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Introduction. In this paper we shall construct the simple groups analogous
to the non compact real forms of the simple Lie groups and extend to them
the structural properties of the groups of Chevalley [2]. The family of the
groups obtained here contain some simple groups constructed by R.Steinberg
[4]. Further it seems that the simple groups obtained from the Lie algebras of
classical types are identified with the simple groups obtained from the unitary
or orthogonal groups of non zero indices.

Whether the infinite groups constructed are new or not has not been settled
yet, it seems that there are no new simple finite groups among them.

Section 1 contains preliminaries from the theory of real simple Lie algebras
and we shall introduce the restricted root systems (cf. [3]) which play an im-
portant role throughout the paper. Section 3 contains brief description of Chevalley
groups constructed in [2] from an arbitrary field and a complex semi-simple Lie
algebra. In section 4, making use of the involution defined in section 2, we
define the groups analogous to the real forms of the semi-simple Lie groups and
also we shall have some structural properties of the groups. In section 5, we
shall introduce some maximal subgroups of the groups which are analogous to
those of [1]. Excepting few cases, the proof of simplicity of the groups obtained
from the simple Lie algebras is given in section 6.

1. Restricted root systems.

1.1. Let g be a semi-simple Lie algebra over the field R of real numbers
and let ΐ be a maximal compact subalgebra of g, i,e., a subalgebra of g cor-
responding to a maximal compact subgroup of the adjoint group of g. Let gi-
be the complexification of g. Then there exists a uniquely determined compact
form Qu of Qc such that g Γl gw = I and that, denoting by p the orthogonal comple-
ment of f in g with respect to the Killing form, we have

Let ί)~ be a maximal abelian subalgebra in p it can be extended to a
Cartan subalgebra £) of g, i.e., a maximal subalgebra of g such that the adjoint
representation of any H € ΐ) is semi-simple. Then we have
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ί) = Ψ + ΐr, Ψ = ή n f, r = ̂  n P.

Let ί)c be the complexification of t) and let

be the corresponding Cartan decomposition of g<; where Δ denotes the root
system of qσ relative to f)σ. Let further I)o be the subspace of % over R consisting

of all H € ί)σ such that r(H) is real for all r £ Δ, then ή0 ^V^-ΐή 4 " + ϊ)~ ΐ)o
becomes a real euclidean space with respect to the Killing form, so that we can
consider Δ as a subset of ί)0(i. e. we identify r £ Δ with the uniquely determined
element H'r of ί)0 such that (Hi, H) = r(H) for all 2/ € ή0, ( ) denoting the
Killing form).

Let σ be the conjugation of g<? with respect to the real form g. σ induces
an orthogonal transformation of ΐ)0 which leaves Δ invariant. We denote σ(r) by
r for r € Δ and put

Δo = {r € Δ r = — r}

Δo becomes a subsystem of Δ; we denote the ranks of Δ, Δo by /, l0 respectively.
In Δ we can define a linear order satisfying the following property which

we call a σ-order:

If r ^ Δo and r > 0, then r > 0.

(For instance, take a lexicographical order with respect to a base (Hu ,Ht) of
ί)0 such that (Hi, ,HP) forms a base of ή~.) We call a fundamental system of
Δ corresponding to a σ-order a σ-fundamental system.0 If Π = {au ,αz} is a
σ-fundamental system of Δ, then Πo = Π Π Δo is a fundamental system of Δo.

i i

For any root r = Σ cia^ ^( r) — Σ ct 1S called the height of the root r. From
i=l i=l

now on we shall assume that g is not compact, i.e., ή" 4=(0) what is the same
Δ - Δ 0 + (0).

1. 2. Consider now the set Δ — Δo. For any vector v in ΐ)0 we denote by
v* the projection of v to ί)~ for any two roots r, s in Δ — Δo, we call r ,5 are
equivalent if and only if r* = Jfo* for some positive rational number k and denote
it by r — 5 for any root r € Δ — Δo, we denote by Σ r the class of equivalent
elements containing r. Then Σ r satisfies the following properties:

( 1 ) For rur2 £ Xr if rx 4- r2 € Δ, then rx + r2 £ Σr,
( 2 ) For r!,r2 € Σ r such that n — r2 £ Δ, if ri, r2 and rx — r2 are all positive
or all negative relative to a σ-order, then r1 — r2 £ Σ r,

1) cf. Satake [3] p. 80.
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( 3 ) Σ r is σ-invariant, where we call a subset Δ' of Δ σ-invariant if σ transforms
the elements of Δ' into itself.

On the other hand, the roots r of Δ — Δo have one and only one property
of the following:

I r = r and can not be written as a sum of a conjugate pair of roots.
II r = r and r is a sum of a conjugate pair of roots.

III r =j= r and r + r is not a root.
IV r + r and r -f- r is a root.

We call a root r € Δ — Δo is of type I, II, III or IV respectively if it satisfies
the corresponding property. Then we have the following:

LEMMA 1. If r £ Δ — Δo is of type III, then r and r are orthogonal.

For the proof, see Satake [3], Appendix, proof of Lemma 2, p.107.

LEMMA 2. If r e Δ — Δo is of type IV, r + r is the only root which
can be represented by a linear combination of r and r with positive coe-
fficients.

PROOF. Let Δ r be the σ-invariant subsystem of Δ generated by r. Since r
is of type IV, the rank of Δ r is 2. The linear order of Δ r induced by a σ-order
of Δ is also called σ-order of Δr. If Δ r is of type A2 the lemma is obvious.
Suppose Δ r is of type B2. Then r — r is a root. In fact, if 7— r is not a root,
then r, r is a fundamental root system of Δ r with respect to its σ-order. Thus
r + 2r or 2r + r is a root and then we have both of them are roots in Δ r.
This is a contradiction. Therefore r — r is a root. We put s = r — r, then s € Δo

and we may assume that 5 is positive with respect to σ-order. Then (r, s) is a
σ-fundamental system of Δ r and we have our assertion. If Δ r is of type G2,
then Δ = Δr, this contradicts to the fact that r is of type IV. Thus we complete
the proof of the lemma.

