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Let A be a C*-algebra, Q the structure space of A, i.e. the space of all
primitive ideals in A with hull-kernel topology. At every point P of Q we
associate a primitive C*-algebra 4/P (which we denote by A(P)) and we may
associate for any element a< A the function a(P) whose value at P is the
homomorphic image of a in A(P). Then the most difficult parts of the non-
commutative structure theory of C*-algebras are the restrictions such as to
destroy the main feature of the commutative case——the Gelfand representation
of A by the continuous function a(P) on Q. Even if Q is a Hausdorff space, it
has long been observed hopeless to discuss the continuity of the function a(P)
since Kaplansky [ 7] proposed a method to study the structure of general C*-
algebras and instead of these discussions the continuity of the function [a(P)||
was studied. Unfortunately this property does not give directly the suitable
topological representation of algebras.

On the other hand, in [11], in the case that A satisfies the condition that
any irreducible representation of A is n-dimensional (such a C*-algebra is
called n-dimensionally homogeneous) we have defined a topology in the set

B = U A(P) and represented A as the algebra of all B-valued functions a(P)

PeQd
on Q with a(P)< A(P) which is continuous in this topology (we call these
functions the (continuous) cross-sections of {3).

Now the above treatment offers a non-commutative model of the classical
Gelfand representation theorem in the case that the structure space Q is a
Hausdorff space. Is it always possible to define a natural topology in the set
B = U A(P) so that A is represented as the algebra of all continuous cross-

70
sections of B vanishing at infinity ? It is the main purpose of this paper to
give a positive answer for this question and to analyse the algebras by their
topological representations.

§1 and §2 are devoted to define a suitable topology in /3 in somewhat
general situations and to discuss the general structure theory of algebras of
cross-sections. Some fundamental results corresponding to the algebras of
continuous functions are proved here, including the Stone-Weierstrass theorem
and as a direct consequence of their results we can settle the problems rema-
ined unsolved in Kaplansky [ 7 ].

In §3 we treat the above mentioned problem stating our result in rather
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general form so that it may be applicable to the case where £ is not a Hausdorff
space. Roughly speaking, the result (Theorem 3.1) is the following one; if there
exists an appropriate decomposition of { (called a continuous decomposition),
then we get a locally compact Hausdorff space X at each point of which a
suitable C*-algebra A(x) is given and, setting B = U A(x), A is represented

xeX
as the algebra of all cross-sections of ¢, continuous in a suitable topology in B
and vanishing at infinity on X. The case where Q is a Hausdorff space is the
one where every classes in the decomposition reduce to one point.

In [5], Kaplansky defined a class of C*-algebras, central C*-algebras, to
which commutative methods are applicable to some extent. The structure spaces
of these are always Hausdorff spaces. However, the above result shows that
there are no distinctions between the centrality and the Hausdorff property of
the structure spaces of C*-algebras and we get, as a direct consequence of
our representation theorem, the following: If the center of a C*-algebra A is not
contained in any primitive ideal in A then A is central if and only if the
structure space of A is a Hausdorff space. ‘

In the last section, we show the case where there exists always the non-
trivial (or rather finest) continuous decomposition. Theorem 4.1. is an another
interpretation of the decomposition considered in Glimm [ 3] and we prove later
more sharpened results for this decomposition than those of [3].

The author is indebted to Mr. M. Takesaki. The discussions with him on
the possibility of topological representation of C*-algebras are indispensable for
the preparation of the present paper.

1. Algebras of cross-sections.

Let X be a Hausdorff topological space at each point « of which a Banach
algebra A(x) is given. All A(x)’s are considered to be different each other. Put
B = U A(x). We suppose that, for each element & € (3, there exists uniquely a

xeX
point x € X such as b € A(x). The projection mapping 7 from # to X is defined by
w(b)=x and A(x) is called the fibre over the point £ ¢ X. A function a(x)on X is
called a cross-section of B" if a(x)< A(x) for each x< X.
Let f{x) be a complex-valued function on X and a(x) a cross-section of 3.

We denote by f*a the cross-section of B defined by f-a(x) = flx)a(x).

DEFINITION. Let A be a family of cross-sections of 3. A is said to be
closed under multiplication by flx) if fra< A for every ac A.

We consider an arbitrary fixed family F of cross-sections a(x) of {3 satisfying
the following condition:»

1) Operator field in terme of Fell’s recent work in Acta Math., 106(1961) (cf. concluding
remark of the present paper).
2) This corresponde to the definition of the continuity structure in Fell’s paper, ibidem.
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(i) || a(x) || #s continuous and bounded on X,

(11) at each point x < X, F(x) fills out the algebra A(x),
(ili) F forms an algebra under pointwise operations.
Then we get the following

THEOREM 1.1. The family F defines a Hausdorff topology Z'r in B and
the algebra of all bounded & wcontinuous cross-sections of (3 becomes a Banach
algebra, which is closed under multiplication by C(X), the algebra of all
bounded complex-valued continuous functions on X.

