are points of E = E (X) and P(B)= P(R,(X)) satisfying e(1) = f0).
Define a map €:L — R, (X) by taking

() = beed)

£Gs,0) = e(s), (iésgl,t=0),
2
F@, s=1,¢tel.
By means of this map € and the retraction p, we define a map
g: 11— E(X)

by taking ¢(z), for each ¢ € I, to be the path ¢(¢):I— X™ given by

. 1
< s << =
e (s), (lfo_ s < 2),

).
Since [g (#)](s) € X if and only if s =0, it verifies that ¢ (t) € E,(X).

The continuity of g follows as usual, [1, p. 75].

It follows from the compact-open topology the assignment z —> g defines
a map

g @](s) =

IA

E[p(s, )], (if —;— <s

A:Z— P(E).

Since [¢(£)](0) = &(0) for every ¢ € I, it follows that A maps W into P(F). It
remains to verify that wo\ is the identity map on Z. For this purpose, we
have

(mor) (2) = 7 [A ()] = 7 (g) = (g (0), guog).
According to the definition of ¢(¢), we have:

[g (0)](s) = els) (s €Iy

[gnegl () = [g OI(1) = f(0), ' ¢teD.

Hence (woA) (2) = (e, f) = 2. This completes the proof of (6. 1).
As an immediate consequence of (6. 1), we have the following theorem.
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THEOREM 6. 2. The terminal projections
gn : Ex(X) » Ru(X)
o s Fo(X, 7o) = R(X)
have the PLP for every m =1, and hence these are fiberings.

7. The Fibers. Let u = (u,, ---,u,) be an arbitrarily given point in
R,(X). Consider the inverse images '

In(X, u) = gn™t () © E(X),
K. (X, o, u) = r,"* (u) C F,, (X, xy).
These subspaces will be -called the fibers over the point # in E,(X) and
F, (X, x,) respectively.
Let v = (vy, -+, v,,) be another point in R,(X) and
f:I- R (X)
be a path in R,(X) with f(0) =« and f(1) =v. Then, the path f induces a
map ; .
S 1 In(X, u) > J(X, v)
defined as follows. Let o € J,(X, ). Then ¢:I— X" is a path such that ¢(0)

€X, (1) =u, and o(t) € R(X) for every t >0 in I. The image fy (o) is
defined to be the path ‘ '

file): I—-> X"
given by
- (20), (I %)
[fx(@)]@) =
A2t —1), (if—;— <: gl).

Obviously, f; is an imbedding and sends K,(X, zy, «) into K,(X, z,, v).
THEOREM 7.1. The imbedding
St (Un(X, u), Kn(X, z0,0)) = (Jn(X, ), Kn(X, 20, )
is an isotopy equivalence, [4].

PROOF. Let g:I— R,(X) denote the reverse of f, that is to say, ¢ is the
path defined by ¢(¢) = f(1 — ¢) for every t€I. Then, ¢ induces an imbedding

95 (Jn(X. ), KX, 20, v)) = (JulX, u), KX, 20, ).
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Consider the composed imbedding
!7*°f* : (Jm(X; u), Km(X; Zo, u)) - (Jm(X, u), Km(X; Zo, u))-
For each o € J,(X, u), the path 7 = (gyofy) (¢) is defined by

| o(42), CIETE =)
(O = far — 1), (it 1=+ é—;—)
9@t —1) = f2 — 2t),(if % == 1).

Define an isotopy A, 0 <s < 1, of the pair (J.(X, u), K,.(X, x,, %)) into itself
by taking

: 1
o (4), (fo=e= T>
o = _ 1 1
[h @)1®) = { fiast — s), | (it st )
A2s — 25t), (it %g <1)
Then hi (@)= 7 = (gy°fx) (@). The path 6 = hy(o) is defined by
. 1°
c4n, (o=e=l)
o) =
“, (if 1 << 1).
4

Next, define an isotopy &, 0 < s <1, of the pair (J,, (X, u), K,, (X, x,, z)) into
itself by taking

o (22, fo<r< 2=35)
B () = =) ( )

u, (if 4—3s

Then ko(a) = ¢ and k(o) = 6 = hy(o). Hence, g.ofy is isotopic to the identity
imbedding &, on the pair (J.(X, ), K.(X, z,, u)).

Similarly, one can prove that the composed imbedding fyog, is isotopic
to the identity imbedding on' the pair (J(X, v), Ku(X, Zo,v)). This completes
the proof of (7.1).

The following corollary is a direct consequense of (7. 1).

IA

t_<_l)

'S



120 S. T. HU
COROLLARY 7.2. If R,(X) is pathwise connected, then the isotopy types
(and hence the homotopy types) of the spaces
J’m(X’ u), Km(X; xO; u)
are independent of the choice of the point u from R, (X).

As an example of the consequences which can be deduced from the fiberings
qn and 7, let us consider

Tm s Fm(X, xo) g Rm(X)

with assumptions that F,(X, x,) is non-empty and R,(X) is pathwise connected.
Pick a point # from R,(X) and let

F = Fm(Xy xo), B = Rm(X), K = Km(X: Zo, u)'

Pick a point w € K C F. Since F is a fiber space over B with K as the
fiber over the point #, we have the exact homotopy sequence

> Wq(F: w) - '”'q(B, u) - Ta-l(K: 'LU) - '”'q—l(F’ w) > e

In particular, if X is locally Euclidean and 7n-dimensional at the point z,,
then we have

7 F, w) = ("),

where S™ "' denotes the unit sphere in the (2 — 1) #n-dimensional Euclidean
space, according to [5,(8.4)]. Hence, we have the following theorem.

THEOREM 7.3. If X is locally Euclidean and n-dimensional at the point
Zo, then

'”'q(B’ u) = Wq—l(K, w)
for every ¢ < (m — 1)n — 1.
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