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1. Introduction In a recent paper [ 5 ]2 ), the author investigated the
initial projection from the m-th enveloping space Em(X) of a topological space
X into X and proved that, under some local conditions on X, the initial pro-
jection is a fibering.

The purpose of the present paper is to study the terminal projection from
Em(X). It turns out that the terminal projection is a fibering without assuming
the local conditions on X.

2. Residual Spaces and Enveloping Spaces. In the present section, we
will recall for the sake of convenience the notion of the residual spaces and
that of the enveloping spaces introduced in [ 3 ].

Let us first consider a given imbedding

i:X-*W

of a topological space X into a topological space W. By identifying such point
x of X with its image i(x) in W9 we may consider X as a subspace of W
and the map i as the inclusion map. Thus, we obtain a pair (W, X) of a space
W and a subspace X of W.

By a path in W, we mean a continuous map σ: I -> W of the closed unit
interval I = [0, l] into W. The set of all paths in W together with the usual
compact-open topology forms a topological space P(W\ called the space of
paths in W. Then, the enveloping space E(W,X) of X in W is defined to
be the subspace of the space P( W) which consists of all paths σ: I -> W such
that σ(t) € X if and only if t = 0. In other words, a path σ € P(W) is in
E(W, X) if and only if it issues from X and never comes back to X again. If
X consists of a single point w0 of W, then E(W, X) becomes the tangent
space T(W, zv0) of the space W at the point wQ as defined in [ 2 ] .

Now, let X be an arbitrary topological space. Consider the m-th (topolog-
ical) power

W = Xm

of the space X; in other words, W denotes the topological product X X X X

1) This study was supported by the Air Force Office of Scientific Research, U. S. A.
2) Numbers in square brackets refer to the bibliography at the end of the paper.
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of m copies of X. There is a natural imbedding

d X - » W

defined by d(x) = (x,--,x) € W for every x <Ξ X. This imbedding d is called

the diagonal imbedding of X into its ra-th power Xm. By means of <i, the

space X can be identified with a subspace <i(X) of Xm, namely, the diagonal

of W = Xw. Thus, we obtain a pair (W, X) of a space W and a subspace

X of W.

For each integer w > 1, let us denote by

Rm(X) = W\X = Xm\X

the set-theoretic complement of X in its m-th power W = Xm and denote by

the enveloping space of the pair (W, X). The topological spaces Rm(X) and

Em(X) are called the m-th residual space and the m-th enveloping space of the

space X respectively.

For completeness, we also define the first residual space R\(X) and the

fir*st enveloping space Eγ(X) of a space X by taking

= X,

= T(X),

where T(X) denotes the total tangent space of X defined in [ 2 ] as the sub-

space of the space P(X) of paths in X which consists of the totality of paths

σ in X such that σ(t) = σ (0) if and only if ί = 0. This space T(X) was

introduced by John Nash [ 6 ] in his proof of the topological invariance of the

Stiefel-Whitney classes for a differentiable manifold.

According to [3, p. 343], the isotopy types of the residual spaces Rm(X) and the

enveloping spaces Em(X),m = 1, 2, , are isotopy invariants of the given space

X. Therefore, every isotopy invariant of Rm(X) or Em(X) is an isotopy invariant

of X. In particular, every homotopy invariant of Rm(X) or Em(X) is an isotopy

invariant of X. This introduces a huge family of algebraic isotopy invariants of

topological spaces.

3. The Initial Projection. Let X be a given topological space and

consider the m-th. enveloping space Em(X), m2> 1, of X. In a recent paper [5],

we studied the natural projection

pm:Em(X)->X

defined as follows. Let σ € Em(X). By the definition of Em(X), σ is a path in

Xm with σ (0) € X. Then, pm is defined by taking
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A»O) = σ(0)

for every σ in Em(X).
• Since σ (0) is the initial point of the path σ, the natural projection pm will

be called the initial projection from Em(X) into X hereafter.
The following two lemmas are established in [ 5 ].