PROOF. Take an arbitrary element b, € 3, an element a € F with a(x,) = b,
and a neighborhood U of z, = m(b,). Put U(b,,Ua(x)) = \_J (6B |b<c Ax)

xel
and [|6 — a(x)||<€} = {(beB|mb) = xc U and |b — alx)| <€},
where & is an arbitrary positive number. Then a straight-forward calculation
shows that the family {Z(b,,U,&,a(x))|b, € B} forms a neighborhood system of
/3 and defines a topology & r in (3.
Besides, one sees that 7 '» is a Hausdorff topology and the relative topology
of Z'» in A(x) coincides with the original norm topology of A(x).

Let EF(X, M) be the set of all bounded cross-sections of @3 continuous in
Z rtopology. We notice that the function |a(x)|| is a continuous function on X

for each ac &(X,@). In fact, let an arbitrary positive number & and a point

x,€ X be given. Take an element a, € F' with a,(x,) = a(x,). Since each of the

functions of F' is norm continuous, we can find a neighborhood U of x, such as
| lal @) — lalxo)ll | <&/2 for every xeU.

On the other hand, the continuity of a(xr) in & r implies that there exists a

neighborhood V' of x, such as

a(x) € U(alx,), U, *% , ay(x)) for every x V.

Hence we have

| lla@)]| — lla@)ll|=!lla@)] = las@)I| + [llas@)l — llas(zo)ll |

=lla(z) - @) + 5 <&

at eaoh point z€V.

Now, it is not difficult to see that 5F(X, @) is closed under pointwise addi-
tion, multiplication and scalar multiplication. Define the norm ||a|| = sup |la(z)]|

for ae EI‘(X, ), then 61(X, B) becomes a Banach algebra. The one non-trivial
point here is the completeness of GF(X, B). Let {a,} be a Cauchy sequence in

~C,(X,¢B). One easily verifies that the sequences {a,(x)|x< X} are uniformly
Cauchy sequences and,as A(x)’s are complete, {a,(x)|x € X} define a cross-section
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a(zx) = lim a,(x). Clearly a(x) is a bounded cross-section of B. We assert

that this is continuous in Zr. Let x, be an arbitrary point of X and
U(a(x,), U,,E,a'(x)) a neighborhood of a(x,) There exists a number 7, such
that

|a(x)—a.(x)| <&/3 for every n=n, and x < X.
Let a”’ € F be an element with a”(x,) = an(x,). Since
la'(zo) — a” (@)l = lla(zo) — anfx)l <&/3,
there exists a neighborhood U, of x, such as
la'(x) — a”’(x)]| <€&/3. for every x <€ U,.

Moreover a’'(x,) = an{x,) and a”, anoéap(X, B) imply that we can find a
neighborhood U, of z, such as

Ja"(x) — an(x)| <&/3 for every x € U, Then at each point x in the neigh-
borhood U of x, which is contained in all of U,,U, and U,, we have

la(z) — a’ (@) =lalx) — an(D)] + [ax) — a"(@)] + |a"(x) — a'(x) |
<&/3+ €&/3+€&/3=¢.
That is, a(x) € U(a(x,), Uy, &a'(x)). Thus the first half part of the theorem is

proved.
Now let f{x) be an arbitrary bounded complex-valued continuous function

on X and take a cross-section g eE'F(X, B3). It is clear that f-a is a bounded
cross-section of B. Let x, be a point of X and consider a neighborhood %(f(x,)
a(z,y), Uy&a.(x)) of flxy) alx,). Take an element a, € F with a(x,) = a,(x,). Since
a(x) is continuous in & we can find a neighborhood U, of x, such that

la(x) — a,(x)]| <&/3m for every x e U,,
where m = sup [f(x)]. On the other hand, the continuity of f{x) implies that
there exists a neighborhood U, of x such as
fx) — flxy)| <&/3|la,| for every x e U,.
Finally, as flz,)a, € F and flx,)a,(x,) = flxy)alx,) = a)(x,) there exists a neigh-
borhood U, of x, at each point x of which
IAzxo)a(x) — alx)] <&/3.

Therefore, at each point x of the neighborhood U of x, which is contained in
all of the above neighborhoods, we have

If@x)a(x) — al@l=If(x)alx) — flx)a(x)|
+ [flx)a(x) — Azxa ()] + | flzo)a(x) — al(z)|
< &/3 + &/3 + &/3 =6&.
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Hence f-a(x) is a bounded continuous cross-section of 3. That is, fa € GF(X,aB).
This completes the proof.

Now we assume, for the rest of the discussions, that X is a locally compact
Hausdorff space and A(x)’s are C*-algebras. We consider a fixed family F of
cross-sections a(x) of B satisfying the following conditions ;

(@) la(x)| is continuous on X and vanishes at infinity,
(b) at each point x <X, F(x) fills out the algebra A(x),
(¢c) F forms a self-adjoint algebra under pointwise operations.

Denote by Cr(X,B)? the algebra of all cross-sections of /3, continuous in
Z -topology and vanishing at infinity of X. (Here we mean a cross-section a(x)
vanishing at infinity if the function |a(x)| vanishes at infinity). We notice that
the proof of Theorem 1.1. can be applicable to the algebra C(X, B) and we
see that C»(X,B) is a C*-algebra. Moreover for any cross-section a(x) in
Cr(X, B) and any bounded complex-valued continuons function f{x), the cross-
scction fea(x) is & »continuous and vanishes at infinity. It follows that C#(X, B)
is closed under multiplication by C(X), the algebra of all bounded complex-valued
continuous function on X.

