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Introduction. In this paper we shall construct the simple groups analogous
to the non compact real forms of the simple Lie groups and extend to them
the structural properties of the groups of Chevalley [2]. The family of the
groups obtained here contain some simple groups constructed by R.Steinberg
[4]. Further it seems that the simple groups obtained from the Lie algebras of
classical types are identified with the simple groups obtained from the unitary
or orthogonal groups of non zero indices.

Whether the infinite groups constructed are new or not has not been settled
yet, it seems that there are no new simple finite groups among them.

Section 1 contains preliminaries from the theory of real simple Lie algebras
and we shall introduce the restricted root systems (cf. [3]) which play an im-
portant role throughout the paper. Section 3 contains brief description of Chevalley
groups constructed in [2] from an arbitrary field and a complex semi-simple Lie
algebra. In section 4, making use of the involution defined in section 2, we
define the groups analogous to the real forms of the semi-simple Lie groups and
also we shall have some structural properties of the groups. In section 5, we
shall introduce some maximal subgroups of the groups which are analogous to
those of [1]. Excepting few cases, the proof of simplicity of the groups obtained
from the simple Lie algebras is given in section 6.

1. Restricted root systems.

1.1. Let g be a semi-simple Lie algebra over the field R of real numbers
and let £ be a maximal compact subalgebra of g, i,e, a subalgebra of g cor-
responding to a maximal compact subgroup of the adjoint group of g. Let gr
be the complexification of g. Then there exists a uniquely determined compact
form g, of gc such that g N g, = f and that, denoting by p the orthogonal comple-
ment of f in g with respect to the Killing form, we have

Let )~ be a maximal abelian subalgebra in p; it can be extended to a
Cartan subalgebra §) of g, i.e,, a maximal subalgebra of g such that the adjoint
representation of any H < Y) is semi-simple. Then we have
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h=9"+9, H*=bHNEL H =HNp
Let he be the complexification of § and let

ge = [)0 + Z dr
TEA
be the corresponding Cartan decomposition of gr where A denotes the root
system of go relative to §c. Let further §), be the subspace of §); over R consisting

of all H € Y, such that 7(H) is real for all r € A, then §, =o/—15* +§=; 0,
becomes a real euclidean space with respect to the Killing form, so that we can
consider A as a subset of §y(i. e. we identify € A with the uniquely determined
element H, of §, such that (H;,, H) = r(H) for all H < %,, ( ) denoting the
Killing form).

Let o be the conjugation of g, with respect to the real form g. o induces
an orthogonal transformation of ¥, which leaves A invariant. We denote a(r) by
r for r € A and put

A={reA;r=—r}

A, becomes a subsystem of A; we denote the ranks of A, A, by Z, /, respectively.
In A we can define a linear order satisfying the following property which
we call a o-order:

If r& A, and » >0, then »> 0.

(For instance, take a lexicographical order with respect to a base (H,,------,H,) of
B such that (H,,-.-,H,) forms a base of §~.) We call a fundamental system of
A corresponding to a ¢-order a o-fundamental system.” If II = {a,, -4} is a
o-fundamental system of A, then Ho =TI N A, is a fundamental system of A,.

For any root r = Zciai, h(r) = ch is called the height of the root . From

i=1 i=1
now on we shall assume that g is not compact, i.e., § 5= (0) what is the same

A—A, #(0)

1.2. Consider now the set A — A,. For any vector v in §), we denote by
v* the projection of v to §)~; for any two roots r,s in A — A,, we call r,s are
equivalent if and only if #* = ks* for some positive rational number % and denote
it by » ~s; for any root » € A — A,, we denote by =, the class of equivalent
elements containing . Then 3, satisfies the following properties :

(1) Forryrye 3, if ry+7r, € A, thenr, +7, € 5,
(2) For ry,r, € 3, such that , — r, € A, if , r, and , — r, are all positive
or all negative relative to a o-order, then r, — 7, € 3,

1) cf. Satake [3] p. 80.
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(3) 3=, is o-invariant, where we call a subset A" of A s-invariant if ¢ transforms
the elements of A’ into itself.
On the other hand, the roots » of A — A, have one and only one property
of the following :
I =17 and can not be written as a sum of a conjugate pair of roots.
II =7 and r is a sum of a conjugate pair of roots.
IIl 37 and r + r is not a root.
IV r==7 and r + r is a root.
We call a root » € A — A, is of type L II, III or IV respectively if it satisfies
the corresponding property. Then we have the following :

LEMMA 1. If r € A — A, is of type 111, then r and r are orthogonal.
For the proof, see Satake [3], Appendix, proof of Lemma 2, p.107.

LEMMA 2. If r € A — A, is of type IV, r +r is the only root which
can be represented by a linear combination of r and r with positive coe-

Sficients.

PROOF. Let A, be the o-invariant subsystem of A generated by . Since r
is of type IV, the rank of A, is 2. The linear order of A, induced by a o-order
of A is also called o-order of A,. If A, is of type A, the lemma is obvious.
Suppose A, is of type B,. Then » — 7 is a root. In fact, if » — 7 is not a root,
then 7,7 is a fundamental root system of A, with respect to its o-order. Thus
7+ 2r or 2r + r is a root and then we have both of them are roots in A,.
This is a contradiction. Therefore » — 7 is a root. We put s = — r, then s € A,
and we may assume that s is positive with respect to o-order. Then (7,s) is a
o-fundamental system of A, and we have our assertion. If A, is of type G,,
then A = A,, this contradicts to the fact -that » is of type IV. Thus we complete
the proof of the lemma.