For any roots s of Σ r, s"5*" are vectors in I)~ which have a same direction.
Among the vectors s* there exists a uniquely determined vector r* such that
the absolute value of the length of r* is minimum. We call r* the representative
vector of Σ r and denote by Δ* the set of representative vectors. From the defi-
nition, there exists a one to one correspondence between the set of the classes
of equivalent elements Σ r and the set Δ*. Therefore we denote hereafter Σ r by
Σr . For any root r in Σ>*, we denote by wΐ the restriction to ί)~ of wr (resp.
wr wj* or wr+?) if r is of type I or II (resp. of type III or of type IV). Then
w* is an orthogonal transformation of ί)~. Moreover we can easily see that
( 4 ) if 5L — 52, then we have w?(sι) ~ w*(s2\
( 5 ) if rx — r2, then we have te;*(5) — wTt(s).

Therefore w* is independent of the choice of r in Σr and uniquely determined
by a class Σr ., i e., by an element r* of Δ^ and we denote it by w%

We denote by W* the finite group generated by w% for all r* € Δ*. Then
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we have

PROPOSITION 1. Δ* is a root system in i)~ and W* is the Weyl group
of Δ*, i.e., Δ* and W* satisfy the following conditions:
( 6 ) Δ* is a finite subset of ϊj~.
( 7 ) The vector space ί)~ is generated by Δ*.
( 8 ) If r* £ Δ*, then — r* £ Δ* and zt kr* ^ Δ* for any positive integer k>l.
( 9 ) If r* € Δ*, then w% transforms Δ* into itself and w%(r*) = — r*.

The proof is easily obtained from the definitions of Δ* and W*. We call Δ*
the restricted root system of g and the rank of Δ* the restricted rank of Q.

1. 3. Now let

(10) Π = [ah ,α,_,0, at-ι0+h ,#,}

be a σ-fundamental system of Δ such that Πo = {a^ι0+ι, ,at] is a fundamental
system of Δo. The σ-order of Δ induces on Δ* a linear order which we call a
σ-order of Δ*. We can construct a fundamental system I F of Δ* with respect
to the σ-order in the following way which we call a restricted fundamental
system relative to ίp.2 ) Namely, there exists a permutation i-*i' of order 2 of
the set of indices {1, ,/ — l0} such that

i

at = a*, + Σ cf>ah cj4) ^ O f c r l g i g / - /0

3).

Thus we can put I — l0 = pi + 2/>2, p\ Λ- p2 — p and

£ for 1 ^ / ̂  A

(11) /' = / + A for A + 1 ^ i ^ A + A

U - A for A + A + 1 ^ ί ^ A 4- 2A

Now we put Π* = {at, ,ap], then we have

PROPOSITION 2. Π* is a fundamental system of A* relative to a σ-order
of Δ*, i. e., it satisfies the following conditions :

(12) αf is an element of Δ*.
(13) a*, ,a% are linearly indenpendent.
(14) If i+j, then — 2(a}9a*)/ (a*9 a*) is a non-negative integer.

V

(15) For any positive root r* € Δ*, r^ can be expressed by r* = ^ ctα*,
ί

where ct are non negative integers.
I

PROOF. AS for the proof of (13) and (14), see Satake [3]. If r = ]Γ ctαt is

2) cf. Satake [3], Lemma 1, p. 80.
3) cf. ibid.
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Pi V

a root in Δ, then we have r* = X)c1a* + 2 ^ Q α * . Therefore we have (15).
i

We shall prove (12). Assume that there exists a root r* such that \aξ\ ^ | r * | .

Then α* = £ ί Σ cia* + 2 Σ Ciάt), where r = ]JΓ c4αt and & Ξg 1 is a rational
M-l i-Pi + I ' i-1

number. Since a*9 ,a* are linearly independent and ct are non negative integers,
Cj = 0 if 7 4 s ί and ct = k = 1. Therefore α* is an element of Δ*.

We denote by W the Weyl group of Δ. Let Wσ be the subgroup of W
consisting of all w € W such that wσ = σze;, what is the same zt>ϊ)~ = ΐ)~ let
W'o be the subgroup of W" consisting of all v z ϊ)~ such that tί (τ ) = v for all
v ^ ί)~. Then T̂ o is a normal subgroup of Wσ and the factor group Wσ / Wo

is isomorphic to Wr^4).
Let p be the natural homomorphism of Wσ onto W^ and we put p(w) = w*

for w € Wσ. Then we have that w transforms Σ> onto S w*(r*), for, if 5 <= Σr and
w e Wσy we have tc (s)* = w*(5*).

2. Construction of an involution.

2.1. The notations being as in previous section, let (Hu ,Hl9Xr,r € Δ)
be a base of Qc which satisfies the following conditions and we call it a canonical
base of qσ:

H t € ^c ( 1 ^ / ^ Z ) , Xr ^ gr (r £ Δ)
[if, Xr] = r(H)Xr for i f € ^ , riH,) is an integer for l ^ i ^ l .
[Xn X-r] = Hr where Hr = 2H'r / r(H'r)
[Xn Xs] = ΛΓr,5 Xr+5 if r + 5 4= 0 is a root,

= 0 i f r + 5 + Ois not a root,

where AΓr)S = i t (p + 1), /> being the greatest integer i ^ 0 such that 5— ir is a
root.5)

We shall define an automorphism σc of gc such that

σcHr = Hr and σaXr = MrX̂ "

where μr are integers which shall be determined as follows.
In order that σσ is an automorphism, it is sufficient that μr satisfy the fol-

lowing relations :

(16) NrjSμr+s = N^s μrμs,

(17) MrM-r=l.