If X is compact and all A(x)’s are isomorphic to a fixed C*-algebra A and
F is a family of so-called constant cross-sections, then Cr (X, B) is isomorphic
to the usual A-valued continuous function algebra C(X, A). Moreover it is not
difficult to see that in this case the space B with & stopology is homeomorphic
with the product space X x A. But generally the situation is not so simple as
we shall see from the discussions in section 3 and Tomiyama-Takesaki [11].

The next theorem shows that the cross-section algebra Cr(X,B) satisfies
the condition corresponding to the regularity in commutative function algebras.

THEOREM 1.2. For any closed set G in X, any point x,&G and an
arbitrary element b in A(x,), Cr(X, B) contains a cross-section a(x) such that
a(xy)=b and a(x)=0 for every x<G.

PROOF. Let a'(x) be an element of C«X,B) with a'(x,) = b and Ax) a

bounded complex-valued continuous function on X with f{x,) = 1 and f{G) =0.
Then a=f-a’ € C{X, B) satisfies the property.

LEMMA 1.1. Let P be a primitive ideal in Cp(X,B). Then there exists
uniquely a point x, in X and a primitive ideal P(x,) in A(x,) such that
P = {a ¢ CAX, B)|alz,) ¢ Plx,)}.

PROOF. Let X, be the one-point compactification of X. Adding new fibre
A(x.) = 0 at the exceptional point z., CH{X, /) may be considered to be the
algebra of all cross-sections of B =B U A(x.) continuous in Z topology.

(3) This definition is the same as the maximal full algebra of operator fields in Fell’s paper
in Acta Math., 106 (1961).
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Hence, by Lemma 3.2 in Kaplansky [7], we see that the algebra C»(X, ) on
X, satisfies all the conditions (a) to (d) in [7: p.225]. Thus, coming back to the
algebra C#(X,B) on X one easily see that we can freely use Therem 3.1 in [7]
on X.

By Theorem 3.1 in [7] we have

P={a € C{X, B)|lalx) € Plx) for every x € X}

where P(x) means the closed ideal in A(x) consisting of all a(x)’s for a € P.
Suppose that there exist different points x;,x, such that P(x,) and P(x,) are
proper closed ideals in A(x,) and A(x,) respectively. Let U(x,) and U(x,) be
disjoint neighborhoods of x; and x,, and put

P, = {a € Co(X,B)|alx) € Plx) for x € Ulx,)},

P, = {a € CxX, B)|alx) € Plx) for z € Ulx,)},
where U(x,) and U(x,)* mean the complements of U(x,) and U(x,). P, and P,
are proper closed ideals in C¢(X, B) and since Ulx,)> U Uz, = X we have
P, N P, = P. On the other hand, by Theorem 1.2. Cx(X,B) contains a cross-
section a(x) such that a(x,) & P(x,) and a(zx) = 0 for x € U(x,)’. Hence we
get P, =2 P and similarly P, =2 P, which is a contradiction. Therefore there
exists only one point x, € X where P(x,) is a proper ideal in A(x,). We have

P = {a € C«(X, B)|alx,) € Px,)}.

It is not difficult to see that the ideal P(x,) is a primitive ideal in A(x,). This
completes the proof.

Now let Q be the structure space of Cr(X. B), i.e. the space of all primitive
ideals in C«(X, B) with hull-kernel topology.

I, = {a € Ce(X, B)|a(x) = 0}.
Clearly I, is a closed ideal in Cx(X,B). We denote by A(l.) the hull of I, in
Q, that is, i(I,) = {P < Q |[PDL}.
The following lemma is almost clear, so we omit the proof.

LEMMA. 1.2. h(I,) is homeomorphic with the structure space of A(x).

Then we get the structure theorem for Q.

THEOREM 1.3. Q = U h(I,) is a decomposition of Q into closed sets h(l,)

reX

and the space X is homeomorphic with the quotient space of this decomposition.
In particular, if all A(x)'s are simple C*-algebras, X is homeomorphic with Q,
hence in this case Q is a Hausdorff space.

PROOF. By Lemma 1.1 we see that Uh(lx) is a decomposition of Q.

zeX
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Let O be an open set in X and put 0 = Uh([z). We show that O is an

xel)

open set in Q. Let P be a primitive ideal in Co(X,8) such as PDk(ac), where
k(5°) means the kernel of the complement of OinQ P belongs to some A(ly,)

by Lemma 1.1. Suppose that P ¢ O, then x, € O. By Theorem 1.2, there
exists a cross-section a(x) in Cy(X,B) satisfying the condition that a(x,)é& P(x,)

and a(x) = 0 for each x € O, then a k(a") and a & P. This is a contradic-

tion. Hence P € O° and O is an open set in Q.

Conversely let O = Uh(Ix) be an open set in Q and x, be an arbitrary
xe0

point of the closure of O¢, the complement of O in X. We must show that
x, € O°. Suppose on the contrary that x, € O, then for an ideal P ¢ h(l,) we

can find a cross-section a € C¢X, B) such as a € k(?)c) and a & P because P
does not belong to the closed set O¢. Since O° = k_,/ h(I,), this means that

ae0
a(x) = 0 for every x € O°and a(x,) == 0. However this contradicts the continuity
of a(x). Thus x, € O° and O is an open set in X.
Since there is one-to-one correspondence between X and the quotient space

of the decomposition = Uh(]x), we have shown that this correspondence is

xeX

bicontinuous.
2. Subalgebras of algebras of cross-sections.