LEMMA 3. 1. If X is pathwise accessible, then the initial projection pm

maps Em(X) onto X for every m ^> 1.
LEMMA 3. 2. If X is locally homogeneous, then the initial projection pm

maps Em(X) onto an open subspace Xm of X and Em(X) is a sliced fiber
space over X^ relative to pm in the sense of [1, p. 97].

Hence, Em(X) is a sliced fiber space over X relative to pm if X is both
pathwise accessible and locally homogeneous.

Let x0 be an arbitrary point of X. The fiber over x0, i. e. the inverse
image pm'Kxo), is the subspace

Fm(X,xQ)

of Em(X) which consists of all σ € Em(X) such that σ(0) = x0. This subspace
Fm(X, x0) of Em(X) is called the fiber in Em(X) over the point x0.

In case m > 1, the fiber Fm(X, x0) is the subspace of Em(X) which consists
of all paths σ: I-+Xm such that

σ (0) = x0,

Por the case m = 1, we have Eλ(X) = T (X) and hence the fiber FX(X, x0)
becomes the tangent space T(X, x0) of the space X at the point xQ as defined
in [ 2 ] .

If the space X is completely regular at the point x0) then the homotopy
type of Fm(X, xQ) is a local invariant of the space X at the point x0. Precisely,
the following theorem is proved in [5, § 7].

THEOREM 3. 3. If X is completely regular at the point x0 and if U is
an arbitrary open neighborhood of x0 in X, then the inclusion map

im:Fm(U,xo)c:Fm(X>xo)

is a homotopy equivalence.

If x0 is a conic point of X and U a conic neighborhood of x0 in X as

defined in [5, § 8]. Then, the ra-th residual space Rm(U) of the closure U of
U in X can be considered as a subspace of Fm(X, x0) by a natural imbedding

jm:Rm(Tl)->Fm(X, x0)
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also defined in [5, § 8]. The following theorem is proved in [5, § 8].

THEOREM 3. 4. If U is a conic neighborhood of a point x0 in X, then
the imbedding

jn:RJtU)-»Fm(X,a:Q)

is a homotopy equivalence.

As an immediate consequence of (3. 4), we have the following corollary.

COROLLARY 3. 5. If a topological space X is locally Euclidean and
n-dimensional at a point x0 6 X, then we have for m > 1:

where Sr, r = (m — l)n — 1, denotes the unit r-sphere in the (r + l)-dimsenional
Euclidean space Rr+ι.

4. The Terminal Projection. The main obj active of the present paper
is the study of another natural projection of the m-ih enveloping space Em(X)
of a given topological space X, namely, the terminal projection

qm:Em(X)-+Rm(X)

which is defined for every m j> 1 by setting

qm(σ) = σ(D € Rm(X), σ € Em(X).

Since Em(X) is a subspace of the space P(Xm) of paths in Xm with the usual
compact-open topology, qm is obviously continuous.

The restriction of qm on the subspace Fm(X, xQ) of Em(X) defined in the
preceding section fop an arbitrarily given point x0 of X will be denoted by

rm:Fm(X,x0)-+Rm(X)

and called the terminal projection from Fm(X, x0) into Rm(X).
The topological space X is said to be pathwise accessible at the point x0

if there exists a path ξ : I -^ X such that ζ (0) = x0 and ξ(t) =f= x0 for every
t > 0. If this is the case, the space Fm(Xy x0) is non-empty because it contains
the path σ : I -> Xm defined by

θ9-,Xo), ( * € 7).

The point xQ of a topological space X is said to be a pathwise cut-point
of the space X if the residual space X\{#0! obtained by deleting the point x0

from X fails to be pathwise connected. The pathwise cut-point x0 of X is said
to be regular if the space X\\xo\ has exactly two path-components; other-
wise, it is said to be singular.
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PROPOSITION 4. 1. If the topological space X is pathwise accessible at

the point xQ which is not a pathwise cut-point of X, then the terminal

projection

maps the space T(X,x0) onto the residual space X\{#0 | .