So that we shall define first the numbers μr for the roots of Π. Namely we put

μΛi = — 1 for cii € Πo and μai = 1 for at € Π — Πo.

4) cf. Satake [3] Proposition A, p. 108.
5) cf. Chevalley [2], I, Th. 1.
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For any positive root r, there exists a series of roots (ru rN) such that

n = ak, rs = n.-! + aij (2 ^j ^ N, 1 ^ iu M ^ΐ), rN = r.6) Therefore we put

μr = Sμahμaii μaiN

Then we can easily see that μr is independent of the choice of the series (n, ,rN).

Thus μr is uniquely determined by μav , μav For any negative root — r, we

put ιχ-r = Mr~ι In this way we can define the numbers μr for all root r £ Δ
which satisfy the relations (16) and (17). From definition, we have μΎ — ± 1
for any root r £ Δ. Moreover, we have μr = — 1 for all root r 6 Δo and μτ = l
for all root r of type III. The automorphism σo defined here is of order 2 or 4.

2.2. Now let K be an arbitrary field with involutive automorphism

ξ -* f> f € K. Let i^0 be the subfield of K consisting of all the elements ξ of K

such that ξ =~ξ. Then we have K = K0(θ) for some element θ of K, and 02 = a

is an element of Ko. Let g* be the Lie algebra over K generated by Ht ® 1^

(1 ^ i ^ /) and X r ® l ί ( r ί Δ) where ® is the tensor product and 1* is the

unit element of K. We denote them again by H*(l ^ ί ^ /), X r(r € Δ) and they

form a base of QK which we call a canonical base of qκ.

We shall define a semi-linear automorphism σκ of g^ of order 2 such that

σκξHr = f jF/r, σKξ Xr = ζvr Xr

where ξ £ K and vrzK which shall be determined as follows.
Let Π = [au ,aL} be a σ-fundamental system of Δ defined in 1.3. We put

Pat = - 1 for / - l0 + 1 ^ i ^ /, Pat = 1 for 1 ^ i ^ A

Uα. = ẑ α/ = 1 for A + 1 ^ i ^ />! + />2 if μ^/iα, = 1

Vαf = #, i v = Λ"1^ for pi + 1 ^ i ^ A + />2 if μα,/*^ = — 1.

For any positive root r, we put

where £ = zt 1 defined by (18). For any negative root — r, we put v~r = Vγ'1.

Then vr £ K satisfy the following conditions which show that σκ is a semi-
linear automorphism of $κ of order 2.

Nr,s Vr+S = Nr,ϊVrVs, VrV-r = 1, VrVr = 1

In fact, the first two relations are obvious from the definition. The third

relation is true for the roots at (1 fgj i t==Ξ ΐ) For any positive root r, we see that

vr = 8vai VHN

 a n c l vr = ^"^άi, α̂T̂  Therefore we have vrvr = 1.

6) cf. Abe [I], Lemma 1.



250 E ABE

3. Chevalley groups.

3.1. Let qσ be a semi-simple Lie algebra over the complex number field C
and ΐ)c be a Cartan subalgebra of ĝ . g# being as in 2.2, let (Hu ,HlyXr,
r £ Δ) be a canonical base of g*. We denote by P the additive group generated
by the weights (with respect to %) of all representations of qσ and by X the
group of all homomorphisms of P into the multiplicative group K* of non zero
elements of K. For any element % of X, there exists an automorphism of g*
such that Ht -> Hu Xr -• χ(r) Xr which we denote by h(χ) we denote by §
the group of all automorphisms h(χ) of QK for % € X.

For any r € Δ and any ξ € K*, we denote by %r,£ the element of X such
that Xr^s) = feW); we denote by ξ)' the subgroup of ξΓ generated by h(χr,ζ) for
all r € Δ, ξ € ϋΓ*.

For any root r € Δ, we put .rr(£) = exp|(ad Xr) for ξ € C. Then there is
a matrix Ar(T) whose coefficients are polynomials of T with integer coefficients
such that the matrix of xr(ξ) with respect to the canonical base of ĝ  is Ar(ξ).
Making use of the matrix Ar(T) and of the canonical base of g*, we can define
an automorphism of qκ which we denote also by xr(ζ\ ξ £ K. Denote by U
(resp. S3) the group of automorphisms of g* generated by xr(ξ)9 ξ € K, where r
runs over all the positive (resp. negative) roots with respect to the linear order
of Δ defined by a σ-fundamental system Π.

Now we denote by G the group of automorphisms of QK generated by ξ>, U

and 23 and by G' the subgroup of G generated by Q and S3. Then we have

& a G' and G' is a normal subgroup of G and

G/G'^%/ψ, G Π Φ = ^ .

3. 2. For any two positive roots r,s in Δ, we have

*r(ξ)XsW) Xr(- ξ) = XM) ΠXir+άQ^gn*)

where the product is taken over all pairs (i,j) of integers such that ir + js is a
root, the pairs being arranged such that the roots ir + js form an increasing
sequence, and where C i J ; r s are integral constants depending only on Δ.7)

For any root r, there is a homomorphism φr of SL2 (K) onto a subgroup
of G such that

J X_lξ), φr (
1 ^) = xXξ), φr

We denote by ωr = φ r ( J, then we have

7) cf. Chevalley [3] p4 36.
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where ηr,s = ± 1 depending only on Δ.

For any % € X and r £ Δ, we have

h(χ)xj® KxΓ = xXχ(r)ξ).