In order to prove the non-commutative Stone-Weierstrass theorem for
cross-section algebras, we need the following theorem which is a direct conse-
quence of Glimm’s strengthened non-commutative Stone-Weierstrass theorem of
pure state type (cf. Glimm [3]).

THEREM 2.1. Let A be a C*-algebea and B a C*-subalgebra of A.Sup-
pose that B separates the w*-closure of the pure states of A. Then A = B if
both A and B have a unit or A has no unit. If A has a unit and B has
not, A coincides with the algebra generated by B and a unit.

PROOF. Let A, be a C*-algebra obtained by adjoining a unit to A, then
the algebra B, obtained also by adjoining a unit to B is naturally considered
to be a C*sub-algebra of A,. Let @ be an element of the w*-closure of the pure
states of A, and {@.} a net of pure states of A, converging weakly to @. If @
is a non-zero functional on 4, we may suppose that all @.’s are non-zero func-
tionals on A and, since A4 is a closed ideal in A4, this implies that all @.’s are
pure states of A by an argument in the proof of Theorem 2 in Tomiyama-
Takesaki [11]. Hence @| A, the restriction of @ to A, belongs to the pure states
of A, too. On the other hand, it is clear that the w*-closure of the pure states
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of A contains zero-functional if A has no unit (cf. Glimm [4; Lemma 9]).

Now let @ and ¥ be different elements of the w*-closure of the pure states of
A,. Then we have @ 3=V on A. Since @| A and y| 4 belong to the w*-closure of
the pure states of A as mentioned ubove, we can find an element a € B such
as @(a) #=v (a). Hence B, separates the w¥-closure of the pure states of A,
and we get A, = B, by Glimm [3: Theorem 1]. Therefore we can deduce the
conclusion in each case stated in the theorem.

It is not difficult to see that the last case in Theorem 2. 1. really arises
even if A is a CCR algebra. This case corresponds to the case in usual Stone-
Weierstrass theorem that B coincides with the algebra of all continuous functi-
ons vanishing at a single point. Thus the non-commutative Stone-Weierstrass
theorem of CCR algebras stated in Kaplansky [7: Theorem 7.2] is generally
insufficient if we do not restrict the case to a certain limit.

Using Theorem 2.1 we can prove the following non-commutative Stone-
Weierstrass theorem for the cross-section algebra Cq(X,B) defined in section 1.

THEOREM 2.2. Let C be a self-adjoint subalgebra of Cy(X, 3) where B=
UA(x). Suppose that for any distinct points x,y € X,C contains cross-sections

zeX

taking arbitrary pairs of values in A(x), A(y) at z,y. Then C is dense in C(X, 3).

PROOF. Let @ be an element of the w*-closure of the pure states of
Cr(X,B) and {@.} a net of pure states converging weakly to @. Put

P, = {a € CX, B)|ps (b*ac) = 0 for every b,c € Co(X, B)}. Then it is
known that P, € Q for each a. Suppose that {P.} is not eventually in any
compact set of Q. Denote by a(P) the lLiomomorphic image of a € Cr(X, B) in
Cr(X, B)/P for an ideal P. Since the sets {P € Q||a(P)| =&} for & positive
are compact (cf. [7: Lemma 4. 3]), one easily verifies that @ = 0. Hence if
@ =+0, {P.} must be eventually in some compact set in Q and in this case we
may suppose, without loss of generality, that P converges to some point P,
in Q.

Now let @ and Y be different elements of the w*-closure of the pure states
of Cr(X,B) and {@.}, {¥s} nets of pure states converging to ¢ and Y respec-
tively. Put

P, = {a ¢ CHX, B)|pub*ac) = 0 for every b,c € Cr(X,B)}
and
Qs = {a € Cu(X, B)|¥s(b*ac) = 0 for every b,c € Co(X, B)}.

We assume at first that both @ and Y are non-zero functionals on Ci(X, B).
Then we may suppose that {P.} and {Qs} converge to some points P, and Q,
in Q. By Lemma 1.1 for each primitive ideal P, there exists a point x, € X
and a primitive ideal P(x,) in A(x.) such that
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P. = {a ¢ Cu(X,B)|alx.) € Plx.)}.
Similarly Q; may be written as

Qs = {a € C(X,B)laly,) € Q)
for some point y; € X and primitive ideal Q(y;) in A(y.).
Let

P, = {a € C(X, B)|alx,) € Plx,)}
and

Qo = {a € Cx(X,B)laly,) € Qyo)}

where P(x,) and Q(y,) mean the primitive ideals in A(x,) and A(y,) respectiv-
ely. Then, by Theorem 1.3, x. converges to x, and y; to vy, Takea cross-
section a € Cu(X, B) with a(x,) = 0, then |a(x.)| converges to |a(x,)| =0 and
as

lpa(@)| =[a(P)l = |alxa)(P(za))| = lalxa)l

we get @(a) = 0. Similarly ¥ (@) = 0 for any cross-section a € Cp(X, B) with
a(y,) = 0. Here we have two cases in question.