For any roots s of 3, s* are vectors in )~ which have a same direction.
Among the vectors s* there exists a uniquely determined vector r* such that
the absolute value of the length of 7* is minimum. We call 7* the representative
vector of 3, and denote by A¥* the set of representative vectors. From the defi-
nition, there exists a one to one correspondence between the set of the classes
of equivalent elements 3, and the set A*. Therefore we denote hereafter =, by
S, For any root r in 3., we denote by w? the restriction to §~ of w, (resp.
w, wy or w,y) if r is of type I or II (resp. of type III or of type IV). Then
w¥ is an orthogonal transformation of §-. Moreover we can easily see that
(4) if s, ~ s, then we have wi(s,) ~ w¥(s,),

(5) if r, ~ 7y then we have wi(s) ~ wi(s).
Therefore w? is independent of the choice of 7 in 3+ and uniquely determined
by a class 3., i.e, by an element 7* of A* and we denote it by wk.

We denote by W* the finite group generated by wk for all 7* ¢ A*. Then
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we have

PROPOSITION 1. A¥ is a root system in Y~ and W* is the Weyl group
of A¥, ie., A* and W* satisfy the following conditions :
(6) A* is a finite subset of §.
(7) The vector space Y)Y~ is generated by A*.
(8) Ifr* e A, then — r* € A* and =+ kr* & A* for any positive integer k > 1.
(9) If »* € A%, then wh transforms A* into itself and wn(r¥) = — r*.

The proof is easily obtained from the definitions of A* and W*. We call A*
the restricted root system of g and the rank of A* the restricted rank of g.
1.3. Now let
(10) II = {aI, """ sRi—tgy, Al—tytly e ’al}

be a o-fundamental system of A such that II, = {a;_;,41,--a;} is a fundamental
system of A,. The o-order of A induces on A* a linear order which we call a
o-order of A¥*. We can construct a fundamental system IT* of A* with respect
to the o-order in the following way which we call a restricted fundamental
system relative to §-.2 Namely, there exists a permutation i—7' of order 2 of
the set of indices {1,-.-,/ —,} such that

l
a=av+ D cfa;,cP=0frl =i=l-1>.

Juml-ly41
Thus we can put [ — I, = p, + 2p,, p + P, = p and
J ) for1=i=p
11) 7 =11+ p, for pt1=i=p + p,

li—p2 for py + p + 1 =i = p, + 2p,.
Now we put IT* = {af,--,a,}, then we have

PROPOSITION 2. IT* is a fundamental system of A¥ relative to a o-order
of A%, i.e., it satisfies the following conditions :
(12) af is an element of A*.
(13) af,..-,a} are linearly indenpendent.
(14) If i ==j, then — 2(at,a}) / (af, a¥) is a non-negative integer.

V4
(15) For any positive root r* ¢ A¥*, r* can be expressed by r* =)  caf,
i
where ¢, are non negative integers.

l
PROOF. As for the proof of (13) and (14), see Satake [3]. If » = >_ c,a; is

=1

2) cf. Satake [3], Lemma 1, p. 80.
3) cf. ibid.
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n »

a root in A, then we have »* = 3" c,af+ 2 c,af. Therefore we have (15).

i=l b=py+1
We shall prove (12). Assume that there exists a root ¥ such that |af| = |7¥].

n » l
Then af =k (Z caf +2 3 cia}“) , where r = ) _c,a; and k=1 is a rational
i=1

i=p+1 i=1
number. Since af,-.--,ay are linearly independent and c; are non negative integers,
¢; =0 1if j3={ and ¢; = £ = 1. Therefore af is an element of A¥*.

We denote by W the Weyl group of A. Let W, be the subgroup of W
consisting of all w € W such that wo = ow, what is the same wf)~ =5~ ; let
W, be the subgroup of W consisting of all v € §~ such that w(v) = v for all
v € §~. Then W, is a normal subgroup of W, and the factor group W,/ W,
is isomorphic to W*%,

Let p be the natural homomorphism of W, onto W* and we put p(w) = w*
for w € W,. Then we have that w transforms 3,« onto s, for, if s € 3, and
w € W,, we have w(s)* = w*(s*). -

2. Construction of an involution.

2.1. The notations being as in previous section, let (H,, .-, H,, X,,r € A)
be a base of g- which satisfies the following conditions and we call it a canonical
base of g :

H ech (1=:=0), X, g, (r e A)

[H, X,] = r(H)X, for H € Y, r(H,) is an integer for 1 =i =1/.

[X,, X-,] = H, where H, = 2H, / r(H})

[X,, X,] = N, s Xoos if r+ s==0 is a root,

=0 if » + s==0 is not a root,

where N,, = & (p + 1), p being the greatest integer 7 = 0 such that s—ir is a
root.” :
We shall define an automorphism o¢ of g. such that

ocH, = H; and o¢X, = u, X+

where u, are integers which shall be determined as follows.
In order that o¢ is an automorphism, it is sufficient that u, satisfy the fol-
lowing relations :

(16) Nr,sﬂ"r+s = NF,S M Mss
17) pr oy = 1.
So that we shall define first the numbers u, for the roots of II. Namely we put

pa, = — 1 for a; € I, and ue, =1 for a;, € II — II,.