We denote by 2ΰ the subgroup of G generated by § and the elements ωr

for all root r z Δ. Then there exists one and only one homomorphism r of 2B
onto the Weyl group W which has the following conditions: If ω e SB is map-
ped by T onto an element w of W, we have

where χ' € X is defined by χ'(s) = ^ ( w 1 ^ ) ) ; the kernel of r i s ξ>.

For each w € W, we denote by Û , the subgroup of tt generated by all
*v(£)> ξ * K, such that r > 0 and τx (r) < 0. We choose a representative system
of the classes of 2B modulo ξ) and denote the elements of the system by ω(w\
w £ W. Then we have that every element in G(resp. G') is written uniquely
in the form uhω(w)u where u £ U, h € ξ>(resp. h € ξ)7), w ^ "R7 and z/ € UM,.8>

If β<7 is simple, then excepting the following cases, G' is the commutator
group of G and is simple.

a) K is a finite field with 2 elements and ĝ  is one of the types (A^, (B2)
and (G2)

b) K is a finite field with 3 elements and ĝ  is of types (Ai).9)

4. Construction and structure of the groups.

4.1. Let g be a real semi-simple Lie algebra and the notations are same as

in previous sections. Let G be the Chevalley group defined by qσ and K. We put

G = [x € G σκxσ~κ = x}.

We denote by G^resp. ξ>, U and 33) the intersection of G^resp. ξ),U and 35) and
G.

We denote by Σ (resp. Σo, Σi) the set of all positive roots in Δ (resp. Δo,
Δ — Δo) we denote by — Σi the set of the roots — r for r <= Σi. Then Σ is
the sum of Σo and Σi and further Σi is the sum of the sets Σr* for all
r* > 0 in Δ*. Moreover each subset is closed under the addition of roots and
σ-invariant. Therefore, denoting by U0(resp. Ui, U7 * and Six) the subgroup of U
generated by xr(ξ) for all the roots r <Ξ Σ0(resp. Σi, Σr* and — Σi) and ξ £ K,
we have

8) cf. Chevalley [2], III Th. 2.
9) cf. Chevaley [2], IV Th. 3.

10) cf. Chevalley [2], Lemma 11̂  p. 41.
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where rf, ,r% are the positive roots of Δ*.10) Further we have

Therefore we have σκ\Xσκλ (Ί U = Ulβ Now we put Ur = I ΰ Π U, then

π — IT U

and any element u € U can be represented by u — ux uN uniquely where

For any root r* £ Δ*, Ur is generated by the following where 5 runs over
all the roots in Σr*.

(19) x*(ξ) = xs(ξ) where ξ e K and ξ = vsξ, for s of type I

(20) xtίg) = xs(ξ)xϊ(v-8ξ) where ξ e K, for s of type III

(21) x%,ι,s+~s (ξ, η) = Λ:.(f) ^ J ) .̂+-C«7)

where η — vs+-sη = Ns,svsίξ, f ° r s oί type IV.

We denote by X the subgroup of X consisting of the elements such that
%(r) = x(r) for all r € Δ denote by § the subgroup of ξ) consisting of the ele-
ments h(χ) for all % € X. For any % € X, we denote by %0(resp. χλ) the homo-
morphism of P into K^ such that %0 = % o n V 3 ! ΐ)+ (resp. %i = % o n ^")
and χ0 Ξ 1 on ή~(resp. χ ^ l on Λ / ^ Ϊ ^ + ) . Then χ0 and %i are elements of
X and % = XoXi Thus A(χ) = Λ(%0)Λ(%i) Therefore, denoting by ξ)0(resp. ξ)x)
the subgroup of ξ) consisting of all the elements h(χ) such that % = 1 on ^~
(resp. on A/ — 1 ή+), we have

§ - $oξ>i, §o n §i = (i).

4. 2. We denote by G(Δ0) the subgroup of ~Gf generated by xr(ξ) for all
r € Δo and all £ € X ; denote by G(Δ0) = G(Δ0) Π G'. Now we denote by 3
(resp. 3 ) the subgroup of G generated by φ (resp. ξ>') and G(Δ0). Then we
have

Moreover we have

LEMMA 3. 311 = U3, U Π 3 = (1) and U Z5 a normal subgroup of U3

PROOF. If r € Δ — Δo and 5 € Δo, then we have (r+5)^ = r*. Therefore

the elements xs(ξ) Ur*xs(ξ)~ι for xs(ξ) € Γt0, ω(w)wr*ω (te;)"1 for te; € ^ and
huΊ* h~ι for /ι <Ξ § are contained in U,r*. Thus ^Wr*̂ "1 € Ur* fl U = Ur*. On the
other hand Ut Π G(Δ0) = U O ) U o n U = (1) and ξ) Π U = (1). Therefore we have

ttΠ3 = (i).

LEMMA 4. There exists a representative system {ω(w)} such that ω(w) is
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an element of G if and only ifwz Wσ.

PROOF. If r € Δo, then σκxr{ξ)σ2λ = X-r(k) Therefore if we denote by σ the in-
volution of SL2(K) defined by

C ί)-U Ml X 1 1 )-ξ

then we have φMx) = <rκ(Φr(x))σκ1' On the other hand

o

Thus ωr = σκω/τγ and we may take ωr» — ωr itself for ω(wr). If r £ Δ — Δ
and is of type I or II, σ^α XfV^1 = xr{v<£) where vr = zb 1. We can easily see
that if vr — 1 (resp. vr — — 1), setting ωr* — ωr (resp. ωr* = Hχr,θ)ωr)y we have
ωr is an element of G\ If r is of type III, there exists a homomorphism φr* of
SL2(K) into G' such that

Hence, setting ωr* = φr* ί J = Λ(%f, yr)ωrω?, we have ωr is an element of

G. Finally, if r is of type IV, in the same way as the case of type I or II,
setting ω,* = ωr+r or ©r* = h(χr+r,θ)ωr+ry we have ωr* is an element of G. Since
Wσ is generated by wr for the roots r € Δo and r € Δ — Δo of type I or II,
wr Wr for the roots r € Δ — Δo of type III and τvr+r for the roots r € Δ — Δo

of type IV, we can choose ω(w) such that ω(w) € G for any w € Wσ. It is
easy to see that, if w ^ Wσ, we cannot choose ω(w) such that ω{w) € G\ Thus
we have the lemma.