PJROOF. Since X is pathwise accessible at the point x0, it follows that the

tangent space

at x0 is non-empty and hence there is a path ξ: I -» X such that £(0) = x0

and f (O + ^o for every t>0 in 7. Let x1 = ξ(l). Then xλ <E X\Uol-

Consider an arbitrary point x of the residual space X\\x0}. Since r 0 is

not a pathwise cut-point of X, the residual space X\\xo\ is pathwise connected.

Hence, there exists a path

a:I->X\{x0}

such that Λ(0) = Xi and Λ ( 1 ) = x. Define a path σ : /-> X by setting

α(2ί - 1), ( - | - ^ ί ^ 1 ).

Then, obviously we have σ € T(X, .r0) and n(σ) = Λ(l) = x.

Since it is clear that

r,(τ) = . τ ( l ) φ : r 0 ,

it follows that n maps T(X,xQ) onto X\{#oi This completes the proof of

(4. 1).
The following corollary is a direct consequence of (4. 1).

COROLLARY 4.2. If the topological space X is pathwise accessible at

two distinct points x0 and xx which are not pathwise cut-points of X, then

the terminal projection

maps the tangent space T(X) of X onto X.

PROPOSITION 4. 3. If m > 1, then the terminal projection

rm:Fm(X,x0)->Rm(X)

maps Fm(X, x0) onto Rm(X) provided that the following two conditions are
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satisfied:
( i ) The space X is pathwise accessible at the point x0.
(ii) The m-th residual space Rm(X) of the space X is pathwise connected.

PROOF. Since X is pathwise accessible at the point xQ, it follows that the
space Fm(X, x0) is non-empty. Let ξ ba an arbitrary point of Fm(X, x0). Then,
I is a path in Xm such that ξ (0) = xQ and ξ (ί) € Rm(X) for every t > 0 in 7.
Let «=? f ( l )€ / ? m (X) .

Let v bz an arbitrary point of Rm(X). Since Rm(X) is pathwise connected,
there exists an arc a in Rm(X) such that tf(0) = w and <x(l) = v. Define a
path σ : 7 -> Xm by setting

Then, obviously we have cr € Fm(X, xΌ) and

rm(σ) = σ(l) = v.

Hence, rm maps Fm(X, x0) onto Rm(X). This completes the proof of (4. 3).
The following corollary is an immediate consequence of (4. 3).

COROLLARY 4. 4. If m > 1, then the terminal projection

qm:Em(X)-*Rm(X)

maps Em(X) onto Rm(X) provided that the following two conditions are
satisfied:

( i ) The space X is pathwise accessible at least one point of X.
(ii) The m-th residual space Rm(X) of the space X is pathwise connected.

5. Pathwise Connectedness of Rm(X). In (4. 3) and (4. 4) of the prece-
ding section, we have used the pathwise connectedness of the m-th. residual space
Rm(X), m > 1, for the terminal projection to be subjective. In the present
section, we will give a few sufficient conditions for Rm(X) to be pathwise con-
nected.

For convenience, we will introduce, for any two points u and v in Rm(X),
the notation u~~v to stand for the fact that u and v can be joined by a path
in Rm{X).

First of all, let us consider the case m = 2.

THEOREM 5. 1. If X is a pathwise connected Frechet space ( = 7Vspace)
which has no regular pathwise cut-point, then the second residual space R2(X)
of X is pathwise connected.
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PROOF. Let (a, b) and (c9 d) be any two points of i?2(X). Then a 4= b and
c 4= d. We are going to prove

For this purpose, let us first consider the special case where a = c. Since
X has no regular pathwise cut-point, it follows that either the point a is not a
pathwise cut-point or the point a is a singular pathwise cut-point of X.

If the point a is not a pathwise cut-point of X, then the space X\{αj is
pathwise connected and hence there exists a path

aιI-+X\\a}

such that a (0) = b and tf(l) = d. Define a path

by taking ζ (t) = (a, oc(t)) for every t in /. Obviously, ζ is a path which joins
{a, b) to {a, d).

On the other hand, if a is a singular pathwise cut-point of X, then X\\a\
has at least three path-components.

If the points b and d are in one and the same path-component of X\\a\,
then there exists a path a:I-* X\ \a} with Λ(0) = δ and # (l) = d. As above,
this gives rise to a path ξ: I-> R2(X) joining (a,b) to (a,d).