4) cf.Satake [3] Proposition A, p. 108.
5) cf., Chevalley [2],I, Th. 1.
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For any positive root 7, there exists a series of roots (71, 7w) such that
n=anr=7r1+a, Q=j=N, 1 =iy, iv =), rv = 7. Therefore we put

Nay iz, Novis, - Niy_y a

18 &=t 51, Bw
( ) N“il 3P4y Nr, sByy T NT 1%y

Then we can easily see that u, is independent of the choice of the series (71,--,7w).
Thus g, is uniquely determined by pg,, M. For any negative root —r, we

put u_, = u,”'. In this way we can define the numbers u, for all root r € A
which satisfy the relations (16) and (17). From definition, we have u, = %1
for any root » € A. Moreover, we have u, = — 1 for all root » € A, and u,=1
for all root » of type III. The automorphism o¢ defined here is of order 2 or 4.

2.2. Now let K be an arbitrary field with involutive automorphism

£—E & c K. Let K, be the subfield of K consisting of all the elements & of K

such that £ = & Then we have K = K,(#) for some element 6 of K, and ¢’ = «
is an element of K,. Let gx be the Lie algebra over K generated by H; &) 1x
(1=i=!) and X,@®1x (r € A) where Q is the tensor product and 1lx is the
unit element of K. We denote them again by H;(1 =i =), X,(r € A) and they
form a base of gx which we call a canonical base of gx.

We shall define a semi-linear automorphism ox of gx of order 2 such that

O-KgHr = EH;V Ok E XT = gvr Xz

where € € K and », € K which shall be determined as follows.
Let IT = {a,, -,a,} be a o-fundamental system of A defined in 1.3. We put

va,=—1lforl—l,+1=i=lLvs,=1for1=i=p
va,=vay =1for py+ 1 =i =p + pp if papa, =1
Vo, = b,vay = a0 for p, + 1=i = py + py if papa, = — L.

For any positive root 7, we put

where &€ = = 1 defined by (18). For any negative root — r, we put v_, =v,”%

Then », € K satisfy the following conditions which show that ox is a semi-
linear automorphism of gz of order 2.
N,s Vs = Nssvw, vy, =1, v =1
In fact, the first two relations are obvious from the definition. The third
relation is true for the roots a; (1 =:¢=/). For any positive root r, we see that
v, = &va, " Vay,y and v; = E g, va,. Therefore we have vp; = 1.

6) cf. Abe [1], Lemma 1.
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3. Chevalley groups.

3.1. Let g, be a semi-simple Lie algebra over the complex number field C
and Y be a Cartan subalgebra of g.. gx being as in 2.2, let (H,, ,H, X,,
7 € A) be a canonical base of gr. We denote by P the additive group generated
by the weights (with respect to §) of all representations of go and by X the
group of all homomorphisms of P into the multiplicative group K* of non zero
elements of K. For any element ¥ of X, there exists an automorphism of g«
such that H, — H,, X, — x(r) X, which we denote by h(x);we denote by 9
the group of all automorphisms h(x) of g« for x € X.

For any 7 < A and any ¢ € K* we denote by X, the element of X such
that x» /s) = £*™; we denote by 9 the subgroup of  generated by h(xr¢) for
all r € A, ¢ € K*

For any root r € A, we put z,(£) = exp&(ad X,) for £ € C. Then there is
a matrix A(T) whose coefficients are polynomials of 7" with integer coefficients
such that the matrix of x,(&) with respect to the canonical base of g, is A.(&).
Making use of the matrix A,(T) and of the canonical base of gx, we can define
an automorphism of gr which we denote also by z.(§), & € K. Denote by n
(resp. B) the group of automorphisms of gx generated by x,(£), ¢ € K, where r
runs over all the positive (resp. negative) roots with respect to the linear order
of A defined by a o-fundamental system II.

Now we denote by G the group of automorphisms of g« generated by %, I
and B and by G’ the subgroup of G generated by U and 8. Then we have

9 c G’ and G’ is a normal subgroup of G and
G/G=9%/¥%, Gno=9.
3.2. For any two positive roots 7,s in A, we have
z(E)xi(n) x(— &) = x(n) T Zirs 1(C, 5, En')

where the product is taken over all pairs (Z,7) of integers such that ir + js isa
root, the pairs being arranged such that the roots i + js form an increasing
sequence, and where C; j,, are integral constants depending only on A.”

For any root r, there is a homomorphism ¢, of SL, (K)onto a subgroup
of G such that

6.(, )=etoa( D)=a@n 6 () =hoo.

1
We denote by o, = ¢,( 1 ), then we have

o,x(E)w,”" = Zw,(5) (’7r' &)

7) cf. Chevalley [3] p: 36.
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where 7, , = = 1 depending only on A.
For any ¥ € X and r € A, we have

h(x)xA&) h(x)™" = zX(r)§).
We denote by B the subgroup of G generated by $ and the elements w,
for all root » € A. Then there exists one and only one homomorphism = of B
onto the Weyl group W which has the following conditions: If @ € B is map-
ped by 7 onto an element w of W, we have

oh(x)o™" = h(x')
where x' € X is defined by x'(s) = x(w~'(s)); the kernel of ris 9.