Hereafter we shall choose once for all a representative system ω(w\ w € W,
such that ω(w) € G for w € Wσ.

Let w € Wo-. For any r £ Δo, we have w(r) € Δo, for w(r) = w(r) = — w(r).

Therefore ω(w) G{^o)^ω{w)~ι = G(Δ0)§. Thus we have the following:

LEMMA 5. ω{w)^ω{w)~ι = 3 for w € Wσ.

We denote by SB* the subgroup of G generated by 3 and the elements
ω{w) for all w € T^σ. We denote w* the image of ze; by the natural homo-
morphism of Wσ onto W* and we define a homomorphism T* of 2B* onto W*
by

zω(zv) —> zv* for z e 3 and zυ € W<,.

The kernel of T* is 3 Therefore we have 2δ*/ 3 ~ W».



254 E.ABE

We shall choose once for all a representative system of the classes of SB*
modulo 3 and we denote ω(w*\ w* £ W*. (It is sufficient to set ω(w*) = ω(w)
where w is an element of the class of Wσ modulo Wo corresponding to w*.)
Then we have

4. 3. We shall now consider some subgroups of G of restricted rank 1. Let
r be a root in Δ — Δo. We denote by Δ r the σ-invariant subsystem of Δ gene-
rated by r ; we denote by G(Δr) the subgroup of G generated by xs(ξ) for all
s e Δr, ξ € K we set G(Δr) = G(Δr) Π G. Then we have

LEMMA 6. Any element of G(Δr) is expressed uniquely by the following
form:

x = uz or uzωr u where u,u* ζ U Π G(Δr), z € & f] G(Δr).

PROOF. If r is of type 1,11 or III, G(Δr) is a subgroup of type Au and
there exists a homomorphism of SL2(K) onto G(Δr) (cf. 4.2). Therefore the
lemma is true. If r is of type IV, then G(Δr) is a subgroup of type A2 or B2.
Let (α, b) be a σ-fundamental system of Δr. We may assume that a = r, a -f b
— r. For any element x £ G(Δr), we have

x — uhω(w)u, ω(w) = ω(w0) ω(w*) mod 3, tf0 € W .̂

Therefore we can easily see that x = ^^©(ix;*)^^ where ul9 u\ € Ui, z e 3 . If
we set ω(t£/*) wί ©(to*)"1 = vu then ©(w^σjj. Wjσi^te;*)"1 = σκ vλσγ and Wî t x
= σκuιzvγσγ. Since Ui3 Π 25i = (1), we have that vγ and uxz are elements of G and
also, since \Xλ Π 3 = (1), we have that ux and £ are elements of G. Therefore
#!,£ and u[ are elements of G(Δr). Thus the lemma is proved.

Now making use of the lemma 6, we can prove the following proposition
in the same way as in Lemma 10, p.40, of Chevalley [2].

PROPOSITION 3. G = U$2>*U.

Thus we have the following structure theorem on G analogous to that of
Chevalley groups.

THEOREM 1. The group G is the union of the sets U3ω(w*)Vίw* where w*
runs over all the elements of the restricted Weyl group W* and Qw* is the
subgroup of U generated by the subgroups Mr* such that r* > 0 and w*(r*) < 0.
The sets are disjoint each other and an element x of U3ω(^*)Ut«* is expressed
uniquely by the form :

uzω(w*)u where u € U, z € 3 and u £ \XW*.

COROLLARY 1. The group G' is the union of the sets U3'ω(^*)Uw where
w* runs over all the elements of the group W*. The sets are disjoint each
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other.

COROLLARY 2. U3 is the normalizer of \X.

PROOF. We have proved that, the normalizer of U contains U3 Let x be
an element of the normalizer of U let x = uzω(w*)u\ u z Q, z € $, u £ U,w*.
Then ω ( ^ ) is an element of the normalizer of U. Therefore ω(zv^)Ur*ω(zv^)~1

— U«,*(r*) (Z U for all positive root r*. The operator w* which transforms any
positive root to a positive root is the identity. Thus ω(w*) € 3 and we have
x € 113.

COROLLARY 3. 2B* is the normalizer of φ1#

PROOF. We have proved that the normalizer of ξ)j contains 2B*. Let Λ: be
an element of the normalizer of § x and let x = uzω(zv*)u\ u € U, 2 € 3?
w' £ U™*. For an element h £ ξ)x, we set h' = xhx~ι <= § x . Then

uzω(τv*)u'h = uz(ω(w*)hω(w*yι) ω(w^)(h~1uh) = {h'uh'~ι)h'zω(w*)u .

Therefore we have u = KuK~ι and u = h~ιuh. Since /ι is an arbitrary element
of §!, we have w = 1 and also u = 1. Thus we have x =

COROLLARY 4. 3 is the centralizer of ξ>i.