1. the case x, = y,. Let a be an element of Cr(X,B) such as g@(a) &= Y(a).
We can find an element &' in C with a(x,) = a'(x,). Then a(x,) — a'(z,) =

a(y,) — a(y,) = 0 and
#(a@) = g(a) += Y(a) = ¥(a).
2. the case x, 5=7y,. Let
P, = {a € C«(X, B)|p(b*ac) = 0 for every b,c € Co(X, B)}
and
Qy ={a € C:(X,B)|¥ (b*ac) = 0 for every b,c € Co(X, B)}.

P, and Q, are not contained in each other, for P, contains the ideal {a € Cr
(X, B)|alx,) = 0} and Q, the ideal {a € Cr(X, B)|a(y,) = 0}. Hence there exists
an element a € C.(X,B) such as a € P, and a < Qi so that we get some
elements b, ¢ in Ci(X, B) such as @(b*ac) = 0 and Y(b*ac)= 0. Take an element
a’ € C with a'(z,) = b*ac(x,) and a'(y,) = b*ac(y,). We have,

@(a’) = p(b*ac) = 0, and Y(a’) = Y(b*ac) += 0.

On the other hand, if one of @ and VY is zero, say @, then Y determines a
point x, € X and Y(a) = 0 whenever a(x,) = 0. Hence one verifies easily that
the restriction of ¥ to € is a nonzero functional, too.

Now let € be the closure of C in Ci(X, B). We must show that C= C(X, B).
Clearly Cisa C#*-subalgebra of C#(X, $8) and the above discussion shows that



196 JUN TOMIYAMA

c separates the ww*-closure of the pure states of C#(X, (8). Hence if Co(X, B) has

no unit we get directly C= Cr(X, B) by Theorem 2.1. In the case that C(X, B)
has a unit, it is sufficient to show that C has a unit, too. Otherwise, C is a maximal
ideal in C(X, 8) whose quotient algebra is one-dimensional but this is a contradic-
tion as it is easily seen from [7: Theorem 3.1] and the condition for C. There-

fore in any case C= Cr(X, ). This completes the proof.

Theorem 2.2. offers the affirmative answer to the question in Kaplansky
[7], that is, Theorem 3.3 and 3.4 in [7] can be proved without any restriction
on the fibre A(x). Both Corollary 1 and 2 are readily deduced from Theorem
2. 2.

COROLLARY 2.1.1. Let X be a locally compact Hausdorff space at each
point of which a C*-algebra A(x) is given. Let A be a C*-algebra of cross-

sections a(x) of B(= U A(x)) satisfying the postulate that |a (x)| is continuous

xeX

and vanishing at infinity. Suppose further that for any distinct points x,y € X, A
contains functions taking arbitrary pairs of values in A(x), A(y) at x,y. Then
A is closed under multiplication by C(X), the algebra of all bounded continu-
ous functions on X.

COROLLARY 2.2.2. Let X be a locally compact Hausdorff space, D a
C*-algebra and A the C*-algebra of all continuous functions vanishing at infinity
Sfrom X to D. Let B be a C*-subalgebra of A, which contains functions taking
arbitrary prescribed pairs of values in D at every distinct points x,y € X.
Then A = B.

Let C be a self-adjoint subalgebra of C.(X, 8B). As in the case of commuta-
tive function algebras the weakest topology in X for which each a(x) € C is
norm continuous (that is, the function | a(x)| is continuous) is called the
C-topology in X.

THEOREM 2.3. If C is a self-adjoint subalgebra of Cw(X, B) which contains
cross-sections taking arbitrary pairs of values in A (x), A(y) at any distinct
points x,y in X, then the given topology in X is equivalent to the C-topology.

PROOF. Since the function [a(x)| is continuous in the original topology in
X for any cross-section a(x) € C, it is clear that the original topology is
stronger than the C-topology. Hence any closed set in C-topology is closed in the
original topology, too. Conversely, let G be a closed set X in the original
topology. We assert that

G=(x<XIL> L.

VeG

In fact, it is clear that G& {x € X|I, D ﬂly}. Take a point x, in the right

Yz
member.If x, does not belong to G,then we can find a cross-section a(x) in Co(X, {3)
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such that a(x) = 0 on G and a(x,) =0, a contradiction. Let x, be a point in the

closure of G in the C-topology and take a cross-section a € ﬂ I.. Clearly a(x) =

xeG
0 for every x € G. Since C is dense in Cx(X, $8) by Theorem 2.2, all cross-sections
in C¢(X, B) are norm continuous in the C-topology. Therefore a(x,) = 0, hence

L, > ﬂ I,. We have x, € G and G is closed in the C-topology. This comp-

reG

letes the proof.

THEOREM 2.3. Let G be closed set in X. Then any Zr- continuous cross-
section a(x) defined on G and vanishing at infinity can always be extended
to the whole space X.

PROOF. Let
I={a e CiX,B)alx) =0 for x € G}

and C, the algebra of all &»-continuous cross-section on G vanishing at infinity.
Consider the factor algebra C#(X, B/I, then the mapping [a] — a(x)| G is the
natural embedding of Cw(X, B)/I into C, where [a] means the class to which
a(x) belongs and a(x)|G the restriction of a(xr) to G. By Theorem 2.2 this
embedding is onto. Hence any & r-continuous cross-section on G vanishing at
infinity is the restriction of an element in Ci(X, B).