For each w ¢ W, we denote by Il,, the subgroup of U generated by all
z(£), &€ € K, such that » > 0 and w(r) <0. We choose a representative system
of the classes of & modulo $ and denote the elements of the system by w(w),
w € W. Then we have that every element in G (resp. G’) is written uniquely
in the form whw(w)x’ where u € U, h < H(resp. h € &), we Wand ' ¢ U,.»

If g, is simple, then excepting the following cases, G’ is the commutator
group of G and is simple.

a) K is a finite field with 2 elements and g¢ is one of the types (A,), (B.)
and (G,)

b) K is a finite field with 3 elements and g, is of types (A4,).”

4. Construction and structure of the groups.

4.1. Let g be a real semi-simple Lie algebra and the notations are same as
in previous sections. Let G be the Chevalley group defined by gc and K. We put

G = {zx € G; opzor' = x}.

We denote by G'(resp. 9, 1 and B) the intersection of G'(resp. $,U and B) and
G.

We denote by = (resp. 3, Z;) the set of all positive roots in A (resp. A,,
A — A,); we denote by — 3, the set of the roots — » for » € 3,. Then 3 is
the sum of 3, and 3, and further 3, is the sum of the sets 3. for all
7* >0 in A*. Moreover each subset is closed under the addition of roots and
o-invariant. Therefore, denoting by U(resp. U,, U« and B,) the subgroup of U
generated by x /(&) for all the roots r € Sy(resp. 2,2+ and — 3,) and & ¢ K,

we have

U= ﬁoﬁl, 1T1 = U ﬁ,,

1 N

8) cf.Chevalley [2], IIT Th. 2.
9) cf.Chevaley [2],IV Th.3.
10) cf. Chevalley [2], Lemma 11,p. 41.



252 E.ABE

where 7, ,rx are the positive roots of A*'® Further we have
oxllox' © B, o‘,(ll,.:a,‘(’ = ﬁ,~;(1 =i=N).

Therefore we have o lUsz' N U = U,. Now we put U« = U« N U, then

and any element # € U can be represented by u =z, uy uniquely where
u, € Uy,

For any root r7* € A¥ ll,. is generated by the following where s runs over
all the roots in 3.

(19)  xXE) = x,(&) where &€ € K and & = v, for s of type I
(20) x¥(E) = 2,(6)x:(vs E) where £ € K, for s of type III
(21)  zhsesEn) = 2,8 T0E) zsn)

where 7 — v, = N, w EE, for s of type IV.

We denote by X the subgroup of X consisting of the elements such that
x(r) = x(7) for all » € A; denote by 9 the subgroup of $ consisting of the ele-
ments A(x) for all ¥ € X. For any x € X, we denote by x,(resp. X:) the homo-
morphism of P into K* such that x, = x on &/ —1 §* (resp. x, =X on §7)
and X, =1 on §~(resp. x, =1 on »/—1 §*). Then x, and x, are elements of

X and % = XoXi- Thus A(x) = h(x,)h(x,). Therefore, denoting by 9(resp. 1)
the subgroup of $ consisting of all the elements A(x) such that x =1 on 9~

(resp. on &/ —1 §*), we have
9 = 991, S N 9 = (1)
4.2. We denote by G(A,) the subgroup of G’ generated by x.(&) for all
r € A, and all £ € K; denote by G(A,) = G(A,) N G'. Now we denote by 3
(resp. 3') the subgroup of G generated by 9 (resp. ) and G(4,). Then we
have
G/GC=3/8=9/9%.

Moreover we have

LEMMA 3. BU =U8 U N3 =Q1)and U is a normal subgroup of U3.
PROOF. If r ¢ A — A, and s € A,, then we have (r+s)* = r*. Therefore

the elements (&) upmx, (€)' for x,(&) € U,, o (wurno (w)' for w e W, and
hus h™! for h € § are contained in ». Thus 2umz™' € U N U = Un. On the
other hand I, N G(A,) =U, U, N U = (1) and $ N U = (1). Therefore we have
ung=qQ.

LEMMA 4. There exists a representative system {w(w)} such that o(w) is
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an element of G' if and only if w € W..

PROOF. If 7 € A,, then oxx(£)ox' = x_,(E). Therefore if we denote by & the in-
volution of SL,(K) defined by

(5= oG D=0 7D

then we have ¢,0(x) = ax(d(x))ez’. On the other hand

(L )= DE D0 =)

Thus o, = o,0,0%' and we may take or, = o, itself for o(w,). If r € A — A,
and is of type I or II, o x(E)ox = x:(v,E) where v, = = 1. We can easily see
that if », = 1 (resp. v, = — 1), setting o~ = o, (resp. wm = A(Xro)®,), We have
o~ is an element of G'. If 7 is of type III, there exists a homomorphism ¢ of

SLy(K) into G’ such that

1

b (1 g) = z{E)z:(v,E), Pr ( £ 1

: )= 2- &z 7b)

Hence, setting o~ = ¢>;~( ) = h(xy, »,)0,07, we have o is an element of

-1
G'. Finally, if » is of type IV, in the same way as the case of type I or II,
setting @ = @r+7 OF @n = A(Xri70)®,5, We have o+ is an element of G’. Since
W, is generated by w, for the roots r € A, and r € A — A, of type I or II,
w, w; for the roots » € A — A, of type Il and w,,s for the roots » € A — A,
of type IV, we can choose w(w) such that w(w) € G’ for any w € W,. It is
easy to see that, if w ¢ W,, we cannot choose w(w) such that (w) € G’. Thus
we have the lemma.