PROOF. We have proved that the centralizer of ξ>i contains 3 Let x
= zω(w*) € W* be an element of the centralizer of φj with z € 3 Then h(χ)
= ω(w*)hω(w*yι = h(χ) for all h(χ) € φ^i.e., % = %' on ή~. Therefore we
have w* = 1 and α: = z € 3

5. Some maximal subgroups.

5.1. Let Δ be a root system of a semi-simple Lie algebra over C; let Π
= {au ,aL] be a fundamental root system of Δ. For any integer i, 1 ^ i rg I,
we denote by Γ(ί) (resp. Δ(i) and Σ(t)) the subset of Δ consisting of all roots

I

r — Σ ck<^k such that ct §: 0 (resp. ct = 0 and ct > 0). From definition, 2

consists of positive roots and Δ ( 0 is a subsystem of Δ. Further Γ(i) is the sum
of Δ(i) and Σ(i>, and Δ is the sum of Γ(i) and — Σ^, where — 2 ^ is the set
of the roots — r for r € 2(i).

We denote by W^ the subgroup of W generated by zvr for all r € Δ(i),
and we set As,r = 2(s,r) / (r,r) for any two roots r,s in Δ.

LEMMA 7. For any element w £ W, we have w ^ W(i) if and only if
xv transforms Δ( ί) and Σ ( i ) onto themselves.

PROOF. If w z W(i), it is easy to see that w(Δ{i)) = Δ( i ) and w(S(t)) = Σ(i>.
Suppose t£;(Δ(i)) = Δ( i) and zv(X(i)) = Σ ( i ). Since w(tt Γϊ Δ(<)) = Π ! is a fundamental
root system of Δ(ί), there exists an element wx € W(t) such that ze^zί̂ Π Π Δ(<))
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= Π Π Δ(ί). On the other hand Witc^Σ(o) = Σ(i>. Therefore wxw transforms any
positive root onto a positive root and we have zviiv = l,i.e., w = wf1 € W(i).

LEMMA 8. For any element w £ W such that w ^~ W$), there exists a
positive root s of Γ(i) such that w(s) or w~ι(s) is a root in — 2(«.

PROOF. Since w € W(ί), from lemma 7, we have w(Δ{i)) 4= A(i) or te;(Σ(o)
=j=Σ(ί), i e., there exists a root r € Δ ( ί ) such that w(r) € (dz Σ(i>) or there exists a
root r £ Δ(t) such that zε>(r) € (— Σφ) or Δ (<). In the first case, since r € Δ(o,
there exists a root r € Δ( i) such that w(r) € (—Σ(i)). In the second case, if
zv(r) € Δ(ί)for r € Σ(«, then — r = w 1 ze;(— r) € (— Σ(o) where w(— r) € Δ(, ).
This completes the proof.

LEMMA 9. For any root r in Σ(D, there exist a positive root s and an
element τvί of W^ such that Wιivrw^\s) = — at.

PROOF. First we assume that Ar,ak ^ 0 for any root ak,kφi. Since Ar%ak

Aak,r ^ 0, we have also AΛk,r ^ 0. Therefore the root wr(ak) = ak — Aak,rr is
positive, for r is a positive root. Since wr 4= 1, we have wr{aι) < 0. In fact, if
ΊVriβi) > 0, then wr transforms all positive roots onto positive roots and wr = 1.
This is a contradiction. Therefore, setting s = — wr(aι), we have wr(s) = — at.

If there exists a root ak, k =4= i, such that Ar,ak > 0, then we have s = Wat(r)
— r — Ar,akak is a root in Σ(t). Then wakwrWal = 'Ws where ze;αfc € WV). For
root s, if there exists a root αΛ, £ 4 s *\ such that A,α* > 0, repeating this process,
we may reduce this case to the first case.

5.2. Let Δ*, Π* = (a*, ,a%) be a restricted root system and its σ-funda-
mental system respectively. For any integer z',1 ̂  i ^p, we define the subset
Γ*(1), Δ*(<) and Σ*( t) as in 5.1. We denote by G( i) (resp. G'(i)) the subgroup of
G (resp. G') generated by 3(resp. 3') and Ur* for all roots r* e Γ*(i). We shall
prove that the group G( i ) (resp. G\iy) is a maximal subgroup of G (resp. G').

LEMMA 10. G is generated by the subgroups 3 and U±α*, l^k^p, and

G' z5 generated by the subgroups U± α , l^k^ p.

PROOF Let Go be a subgroup of G generated by 3 and tt±a*k, 1 ^ * ^ A

Since W"* is generated by wa*, 1 ^ A ̂  A Go contains 2B*. For any root r*

of Δ*, there exists an element w* € W"̂  such that w*(r*) = αj or — at for

some A. Therefore we have ω(w*yiVί±a*ω(w*) = VL* C Go. Therefore we have

Go = G. Similarly, we can prove the second assertion.

PROPOSITION 4. The group G(i) (resp. G'(i)) is a maximal subgroup of G
{resp. G'). The intersection of the groups G ( ί ) (resp. G(t)), l*^ki^p, is 1X3

PROOF. Let H be a subgroup of G such that H^G{i); let ί + 1 be an
element of H such that :r ^£ G ( i ). Then α: = uzω(w*)u, where u,u £ U and
z € 3- Since w,w' and J2: are the elements of G(4), we have ω(w*) ^ G ( i ) and
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# 4 = 1 . Therefore w* <£ W%). From lemma 8, there exists a root s* <= 1%
such that w*(s*) or w*'1^*) is a root of — Σ*i). Since ω(τe/*) and Us* are con-
tained in H, ω(w*)Vl'S*ω(w*yι and ω(tf^)~1Us ω(^4(") is contained in H. Therefore
we have 11+,* c H for a root f* £ Σ ( t ). Thus we have ω(τx ί ) € H". We have
also ωiwfwϊ w*'1) £ AT for all w* ^ W%)> for ω(wf) £ ϋ Therefore, from lemma
9, we have U_α* d H. Thus U±α* (1 ̂  & fg p) and 8 are contained in H. From

lemma 10, we have H = G. This proves that G(ί) is a maximal subgroup.
Similarly, we can prove that the group G'φ is a maximal subgroup of G'.