3. Topological representation of C*-algebras as algebras of cross-
sections.

Let A be a C*-algebra and Q the structure of A, that is, the space of all
primitive ideals in A with hull-kernel topology. We denote by a(P) the homo-
morphic image of a€ A in the quotient algebra A/P by an ideal P in A. Let

Q= U Q. be a decomposition into closed sets of Q and put x. = k(Q.) (kernel
ael

of Q,). Then there is a one-to-one correspondence between the set of ideals
X = {x.]a € T'} and the quotient space of  with respect to this decomposi-
tion, so that we can consider on X the quotient topology of this decomposition.

DEFINITION. Let Q = U Qo be a Hausdorff decomposition® of Q and

ael’

put X = {x.|ael'} where x. = k(Qu). We call X the decomposition space of
Q. If we have
S = {x < Xlx:)my}

yeS

for any subset S in X where S means the closure of S in the quotient topo-
logy, this decomposition is called a continuous decomposition of Q.

(4) A decomposition is called a Hausdorff decomposition if the quotient space of the decom-
position is a Hausdorff space.
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With this definition we get the following topological representation theorem
of C*-algebras.
THEOREM 3.1. Let A be a C*-algebra and Q = U Q. a continuous de-

ael’

composition of the structure space Q of A. Then the decomposition space X =
{xo|a € T'} with quotient topology is a locally compact Hausdorff space on
which each element a € A is represented as the cross-section a(x) satisfying
the postulate that |a(x)| is continuous on X and wvanishing at infinity. Put

B = UA(x) Then A is represented as Cu X, B) the algebra of all cross-

xeX

sections of B continuous in I s-topology and vanishing at infinity of X.

PROOF. From the definition of X, X is a Hausdorff space. Let a be an
element of A and & a positive number. Put K = {x € X||a(zx)| = &}. Then K
is an image of the set {P € Q||a(P)| = &} in Q by the quotient map, for it is
clear that the latter is mappped into K and moreover for any point £ € X
there exists a primitive ideal P which contains x and [a(P)| = |a(x)] (cf.
Kaplansky [7: p.234]). Since the set {P € Q||a(P)] = &} is compact by [7:
Lemma 4.3], K is a compact subset of X. Hence K is closed in X because X
is a Hausdorff space. Therefore the function [a(x)| is upper semi-continuous
in X.

In order to prove the lower semi-continuity of |a(x)|] we must show that
the sets {x € X||a(x)| =&} for & positive are closed in X. Because of the

identity |a*a| = |al?, we need consider only the case where a is self-adjoint.
Suppose that x, is in the closure of the set S = {x € X||a(x)| = &} and
lalxy)| = p > &. Let v(x) be a real-valued continuous function defined as follows :

Y({(— o0, &]) =0, ¥([p, + =]) =1 and v(x) is linear on [& p]. Then v(a)x) =
v (a(x)) = 0 for every x € S hence 7v(a) € k(S), the kernel of S and v(a) (z,)
== 0, that is, v(a) & x,. However this contradicts the definition of a continuous
decomposition. Hence x, € S.

Therefore, |a(x)| is a continuous function on X and X is a locally com-
pact space.

Now put B = U A(x), then the above argument shows that we can

xelX

associate with any a € A the cross-section a(x) of @B such as |a(x)| is contin-
uous and vanishing at infinity. Moreover one easily see that [a| = sup [a(x)].
xeY

Hence we may identify 4 with the represented algebra of cross-sections of (8.
Consider the topology &4 in B and let C«(X,B) be the algebra of all cross-
sections of (8 continuous in & .-topology and vanishing at infinity of X. We
assert that A contains cross-sections taking arbitrary pairs of values in A (x),
A(y) at distinct points x, y € X. In fact, consider the ideal

x+y={a+blacuxbeyl
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Then x + y is dense in A, for otherwise there exists a primitive ideal P in A
containing x + y, that is, P € h(x) N h(y). However, since the decomposition

Q= UQJ is a Hausdorff decomposition, each class Q. is closed in Q and
ael
Q. = hk(Q,) which implies that A(x) N 2(y) = ¢ whenever x ==y, a contradic-
tion. Thus x + v is dense in 4 and by Lemma 8.1 in [5] we have 4 = x + y.
Let a,(x), a,(y) be an arbitrary pair of values in A(x), A(y) at distinct points z,
yeX. We can find an element a; € £ and an element a, € y such that a;, — a,
= a; — a,. Let
ay,=a, — a, = a, — a,

Then clearly ax) = a;(x) and a,(y) = a.(y).

Therefore, by Theorem 2.2, the represented algebra A coincides with
C4X, B). This completes the proof.

REMARK. It is to be noticed that the decomposition in Theorem 1.3 is a
continuous decomposition of the structure space of C«(X, B). Thus Theorem
3.1 is considered as the converse of Theorem 1. 3.

As a direct consequence of this theorem we get the following representation
theorem of C*-algebras whose structure spaces are Hausdorff.

COROLLARY 3.1.1. Let A be a C*-algebra and Q the structure space of
A. Suppose that Q is a Hausdorff space and put B = UA (P. Then A is

PeQ)

represented as Ci(Q,B), the algebra of all cross-sections of B3 continuous in I -
topology and vanishing at infinity of Q.