Hereafter we shall choose once for all a representative system w(w), w € W,
such that o(w) € G’ for w ¢ W,.

Let w € W,. For any r € A,, we have w(r) € A,, for w(r) = w(r) = — w(r).
Therefore o(w) G(A)Do(w) ' = G(A,)9. Thus we have the following :

LEMMA 5. o(w)3w(w)™ =3 for w ¢ W..

We denote by * the subgroup of G generated by 3 and the elements
o(w) for all w € W,. We denote w* the image of w by the natural homo-
morphism of W, onto W* and we define a homomorphism 7* of % onto W*

by
zo(w) > w* for z € 8 and w € W,.

The kernel of 7* is 8. Therefore we have B* / 8 ~ W*,
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We shall choose once for all a representative system of the classes of B*
modulo 8 and we denote w(w*), w* ¢ W*. (It is sufficient to set o(w*) = w(w)
where w is an element of the class of W, modulo W, corresponding to w¥.)
Then we have

o(w*) uw&)(w*)_l = Ilw-(m.
4.3. We shall now consider some subgroups of G of restricted rank 1. Let
r be a root in A — A,. We denote by A, the o-invariant subsystem of A gene-
rated by r; we denote by G(A,) the subgroup of G generated by x,(&) for all
se A, EcK; weset GA,) =G(A,) N G. Then we have

LEMMA 6. Any element of G(A,) is expressed uniquely by the following

Sform:
x = uz or uzenu' where upt € U N G(A,), z € 8N GA,).

PROOF. If r is of type LII or III, G(A,) is a subgroup of type A, and
there exists a homomorphism of SL,K) onto G(A,) (cf. 4.2). Therefore the
lemma is true. If » is of type IV, then G(A,) is a subgroup of type A, or B,.
Let (a,b) be a o-fundamental system of A,. We may assume that a =7, a + &
= 7. For any element x € G(4A,), we have

= uho(w)’, o(w) = o(w,) o(w*) mod 8, w, € W,.
Therefore we can easily see that = = u,zw(w*)u; where u,, u; € ), 2z ¢ 8. If
we set o(w*) u; o(w*)™! = v;, then o(w*)ox ujoz'w(w*)™! = o vi6x' and u,2v,
= ogzv,0% . Since ;3 N B, = (1), we have that v, and u,z are elements of G and

also, since [I, N 8 = (1), we have that %, and z are elements of G. Therefore
u;,z and u; are elements of G(A,). Thus the lemma is proved.

Now making use of the lemma 6, we can prove the following proposition
in the same way as in Lemma 10, p.40, of Chevalley [2].

PROPOSITION 3. G = UW*U.
Thus we have the following structure theorem on G analogous to that of
Chevalley groups.

THEOREM 1. The group G is the union of the sets 18w(w*).» where w*
runs over all the elements of the restricted Weyl group W* and U is the
subgroup of U generated by the subgroups U such that r* > 0 and w*(r*) <0.
The sets are disjoint each other and an element x of NBw(w*)lw is expressed
uniquely by the form:

uzo(w*)u' where u € 1, c 8 and u' € U

COROLLARY 1. The group G’ is the union of the sets 1.8 o(w*)l. where
w* runs over all the elements of the group W*. The sets are disjoint each
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other.
COROLLARY 2. UB is the normalizer of U.

PROOF. We have proved that, the normalizer of 11 contains [13. Let x be
an element of the normalizer of [l ;let x = uzo(w*)u’, u € U, 2 € 8, &' € Y.
Then w(w*) is an element of the normalizer of U. Therefore w(w*)Il»o(w*)™!
= U C U for all positive root 7*. The operator w* which transforms any
positive root to a positive root is the identity. Thus (w*) € 8 and we have

x € U3
COROLLARY 3. BB* is the normalizer of 9,.

PROOF. We have proved that the normalizer of 9, contains *. Let = be
an element of the normalizer of 9, and let x = wzo(w*)u', u ¢ U, z € 3,
#' € Uus. For an element & € $,, we set b’ = xhx™' € 9,. Then

u 2o(w*)u'h = uz(w(w*)ho(w*)™') o(w*) A~ 'w'h) = (h'uh'~" ) zo(w*)u'.

Therefore we have « = h'uh’~! and &' = h~'«’h. Since A is an arbitrary element
of 9,, we have #« = 1 and also " = 1. Thus we have x = zo(w*) ¢ W*,

COROLLARY 4. 3 is the centralizer of 9.

PROOF. We have proved that the centralizer of $, contains 8. Let x
= 20(w*) ¢ W* be an element of the centralizer of 9, with 2 € 8. Then A(x)
= o(w*ho(w*) = h(x") for all A(x) € $,1.e., x =%  on Bh~. Therefore we
have w* =1 and x =2 ¢ 3.