Since G( ί ) contains IZ3, we have that the intersection of the groups G(i)

contains US- Suppose that an element x = uzω(w*)u of G contained in the
intersection of the groups G(i). Since w* € WQ), from lemma 7, w*(α*) € 2*o
for 1 5g z' :g />. Therefore w* transforms any positive root onto a positive root.
Thus u>* = 1 and we have that r is an element of 1X3- Similarly, we can prove
that the intersection of the groups G'(i) is IX3'U).

6. Proof of simplicity.

6.1. In this section, we assume that G is a group of restricted rank 1. From
theorem 1, we have that G is the union of two sets Ur*S and lXr*3ωr*Ur*

where r* is a restricted σ-fundamental root. Therefore M = Qr*8 (resp. M'

= Uτ 3') i s a maximal subgroup of G (resp. G').

LEMMA 11. Let N be a normal subgroup of G', 4 s ( 1), then M N = G'.

PROOF We assume that N C M'. Let x — uz be an element 4= 1 of M'.
If w ψ l , then ωr* x ω^1 = ;ωr* w ω^1 ω^ zωγ* = v z where v 4= 1 is an element
of U,;_r* and z' € 3 ' Therefore we have ω^ x ω^1 € M' and this contradicts to
the assumption. If u = 1 for all x € N,i.e., N CZ $', being # an element 4= 1 of
N, there exists an element u of U? such that u~ιzuz~ι = W ^ ' + l. Since it is
an element of N, this contradicts to the assumption. Thus we have N(jtiM'.

Since M' is a maximal subgroup, we have N M1 = G'.

LEMMA 12. If K0^F2 and F3, then G' is its own commutator group,

where FQ is a finite field with q elements.

PROOF. It is sufficient to see that the elements of G defined by (19), (20)

and (21) in 4.1. are commutators of elements of the group G\ We denote by

(χ> y) = xy x~ι y'1 for any elements x,y of G\ Then we have

(Kχr,ζ), x%ξ)) = x*M2 ~ 1)1) for the root r of type I or II

(Wχr.{ Xr.ί), xίM) = &M% - 1)1) for the root r of type III

11) The lemma 3 in [2] is not true if the characteristic of the field is 2 or 3 and Qc is of type
Bι, Cι, FA or G2. Bυt the proposition 3 in [2] is true for all cases which can be proved by
the same way as the proof of this proposition.
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for the root r of type IV, where w = ± 1 or ± 2.
Since there exists an element ξ of Ko such that ξ2 4= 1, we have the lemma.

PROPOSITION 5. / / ^ 0 + F2 and F3 and if Δ* is of restricted rank 1,
then G' is a simple group.

PROOF. Let N be a normal subgroup + ( 1 ) of G'. From lemma 11, we
have N M' = G'. Since Ur* is a normal subgroup of M\ NUr* is a normal sub-
group of G'. Therefore ωr* Ur* βv1 = U_?- is contained in N Ur*. Therefore we
have N Ur* = G\ Then we have

G'/N=NUr*/N~Ur*/Ur*(}N.

Since G' is its own commutator group and Ur* is a nilpotent group, we have
G' = N. Therefore G' is a simple group.

6. 2. To prove simplicity for general case, we shall first have some relations
between the root system and the restricted root system.

LEMMA 13. Let r*, s* be two roots of a σ-fundamental system Π* and
assume that r* + 5* is a root of Δ*. Let r be a root of Σ, and s be a root
of Σβ and assume s 4= s. As for the roots of Δ which are expressed by linear
combinations of r,r and s,s with positive coefficients, the only following cases
are possible.

0) r , r ; 5 ,5 r + s , r + s

1) r ( = r) s ,s r + s, r -\- s r -\- s -\- s

2) r, r s ,s r + s , r + s r + 2s , r + 2s

3) r ( = r ) ; 5 , 5 , 5 + 5 ; r - h 5 , r + 5 ,2r + 5 + 5 ; r + 5 + 5

4) r , r ; s , s , s + s ; r + 5 , r - + - 5 , r + r-l-s-l-5;r + 5 + s , r- l- s4-s .

PROOF. We denote by Δr,s the σ-invariant subsystem of Δ generated by r
and s. The involution σ induces on Δr,s an involution which we denote also by
σ and σ-order of Δ induces a linear order of ΔΛ S which we call also a σ-order
of Δr>s. Since σ is not the identity on ΔΛS, if the rank of ΔΛ S is 2, then its
restricted root system Δ r * is of rank 1 and this contradicts to the assumption
that r* + s* is a root of Δ*. Therefore the rank of Δr,s is 3 or 4.

I) The case that the rank of ΔΛ S is 3.
We have only a following case:

/ \
o o o This is the case 1) of the lemma.
5 r

II) The case that the rank of Δr>s is 4.
We have only the following cases:
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i) o 6 ^ * ~ ^ o — - ^ o This is the case 0) of the lemma.

ii) O — — — o o-———-ό This is the case 4) of the lemma.

iii) ° - • = = > # This j s fae c a g e 3^ o£ t ] i e l e m m a

Γ S

iv) ° :β—"'" ' '' O" ' This is the case 2) of the lemma.
Γ S

v) ° °t=:::^_. This is the case 1) of the lemma.12)

r S: ""•

6.3 Hereafter we consider the groups G, G' constructed from a real simple
Lie algebra. Therefore the restricted root system Δ* is simple. Then we have
the following lemma.

LEMMA 14. Let N be a normal subgroup of G'. If there exists a root
r* <= Δ* such that Ur C N, then we have N = G', except the case that Δ* is
of type G2 and Ko 4= F2.