Though the above defined topology is slightly different from the bundle
space topology defined in Tomiyama-Takesaki [11] in the case that A is an
n-homogeneous C*-algebra, one may easily see that they are equivalent. Therefore
Corollary 3.1.1 is a natural generalization of Theorem 5 in [11].

Now the above result shows that the commutative method is always applicable
to the class of C*-algebras whose structure spaces are Hausdorff. Hence there
is no reason to distinguish the central C¥*-algebras from the C¥*-algebras whose
structure spaces are Hausdorff spaces and we get naturally the following

COROLLARY 3.1.2. Let A be a C*-algebra and Q the structure space of
A. Suppose that any P<cQ does not contain the center Z of A. Then A is
central if and only if Q is a Hausdorff space.

PROOF. It is sufficient to prove the “if”” part of this corollary. Suppose that Q
is a Hausdorff space. Let P and Q be different primitive ideals in A and take
an element z in Z such as 2(P)=4=0. Let f be a bounded complex-valued contin-
uous function on Q such as f{P) =1 and Q) =0, then by Corollary 3.1.1 we
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have f-z € A. Since f-2(P) = 2(P)$=0 and f-2(Q) =0, one sees that f-2&PNZ
and frz€ QNZ. Thus PNZ+=QNZ, hence A is a central C*-algebra.

REMARK. A Hausdorff decomposition is not necessarily a continuous
decomposition though, in the whole space Q, the Hausdorff property is equi-
valent to the continuity property of |a(P)|.

4. Topological representation of W?*-algebras and their pure state
spaces. In this section we prove that there exists always the finest continuous
decomposition in the structure space of a W*-algebra A. As we see below, this
is an another interpretation of the decomposition considered by Glimm [3]. We
shall make clear the situation of Glimm’s theorems by [3] on the pure state
spaces of W*-algebras and give more sharpened results for them.

Let A be a C*-algebra and Q the structure space of A. A decomposition
Q= U Q. is called finer than the decomposition Q = U O, if each Qa is cont-

ael AeA
ained in some class Q.

THEOREM 4.1. Let A be a W*-algebra, Q the structure space of A and
Q, the structure space of the center Z of A, Then Q = U h() is the finest

geq
continuous decomposition of Q whose decomposition space X with quotient

topology is homeomorphic with ,.
Thus, setting B = UA(x), A is represented as Ca(X, 3), the algebra of all

xeX
bounded & .-continuous cross-sections of /8. Notice that in this case a continuous
function " on X is considered to be a continuous function on £,, hence an element
in Z and f-a(a € A) coincides with the usual product of the central element f
and a in A.

PrROOF OF THEOREM 4.1. Since the map: Pe Q—P Z < (, is a continuous

map from Q to Q,, it is not difficult to see that the decomposition Q = U h()
¢

is a Hausdorff decomposition. Let 0= Uh(_t) be an open set in Q. We assert
g0
that O is an open set of Q,, so let & be a point of O and P, a primitive ideal

in A(,). Since 50, the complement of 5, is closed in ) we can find an element
a< A such as a(P,) =0 and a{P) = 0 for every Pe¢ O¢. Let X be the decompo-
sition space of Q) = Uh(lg), that is, X = {x(¢) = kh(£)|¢ € Q,}, then one easily

¢<o
see that a(x(¢,))+0 and a(z()) = 0 for every ¢ € O°, the compplement of O in
Q,. Hence, by Lemma 10 in Glimm [3], there exists a neighborhood U of ¢,

contained in O and this implies that O is an open set in Q,,
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Now it is clear that there is a one-to-one correspondence between X and
Q,, and the above discussion shows that this correspondence is bicontinuous
where the set X is endowed with the quotient topology with respect to the
decomposition Q = U h(E).
¢eQo

Next, let S be an arbitrary subset of X and S the closure of S in X. Put
S={z e X|zDkS).

Then, by the definition of quotient topology, it is not difficult to see that

Scs Conversely suppose that a is in k(S), the kernel of S. Then a(x)=0

on S and by [3: Lemma 10] a(x) = 0 on S, hence a <z for every x<S. That

is, Sc'S and we get, S = S, Therefore the above decomposition is a contin-
uous one.

We shall show that the above decomposition is the finest continuous deco-
mposition of Q. Suppose on the contrary that there exists a continuous decom-

position Q = Uﬂm exactly finer than the decomposition Q = Uh({,’). Then

ael’ Qo
we get at least two distinct class Q, and Qg in some class A(). Let x = A(Q.)
and y = k(Qg). As x £ Z, there exists an element 2 € Z such as z(x) &= 0 hence
taking a bounded continuous function f on the decomposition space of the

decomposition Q = UQ,, such as f{x) =1 and f{y) = 0 we have, by Theorem

ael’

3.1, fz € Z and fz & x, fz € y. This is a contradiction.

By the pure state space of a C*algebra A with unit, we mean the w*-
closure of the pure states of A and denote it by B (A4). & (A) means the state
space of A.

We keep the above notations in Theorem 4.1 for the rest of this section.

Next lemma concerns with the first half part of Theorem 4 in Glimm [3].

LEMMA 4.1. If A(x) has a non-zero GCR ideal, then A(x) is a primitive
algebra and contains a minimal projection.