5. Some maximal subgroups.

5.1. Let A be a root system of a semi-simple Lie algebra over C; let II
= {a,;,,a;} be a fundamental root system of A. For any integer 7,1 =:=1,
we denote by I'y (resp. Ay and =) the subset of A consisting of all roots

l

r =Y. cwa; such that ¢, =0 (resp. ¢; =0 and ¢; > 0). From definition, =
k=1
consists of positive roots and Ag is a subsystem of A. Further I'y is the sum
of Ay and S, and A is the sum of T'y and — 34, where — 3 is the set
of the roots — r for r € 3.
We denote by W, the subgroup of W generated by w, for all r € Ay,
and we set A,,, = 2(s,r) / (r,r) for any two roots r,s in A.

LEMMA 7. For any element w € W, we have w € Wy, if and only if
w transforms Ay and 3 onto themselves.

PROOF. If w € W, it is easy to see that w(Ag) = Ag and w(Sy) = Sp.
Suppose w(A) = Ay and w(Sy) = Zg). Since w(Il N Ay) =11, is a fundamental
root system of A, there exists an element w, € Wy, such that w,w(Il N Ag)
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=1II N Ay. On the other hand w,w(3) = 4. Therefore w,w transforms any
positive root onto a positive root and we have w,w = l,i.e, w = wi' € Wy,.

LEMMA 8. For any element w € W such that w & Wy, there exists a
positive root s of Ty such that w(s) or w='(s) is a root in — .

PROOF. Since w € Wy, from lemma 7, we have w(Ay) == Ay or w(Sg)
= 3, le., there exists a root 7 € Ay, such that w(r) € (% 3,) or there existsa
root 7 € Ag such that w(r) € (— Zy) or A ). In the first case, since € Ay,
there exists a root 7 € Ay such that w(r) € (—3y). In the second case, if
w(r) € Agfor re Sy, then — r = w™! w(—r) € (— 34) where w(—7) € Ag.
This completes the proof.

LEMMA 9. For any root r in 3, there exist a positive root s and an
element w, of Wy such that wyw,wi'(s) = — a,.

PROOF. First we assume that A, , =0 for any root a;,k==i. Since A,q,
Aq,,.»=0, we have also Aa,.=0. Therefore the root wla;) = ay — Aa,r7 is
positive, for » is a positive root. Since w, == 1, we have w,a;) <0. In fact, if
wya;) > 0, then w, transforms all positive roots onto positive roots and w, = 1.
This is a contradiction. Therefore, setting s = — w/{a,;), we have w/(s) = — a.

If there exists a root ay, 2 ==17,such that A, > 0, then we have s = w,(r)
=7 — Araa. is a root in ;. Then wa,w,w;! = w, where w, € Wg. For
root s, if there exists a root a, k <=7, such that A, > 0, repeating this process,
we may reduce this case to the first case.

5.2. Let A¥ II* = (af,,a}) be a restricted root system and its o-funda-
mental system respectively. For any integer 7,1 =i <p, we define the subset
T, A*q and 3%, as in 5.1. We denote by G, (resp. G'y) the subgroup of
G (resp. G’) generated by 3(resp. 8') and U, for all roots 7* € I'*(. We shall
prove that the group G, (resp. G) is a maximal subgroup of G (resp. G).

LEMMA 10.G is generated by the subgroups 8 and Uz, 1=k =p, and
G’ is generated by the subgroups Uie, 1=k = p.

PROOF Let G,be a subgroup of G generated by § and U, 1Sk =2
Since W* is generated by wss, 1=%= p, G, contains B*. For any root r*

of A*, there exists an element w* € W* such that w*(r*)=a} or —ai for
some k. Therefore we have w(w*) U+at w(w*) = U © G,. Therefore we have
G, = G. Similarly, we can prove the second assertion.

PROPOSITION 4. The group Gy (resp. Gy) is a maximal subgroup of G
(resp. G'). The intersection of the groups Gg (resp. Gy), 1=i=p, is U3
(resp. 13").

PROOF. Let H be a subgroup of G such that H2 Gy ; let z41 be an
element of H such that x ¢ Gy. Then z = uzo(w*)u’, where wu’ € Ul and
z € 3. Since u,u’ and z are the elements of G, we have o(w*)¢ Gy and
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w* == 1. Therefore w* ¢ W¥*;. From lemma 8, there exists a root s* € I'fy
such that w*(s*) or w* !(s¥) is a root of — 3%). Since w(w*) and Us are con-
tained in H, o(w*)Iso(w*) ! and o(w*) Uwe(w*) is contained in H. Therefore
we have U.,» © H for a root r* € S. Thus we have o(whi) ¢ H. We have
also o(wfwhwi™") € H for all w¥ € W, for o(wf) € H. Therefore, from lemma
9, we have u,_a,; c H. Thus Ilia: (1=Ek=p) and 8 are contained in H. From

lemma 10, we have H = G. This proves that Gy is a maximal subgroup.
Similarly, we can prove that the group Gy is a maximal subgroup of G'.