If the points £ and <i are in different path-components U and V of the
space X\\a\, then there exists at least one path-component W which contains
neither b nor d. Pick a point e in W. Since X is pathwise connected, there
exists a path

with /θ (0) = a and /β (l) = b. Since X is a Frechet space, the point a forms a
closed subset \a\ of X. Hence, it follows from the continuity of β that the
inverse image β~\a) is a closed subset of the unit interval /. Let

λ = sup \β~\a)\.

Then β(\) = a and β(t) € U for every t > λ in /. Define a path

by taking /(ί) = β [ ( l — λ)ί 4- λ] for every t in /. Then we have

/(0) = a, fil) = 6, /U) c £/ U fα}.

Similarly, there exist paths

g,h:I^X

satisfying the conditions :
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9(0) = a, g(l) = d, g(I) c F U {a};

A(ϋ) = a, Λ(l) = e, A(/) c= ΐ ^ U {α}.

Define a path η:I->R2(X) by taking

O,/(2-4ί)),

(if | ^ ί S | ) ,

4 ~ -

Then 17 is a path which J3ins (a> b) to (α, d). Hence, (a, b) ̂  (a, d). This proves
the special case that a = c.

Similarly, one can establish the special case that b = d.
Now, let us consider the general case where a^= c and b=$= d.
If a H= d, then it follows from the special cases proved above that

This implies (a, b) — (c, d) and proves the case a =j= d. Similarly, one can prove
the case b 4= c.

Tt remains to prove that every point (a, b) of R2(X) can be joined to (b, a)
by a path in R2(X). In fact, since X is a pathwise connected Frechet space, it
must consist of more than two points : There exists a point e of X with a =4= e
and b=^F e. Then, it follows from the cases which have already been proved
that

Hence {a, b) ~ (b9 a). This completes the proof of (5. 1).
That the conditions in (5. 1) are essential can be observed from the follow-

ing counter examples. The second residual space R2(X) of X consists of exactly
two path-components if X is the real line R, the closed unit interval / = [0, l],
or the space \a,b\ of two points topαlogized by either the discrete topology or
the topology composed of three open sets: Q, \a\, and \a,b}. With the
exception of the discrete \a,b\, these spaces are pathwise connected.

Let Y denote the star of order 3, that is to say, 7 is a simplicial complex
which consists of four vertices v0) vu v2, v3 together with three 1-simplices
v0 vu v0 v2, and v0v3. The vertex v0 is called the center of the star Y.

THEOREM 5. 2. If X is a pathwise connected Hausdorff space into which
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the star Y of order 3 can be imbedded, then the second residual space R2(X)
is pathwise connected.

PROOF. Since Y is compact and can be imbedded into the Hausdorff space
X, we may consider Y as a closed subspace of X.

As in the proof of (5. l), it suffices to prove that any two points of the
second residual space R2(X) of the form (a, b) and (a, d) can be joined by a
path in R2(X\ i. e.

( i ) (a,b)~(a,d).

If a is not a regular pathwise cut-point of X, then one can prove (i)
exactly as in the proof of (5. 1).

If a is a regular pathwise cut-point of X, then the space X\\a\ has exactly
two path-components, say U and V. If the points b and d are contained in
one and the same path-component of X\\a], then ( i ) follows as in the proof
of (5.1).

It remains to prove the case that the points b and d are in different path-
components of X\\a], say

b € U, deV.

Now, consider the center v0 of the star Y in X.
Assume that v0 = a. Since a =1= b and a =4= d, we may choose the star so

small that b ̂  Y and d ̂  Y. Since X is pathwise connected, there exists a
path

ξ:I-+X

with ξ (0) = a and ζ (l) = b. Since Y is closed in X, it follows from the con-
tinuity of ξ that the inverse image ζ~\Y) is a closed set of the unit interval
/ = [o, l ] . Let

Then 0 ̂  λ < 1, ξ (λ) € Y and ξ(t) ̂  Y for every t > λ in /. Replacing the

part f |[0, λ] of the path I by the line-segment pining vQ to ξ (λ) in Y, we

obtain a path

such that /(0) = <z, /(l) = b, and /(/) Π Y is either the point a or a segment

of one of the three 1-simplices TΌ^I? ^0^2, ̂ 0*̂ 3- Similarly, there exists a path

such that g(0) = a, g(ΐ) = d, and </(/) Π Y is either the point α or a segment

of one of the three 1-simplices 0̂̂ 15 0̂̂ 2? ^V^ Since b €ί U and d € V, it
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follows that

Aϊ>n g(I)= \a\.