PROOF. Let I, be a non-zero GCR ideal in A(x), then I, has no ideal
divisors of zero because A(x) has no ideal divisors of zero (cf. [3: Lemma 11]).
Hence, by Kaplansky [7: Lemma 7. 4], I, is primitive and there exists a primitive
ideal P, in A(x)such as P, N I, = {0}, which implies P, = {0}, Therefore A(x)
is a primitive algebra. On the other hand, I, contains a minimal projection and,
as I, is an ideal in A(x), this is also a minimal projection of A(x).

LEMMA 4.2. Every projection in A(x) is the image of some projection
in A.

PROOF, Let e, be a projection in A(x,). By the proof of Lemma 12 in
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Glimm [3], we can find an element @ € A and a neighborhood U of x, such
that a(x) is a non-zero projectionin A(x) for every x € U and a(x,) = e,
Moreover as X is homeomorphic with Q, which is known to be a totally dis-
connected space, there exists an open and closed neighborhood V of x, contained
in U. Let f be the characteristic function of V and put e = f-a, then it is not
difficult to see that e is a projection of A and e(x,) = e,

Now we get

THEOREM 4.2. Let A be a W*-algebra. Then the following statements
are equivalent :

(1) A is of continuous type, that is, A has no type I portion,
(2) A has no non-zero GCR ideal,

B) A(x) has no non-zero GCR ideal for every x € X,

(4) B(A(x)) = &(A(x)) for every x € X,

6) B(4) = (Vo) € GA(x)), x € X}, where ¥, means the

canonical map from A to A(x).

The implications (1) = (2) = (5) were established in Glimm [3] but we prove
here all implications for the completeness.

PROOF. (1)= (3). Suppose that there exists a point x € X such that A(x)
has a non-zero GCR ideal. Then, by Lemma 4.1. A(x) contains a minimal
projection e,, which is the image of a projection ¢ in A. Since A is of contin-
uous type it is well known that ¢ is the sum of two equivalent orthogonal
projections e,, ¢, in A. Hence, e, = e(x) = e,(x) + e,(x) and both of e¢,(x) and
e,(x) are non-zero projections in A(x). This contradicts the minimality of e,.
Therefore every A(x)’s have no non-zero GCR ideals.

(8) = (4). Since A(x) has no idedl divisors of zero, (3) implies (4) by [11:
Theorem 2]. The implication (4)= (5) is clear.

(5)= (1). Suppose that A has a non-zero type I portion Az where z is a
central projection of A. By [3: Theorem 4], we have

P(A2) = (V.(p)lp € B(A@)) for x € X with 2(z) =4 0}

and P(A(x)) += S(A(x)) for all such x’s where &Z means the restriction of .
to Az. Take a functional ¢ € S(A(x)) and @ & B (A(x)) for some point x € X
with 2(x) 4= 0. Then “Yr (@) € P(A) by the assumption, hence t$z((p) € P(A4z), a
contradiction. Therefore A has no type I portion.

The implication (3)= (2)=(1) is clear.

It is perhaps worth to notice that though we can not generally conclude
that the weak closure of a C*-algebra having no non-zero GCR ideal is of
continuous type, it is true in the case of a W*-algebra.
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THEOREM 4.3. Let A be a W*-algebra. Then the following statements
are equivalent ;

(1) A is of type ],
2) A(x) has a non-zero GCR ideal for everx x € X.

PROOF. The implication (1)=(2) is due to [3]. Roughly speaking, the
discussion is as follows: the canonical image of an abelian projection in A by
Yr, is a minimal projection in A(x) or zero and as A has stufficiently many
abelian projections this means that each of A(x)s has a minimal projecion,
hence a non-zero GCR ideal.

The converse is clear from Theorem 4. 2.

Combining (4) of Theorem 4.2 and Theorem 4 in [3] we can easily show
that the pure state space of a W*-algebra is determined completely by the pure
state spaces of its component algebras.

THEOREM 4.4. Let A be a W*-algebra. Then
B(A) = (V@)@ € B(A(x)) for x € X}.

REMARK. One might suspect that Theorem 4.4 is valid for any cross-
section algebras, but this is not the case. Generally speaking, the weak closure
of the pure states of an algebra C.(X,B) is not determined by those of component
algebras though an element in the weak closure of the pure states of Cr(X, B)
determines a linear functional on some component algebra. We can find a counter
example by Glimm [4: Theorem 6] or Tomiyama-Takesaki [11: Theorem 1].

After having prepared the manuscript of this paper, Fell’s paper, “The
structure of operator fields, Acta Math., 106 (1961), 233-280”, has appeared.
Although our research has been done quite independently from Fell, there are
several similar results; for examples, our Theorem 2.2 and its Corollary 2.2.1
correspond to Theorem 1.4 and its Corollary in Fell’s paper. However, in stead

of the dual space A of a C*algebra A as in Fell’s paper, we employed mainly
the ideal dual space Q of A through our paper and this makes differences such
as we see, for example, in our Theorem 1.3 and Corollary of Theorem 1.2 in
Fell’s paper.

In our § 3, we have treated the topological representation of C*-algebras ;
in this case, our method is quite different from Fell, however incidently our
Corollary 3.1.1 corresponds to Theoreml 2.3 in Fell’s paper.
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