Since G, contains 113, we have that the intersection of the groups Gy,
contains [18. Suppose that an element x = uzo(w*)u’ of G contained in the
intersection of the groups G. Since w* € W5, from lemma 7, w*(af) € 3%
for 1 =i = p. Therefore w* transforms any positive root onto a positive root.
Thus w* =1 and we have that x is an element of [18. Similarly, we can prove
that the intersection of the groups Gy is 137,

6. Proof of simplicity.

6.1. In this section, we assume that G is a group of restricted rank 1. From
theorem 1, we have that G is the union of two sets Un~3 and UnB8wmll
where 7* is a restricted o-fundamental root. Therefore M = 1,8 (resp. M’
= U,.8") is a maximal subgroup of G (resp. G").

LEMMA 11. Let N be a normal subgroup of G',=3=(1), then M’ N = G".

PROOF We assume that N M'. Let £ = uz be an element =1 of M.
If ug=1, then o & 0r' = 0 % ©3' 0 2oa = v 2’ where v==1 is an element
of l_,. and 2’ € 8'. Therefore we have w~ x wa' € M’ and this contradicts to
the assumption. If « =1 for all z € N,i.e, NC §8', being 2z an element =1 of
N, there exists an element « of l,« such that # 'zuz™! =« 'u'==1. Since it is
an element of N, this contradicts to the assumption. Thus we have N M.
Since M’ is a maximal subgroup, we have N M’ = G'.

LEMMA 12. If K,==F, and F;, then G’ is its own commutator group,
where Fy is a finite field with q elements.

PROOF. 1t is sufficient to see that the elements of G’ defined by (19), (20)
and (21) in 4.1. are commutators of elements of the group G'. We denote by
(x, y) =xyx™ y7! for any elements x,y of G'. Then we have

(A(xr¢), x¥E) = 27((§* — 1)) for the root r of type I or II

(R (Xr.¢ Xr2)» xXi(8) = 2F(&* — 1)E) for the root r of type III

(A(Xrs70), 27, r15(E M) = 25 riil(E™ — DE Npjw, (6" — 1) EE + (£* — )

11) The lemma 3 in [2] is not true if the characteristic of the field is 2 or 3 and @c is of type
By, C, F, or G,. But the proposition 3 in [2] is true for all cases which can be proved by
the same way as the proof of this proposition.
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for the root r of type IV, where n = %=1 or =+ 2.
Since there exists an element ¢ of K, such that ¢?==1, we have the lemma.

PROPOSITION 5. If K,==F, and F, and if A* is of restricted rank 1,
then G’ is a simple group.

PROOF. Let N be a normal subgroup #=(1) of G’. From lemma 11, we
have N M’ = G’. Since .« is a normal subgroup of M’, Nll.. is a normal sub-
group of G’. Therefore w~ 1.+ @' = 1_,+ is contained in N ll.«. Therefore we
have N U, = G'. Then we have

G'/N=N1Ux/N=U~/U~N N.

Since G’ is its own commutator group and Ul.. is a nilpotent group, we have
G’ = N. Therefore G’ is a simple group.

6.2. To prove simplicity for general case, we shall first have some relations
between the root system and the restricted root system.

LEMMA 13. Let r*, s* be two roots of a o-fundamental system II* and
assume that r* + s* is a root of A*. Let r be a root of 3.« and s be a root
of 3w and assume s==5s. As for the roots of A which are expressed by linear
combinations of r,r and s,s with positive coefficients, the only following cases
are possible.

0) r,75s,5; r+5,7+s

1) r(=7r);s,s;r+s,r+s;r+s+s

2) ryrys,s;r+s,r+s;r+2s,7r+2s

3) r(=r);s,s,s+s;r+s,r+s,2r+s+s;r+s+5

4) r,r;s,5,s+s;r+s,r+s,r+r+s+s;r+s+s,r+s+s.

PROOF. We denote by A,,, the o-invariant subsystem of A generated by r
and s. The involution ¢ induces on A, , an involution which we denote also by
o and o-order of A induces a linear order of A,, which we call also a o-order
of A, Since o is not the identity on A,,, if the rank of A, is 2, then its
restricted root system A,% is of rank 1 and this contradicts to the assumption
that 7% + s* is a root of A¥* Therefore the rank of A, is 3 or 4.

I) The case that the rank of A, is 3.
We have only a following case:

T
/ N

O O
s r
II) The case that the rank of A, is 4.
We have only the following cases:

o This is the case 1) of the lemma.
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1) o0 o0———=0 This is the case 0) of the lemma.
r S
e e—> T—a
i) o© —O- — -0 This is the case 4) of the lemma.
r S
iii) r ﬁ? —®———® This is the case 3) of the lemma.
iv) CIl' >0— ? — This is the case 2) of the lemma.

v) 2§g<: This is the case 1) of the lemma.'®

6.3 Hereafter we consider the groups G, G’ constructed from a real simple
Lie algebra. Therefore the restricted root system A* is simple. Then we have
the following lemma.

LEMMA 14. Let N be a normal subgroup of G'. If there exists a root
r* € A* such that U, < N, then we have N = G’, except the case that A¥* is
of type G, and K, == F,.