PROOF. If all the roots in Δ* have the same length, then any two roots
in Δ* is transitive by an operation of the Weyl group. Therefore we have Vis*
contained in N for all roots 5* € Δ*, for ω (w^VLf ωiw*)'1 = IIw*(r*) is contained in
N. Since G' is generated by Qs* € Δ*, for all s* ζ Δ*, we have N=G'. Suppose
that Δ* contains two roots whose lengths are different each other. If Δ* is of type
G2, then Δ* = Δ, and G' is a Chevalley's group. This case has been proved by
Chevalley [2], p.63. Therefore we suppose that Δ* is of not type G2. Let r*,
s* be two roots in Δ* such that the lengths of them are different and that
r* + 2s* is a root. Then we have that the lengths of r* and r* + 25*, the
lengths of s* and r* + 5^ are equal respectively. Since any root in Σr*+S* or
Sr +2** can be expressed by a linear combination of a root in Σr and roots in
Xs* with integer coefficients, we shall consider each cases separately.

If r = r and 5 = 5, then we have

12) In the root diagram, black vertices represent elements of Δo; white vertices connected
by an arrow < > are those which are corresponding to each other by the permutation
i->i' of (11); O = > O means (r,r) = 2(5,5). cf. Tables in Satake [3], p. 109, and Sυgiura

[5], p. 113.
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where Nr,8 = ± 1, y NStrNS}r+s = ± 1.

If r^=r or 5 + 5, then we have the cases 1) ~*- 4) in lemma 13. Notations
being same as (19), (20) and (21), we have the following relations.

Case 1)

(23) xϊ{ξ)xUrί)*ϊ (I)"1 = aSMtiwiFr.Jtn^

where NSiT = ± 1, iVS|r+s = ± 1.

Case 2)

(24)

where iVs,r = ± 1, - | NS)rNr+s,s = ± 1.

Case 3)

(25) ^KvifeMί)- 1

X*r+Sirs(Nr+srsNrtSV$ξηη + Λ Γ r , s + ^ ) ^ , M + i (

w h e r e iVs,r ~ Ni. |β+ϊJVr jr+.+f, Nr,.+s and Ns,r+-sNsyr a r e zfc 1.
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Case 4)

(26) ^f^ ^fKfίβ-1

η9 Λ/r,r+«+sA/r,s+βf ζ)Xr+s+s,r+8+s\Nrs+

where Nr,s, Nrtr+s+~s, etc. are all ± 1 .

Therefore if Ur* and Ur»+2s are contained in N, then Ur»+8 is also contained in

N. Further if Us* and Qr*+s* are contained in N, then Ur*+2* is also contained in

N. Thus we have the lemma.

PROPOSITION 6. If G is a group of restricted rank ^ 2, then G is its

own commutator group except the cases that Δ* is of type B2 and Ko is a

field with 2 or 3 elements.

PROOF. Since the commutator group G' of G is a normal subgroup of

G', from lemma 14, it is sufficient to see that there exists a root r* € Δ* such

that IXr is contained in G1. If Δ* is of not type J52, there exist two roots r*> s*

of Δ* such that (r*, 5*) forms a σ-fundamental system of type A2. The roots in

Σr*+S* can be expressed by sum of a root r in Σr* and a root 5 in Σs*. If

r = r and 5 = 5, we have

(x£ξ\ xs{η)) = xr+s(KJv) where NrtS = ± 1.

If 5 4*5 or r + r, then we have the case 0) of lemma 13. Thus

where Nr,s = ± 1. Therefore, we have Qr*+s* Cl G " and G7/ = G. If Δ* is of

type B2, denoting by (r*, 5*) a σ-fundamental system of Δ "̂, as for the possible

relations between roots of Σr* and Σs*, we have the cases 1) ~^ 4) of lemma 13.

We assume that the field Ko =+= F2 and F3. So there exists an element λ of Ko

such that λ2 + 1.

Case 1) From (23), we have

X = (x*r(l), X*Aη)) = XΪ+s,r+Ίί± 77)x*+8+s(± Vsrfη)

Case 2) From (24), we have

X = « s ( l ) , X%ξ)) = X*+s,r+ϊ(±

(KXr λXr,λ), X) = XΪ+s,r+s(± (λ -

Case 3) From (25), we have

x = (α:* (1), ^ Ϊ , , ^ ^ , ?)) = ^ί+S)r+-,,2r+ί+'5(±: 77,

), ^ ) = ^ί+ S )r+ i ) 2r+,+ ' S(± (λ - 1>7, ± ^r+S (λ - 1>^ + (λ2 - 1)?)
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Case 4) From (26), we have

x = O*,-r(l), #* M+s(i7, ξ))

= xί+s,r+s,r+s+r+s(± V, ± ζ)**r+s+-iίr+g+s(± ζ±Vsψj)

= X*r+s,?+ϊ,r+s+r+ϊ(± ( λ ~ 1>7, ± 1>r+SQ<> ~

Therefore we have lZr*+ί* is contained in G" and G" — G\

Now we have the following theorem.

THEOREM 2. Let G' be a group defined by a real simple Lie algebra g
and a field K = K0(θ) as in 4.1. Then G' is simple except the folloτving
cases:

a) Ko is a finite field with 2 elements and Δ* is of type Au B2 or G2.
b) Ko is a finite field with 3 elements and Δ* is of type Aλ or B2.

PROOF. Let JV be a normal subgroup + (1) of G\ Then in the same way
as the proof of lemma 9, we have that there exists a maximal subgroup G'(i)

such that NG'(ί) = G'. Let U(i) be a subgroup of G'(ί) generated by the
subgroups IXr* for all r* £ S(i), then it is normal in G'(ί). Since N]X(ί) is a normal
subgroup of G' and contains Uα*, we have ΛfU(i) = G'. Then

/N^u(i)iα«, n N.
Since G' / N is its own commutator group and U <o is nilpotent, we have G' / N
= (1), i.e., G' = N. This completes the proof of the theorem.
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