Hence, there is an i = 1, 2 or 3 such that the 1-simplex v0Vi meets βj) U g(I)
only at the point v0 = α. Let e = τ;4 and h:I-> X denote the path defined by
the line-segment v0Vi. Then the path η:I-* R2(X) defined as in the proof of
(5.1) joins (a, b) to (a9d). This proves the case v0 = a.

Next, assume that v0 =4= a. Then v0 is in one of the two path-components,
say v0 € V. We can choose the star Y so small that

YaV.

As in the proof of (5. 1), one can establish the existence of a path

such that /(0) = Λ, /(I) = τ;0 and /(/) ClV [J \a\. The inverse image f\Y)
is a closed set of the unit interval I. Let

Then 0 < μ <; 1, /(μ) € Y and /(*) ̂  Y for every ί < μ in /. Replacing the
part f\[μ91] of the path/by the line-segment joining f(μ) to v0 in Y, we obtain
a path

such that g(0) = α, ^(1) = vOί g(I) dV \J \a\, and g(I) Π Γ is either the
point v0 or a segment of a 1-simplex v0Vi of F. Let j 4= i, then

The existence of the path g implies that

( ϋ ) (a,b)~(vo,b).

By the cases which have already been proved, we have

(iii) (vo, b) ~ (vo, Vj).

Again, the existence of the path g implies that

(iv) (v0, Vj) ~ (α, v3).

Finally, since Vj and d are in the same path-component V of X\{a}9 we have

( v ) («, *,)-(«,«*).

Since the relation — is transitive, (ii) — ( v ) imply ( i). This completes the
proof of (5. 2).

Next, let us consider the case m > 3.
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THEOEM 5. 3. If a topological space X is pathwise connected, then so is

the m-th residual space Rm(X) for every m > 3.

PROOF. Consider any two points

a = (αi, , am), b = (bί9 ~9bm)

of Rm(X). We are going to prove a — b.

Since a is in Rm(X), there exists an integer j with 1 < j Ŝ m and aτ 4= cij-

If j > 2, then the pathwise connectedness of X implies a~~ a where a = (a[,

~',a'm) is defined by

, \au (if *4=2),
Ui \ah (if i = 2).

Since αί 4 s a'z, we may assume without loss of generality that

a\ 4 s #2

Similarly, we may assume that

Since ax 4= a2i the pathwise connectedness of X implies

a— c

where c = (cl9~ ,cm) is defined by

:, (if i 4= 3),

i, (if i = 3).

Then we have c2 4= ̂ 3. This and the pathwise connectedness of X imply

where d = (dly~ ,dm) is defined by

_(&!, (if Z = 1),

'""U, .(if i4-l).

Since d is in Rm(X), there is an integer j with 1 <C:j'^'m and ^ 4 s *ζ

If j = 2, then J — J" where d = (dΊ; ~,d'n) is defined by

, (if i = 3).

Hence, we may assume j > 2. This and the pathwise connectedness of X imply

d~e

where e = (^i, ,em) is defined by
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\du ( i f * + 2),

'* [b2, (if i = 2).

One observes that ex = bx and e2 = b2. Since bx 4= έ2, the pathwise con-
nectedness of X implies

Thus we obtain a — c — d — e — b. This completes the proof of (5. 3).
The pathwise connectedness of the given space X in the theorems (5.1)—

(5. 3) is necessary. In fact, we have the following proposition.

PROPOSITION 5. 4. // Rm(X) is non-empty and pathwise connected for
some m>2, then the given space X is pathwise connected.

PROOF. Since m Ξ> 2 and Rm(X) is non-empty, it follows that X consists
of more than one point. Since Rm(X) is a subspace of the topological power
X™, the projection of X™ onto its first coordinate space X defines a continuous
map

Let x be an arbitrary point of X. Since X consists of more than one point,
there exists a point y of X with x^=ym Consider the point u = (u\, '"9um) of
X"1 with

Jx. (ifi = l),
Ui \y, (if / > 1).

Since x =4= y, u is in i?m(X). Since τr(u) = x, it follows that π maps Rm(,X)
onto X. As a continuous image of a pathwise connected space Rm(X), the given
space X must be pathwise connected. This completes the proof of (5.4).

6. The Fibering Theorem. First, let us recall the path lifting property
(abbreviated PLP) as follows.

Roughly speaking, a map p: E-+ B is said to have the PLP if, for each
e € E and each path f:I->B with /(0) = p(e), there exists a path g: I-> E
such g(0) = e, p®g = / , and that g depends continuously on e and / . For a
precise definition, let P(B) and P(E) denote the spaces of paths in B and E
respectively. Let Z denote the subspace of the product space E X P(B)
defined by

Z= {(e,f)€ExP(B)\p(e)=f(fi)\.
Define a map 7Γ: P(E) -> Z by taking

= (9(0), ρ°g)
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for each g:I^E in P(E). Then p:E-+B is said to have the PLP if there
exists a map

\:Z-+P(E)

such that τr^λ is the identity map on Z.
It is well-known that, if a map p:E->B has the PLP, then £ is a fiber

space over B relative to p, [1, p. 83].
The main objective of the present section is to prove that the terminal

projections

qm : Em(X) -> Rm(X)
rm:Fm(X,x0)-+Rm(X)

have the PLP for every m ^ 1.
For simplicity of notation, let

B = Rn(X), E = Em(X), F = Fm(X,x0).

Further, let

Z = {(*,/) € £ X P{B)\qm{e) =/(0)},

W = {(*,/) e f x P(B)|r«(e) = Λ 0 ) | .

Since F c £ a n d r m = qm\F, it follows that
Since F d E, we have P(F) c P(£). Let

denote the map defined by

π(g) = (g(0\ qmoq)

for each g : I -> -E in

LEMMA 6. l.

\:(Z,W)->(P(E),P(F))

such that the composition π°\ is the identity map on the pair (Z, W).

PROOF. Let M denote the topological product , 1 X I of the closed

intervals , 1 and / = [0,1], Consider the subspace
L 2i -

of M. Obviously, L is a retract of M; let
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be a fixed retraction of M onto L.

For the construction of λ, consider an arbitrary point z = (e,f) of Z. Then

e:I->Xm, f:I->Rm(X)

are points of E = Em(X) and P(B)= P(Rm(X)) satisfying e(l) = /(()).

Define a map ξ: L -> Rm(X) by taking

./( ί ) , (5 = 1, ί € J ) .

By means of this map ? and the retraction />, we define a map

g:I-»EJίX)

by taking ^r(ί), for each t € 7, to be the path #(*): / -> Xm given by

(if 0^5^-|-),

Since [g (ί)] (ί) € X if and only if s = 0, it verifies that # (ί) € Em(X).

The continuity of gr follows as usual, [1, p. 75].

It follows from the compact-open topology the assignment z -> g defines
a map

Since [g(t)] (0) = έ<0) for every ί € I, it follows that λ maps W into

remains to verify that 7r°λ is the identity map on Z. For this purpose, we

have

= 7Γ [λ (*)] = 7Γ (jf) = (JΓ (0), fcOjf).

According to the definition of g (t), we have:

[g(0)Us) = e(s) (s €2) ;

[<?m°<7] (0 = l> W] (1) = / ( 0 , (t € /).

Hence (7r°λ)(z) = fe/) = 2. This completes the proof of (6. 1).

As an immediate consequence of (6. 1), we have the following theorem.
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THEOREM 6. 2. The terminal projections

rm:FM(X,x9)-+RJίX)

have the PLP for every m>l, and hence these are fiberings.

7- The Fibers. Let u = (ul9 •••, um) be an arbitrarily given point in
Rm(X). Consider the inverse images

Km(X, x0, u) = rm-J («) a Fm (X, *„).

These subspaces will be called the fibers over the point u in Em(X) and
Fm(X,x0) respectively.

Let v = (vu ~',vm) be another point in RJJX) and

f:I->Rm(X)

be a path in Rm(X) with /(0) = u and /( l ) = v. Then, the path f induces a
map

defined as follows. Let σ € Jm(X,u). Then σ: I-+X™ is a path such that σ(0)
€ X, σ (l) = w, and σ(i) € Rm(X) for every ί > 0 in /. The image / * (σ) is
defined to be the path

given by

<r(2ί),

/(2ί-l), (i£-±-

Obviously, / .̂ is an imbedding and sends Km(X, x0, u) into Km(X, xQi v\

THEOREM 7.1. The imbedding

Λ : (Λ,(^ «), ^»(X, ΛΓβ,«)) -> (Λt(X, v\ KJX xo, v))

is an isotopy equivalence, [4].

PROOF. Let g :I -> Rm(X) denote the reverse of /, that is to say, g is the
path defined by g(t) = / ( l — t) for every ί € J. Then, g induces an imbedding

<7* : (Jm(X. v), KJX xo, v)) -* (Jm(X, u), KJX x9>«)).



FIBERINGS OF ENVELOPING SPACES Π ij§

Consider the composed imbedding

g*°f*:(Jm(X,u), Km(X, x0, u)) -» (Jm(X, u), Km(X,x0, u)).

For each σ € Jm(X, u)9 the path r = (g*°f*) (σ) is defined by

' σ(4*), (if 0

τ ( ί ) = .

g (2ί - 1) = /(2 - 2ί),(if ^ - ^ t ^ l ) .

Define an isotopy As, 0 ^ s < 1, of the pair (Jm(X, u), Km(X, x0,«)) into itself

by taking

4

/ ( 2 s - 2 s ί ) , (if -L^ί^l).

Then A! (σ)= r = (^o/^) (σ). The path 0 = Λ0(σ) is defined by

σ(4ί),

Next, define an isotopy kS9 0 ^ 5 ^ 1, of the pair (Jm (X, u),

itself by taking

(X, x0, u)) into

u, o 4 - 35
' ) •

Then ^oW — σ a n ( l ^ I W ~ θ — ho(σ). Hence, gr̂ .0/^ is isotopic to the identity

imbedding k0 on the pair (Jm(X, u), Km(X, xQ, u)).

Similarly, one can prove that the cqmposed imbedding fχog$. is iso topic

to the identity imbedding on the pair (Jm(X,v), Km(X9xOiv)). This completes

the proof of (7.1).

The following corollary is a direct consequense of (7.1).
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COROLLARY 7. 2. If Rm(X) is pathwise connected, then the isotopy types

{and hence the homotopy types) of the spaces

Jm(X, u), Km(X, x0, u)

are independent of the choice of the point u from Rm(X).

As an example of the consequences which can be deduced from the fiberings
qm and rm, let us consider

rm:Fm(X9x0)->Rm(X)

with assumptions that Fm(X9 x0) is non-empty and Rm(X) is pathwise connected.
Pick a point u from Rm(X) and let

F = Fm(X, xa), B = Rm(X), K = Km(X, x0, u).

Pick a point w € K d F. Since F is a fiber space over B with K as the
fiber over the point w, we have the exact homotopy sequence

> τrα(F, w) -* τrq(B, u) -» TΓ^^K, w) -> TΓβ-jCF, w) -• •••.

In particular, if X is locally Euclidean and ^-dimensional at the point xθ9

then we have

where S(m~Ί)n~ι denotes the unit sphere in the (m — 1) w-dimensional Euclidean

space, according to [5, (8. 4)]. Hence, we have the following theorem-

THEOREM 7. 3. If X is locally Euclidean and n-dimensional at the point

Xo, then

for every q < (m — ϊ)n ~ 1.
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