PROOF. If all the roots in A* have the same length, then any two roots
in A* is transitive by an operation of the Weyl group. Therefore we have U,
contained in N for all roots s* € A%, for o (wW*)mw(w*)™! = Uy is contained in
N. Since G’ is generated by . € A¥*, for all s* ¢ A* wehave N=G’. Suppose
that A* contains two roots whose lengths are different each other. If A* is of type
G,, then A* = A, and G’ is a Chevalley’s group. This case has been proved by
Chevalley [2], p.63. Therefore we suppose that A* is of not type G, Let 7%,
s* be two roots in A* such that the lengths of them are different and that
r* + 2s* is a root. Then we have that the lengths of #* and 7* + 25%, the
lengths of s* and r* + s* are equal respectively. Since any root in .« Or
S0 can be expressed by a linear combination of a root in 3. and roots in
S+ with integer coefficients, we shall consider each cases separately.

If =7 and s =5, then we have

12) In the root diagram, black vertices represent elements of Ay; white vertices connected
by an arrow «—— are those which are corresponding to each other by the permutation
i—i of (11); O=)Q means (r,7) = 2(s,s). cf. Tables in Satake [3], p.109, and Svgiura

r s

(51, p.113.
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2, (O 8 = 20T, Nedn) ey isu (5 Ny Noriidr')
2 ET)" = T BTN, 1O rsa, (5 (N, Noasbr)

where N,, = * 1, % N,,Nipis= £ 1.

If r==7 or s==s, then we have the cases 1) ~ 4) in lemma 13. Notations
being same as (19), (20) and (21), we have the following relations.

Case 1)
(23) x:(&)x?.‘s(n)x’f- (E)_ = xs*,i(”])x:ﬂ, 1~+3(Nr. _.,E‘q)x‘r‘}”s(N,, Ny 3, 3”3&'77_7)
x:i(’?)xf(f ).’II:,}("))_ = x)rk(‘f ).1‘:+ 3, r+‘s(N 5. 1&"7)1:+ 548 (N & 'rN 5,8+ erg’T';)

where N, , =+ 1, N,pis = = 1.

Case 2)
(24)  rHE)xTam)xt (€)™
= 2t i)t s irs (No )T a75,7 400 (% N,.iN,.;, w3§;12>
x¥ ()t HE)x ()™
= 2O v ANe ) o = NoNps i)
where N;, = = 1,% Ny ,Npiss = = 1.
Case 3)
(25)  2HE)x% 5545(m, §)2R(E)!
= @il Ozt snrszarsess (Nudn, — 3 NeoNroiind' €
Ly 045 Npro N, by + Nopys )28 5043(m, £)2XE) 2N 55, i(m, )7
= KO sirrens (Nurb, 5 NowsiNow o't
545+ (Nsys, £ + Ny » N5 v,Em)

1
where N, ,, - Ny s:iNrrisi5, Nysys and N;, N5, are =% 1.
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Case 4)

(26)  xTAE)Tt5 eai(m, §)at H(E)
= x:,i,wi("?’ C)x:+8,?+§,r+8+;'+§(Nr.s§"7, Nr.?+s+3Nr,s+3£2§)x:+8+§. 7543 (Nr 54368)
x5, 514, £)2F 5(E)35,543(n, £) 7
= ) HE)X s ranrroir+i No, Eny Norsir,rNoys, W E X o105 r s+ N5, 53 0EL)

where N,,, N, ,...3, etc. are all +1.

Therefore if U+ and U,z are contained in N, then U, is also contained in
N. Further if I, and U, are contained in N, then ... is also contained in
N. Thus we have the lemma.

PROPOSITION 6. If G’ is a group of restricted rank = 2, then G’ is its
own commutator group except the cases that A¥ is of type B, and K, is a
JSield with 2 or 3 elements.

PROOF. Since the commutator group G of G’ is a normal subgroup of
G’, from lemma 14, it is sufficient to see that there exists a root ¥ € A¥ such
that [,.is contained in G”. If A* is of not type B,, there exist two roots 7¥,s*
of A* such that (¥, s*) forms a o-fundamental system of type A,. The roots in
S, can be expressed by sum of a root » in 3. and a root s in 3. If
r =7 and s =5, we have

(x (&), x(n)) = 2,1+ (N, En) where N,,, = = 1.
If s==s or r3=7, then we have the case 0) of lemma 13. Thus
(x,#&), 28:(n)) = Zrys, 7o Ny, m)

where N, = = 1. Therefore, we have Un, s © G and G" =G'. If A* is of
type B,, denoting by (¥, s*) a o-fundamental system of A¥, as for the possible
relations between roots of 3,. and 3, we have the cases 1) ~ 4) of lemma 13.
We assume that the field K, == F, and F;. So there exists an element A of K,
such that A*==1.

Case 1) From (23), we have

z = (x¥Q), 255(n)) = Thisri (£ NXTs:(E vom)
(h(Xrr ) ) = Zrisres(E (M — 1))
Case 2) From (24), we have
z = (25(1), XE) = xF1rii(E v E)TT 15,7 2 VEE)
(h(Xr xXr,1), ) = ZF s il (N — L)
Case 3) From (25), we have

x = (af (1), xt,&,u% (”I: é‘)) = x:+s,r+§,2r+s+3(i 7, *£ é‘)xf“ﬁ(i_ 9}
(h(Xr,A), ) = xt+x,r+§,zr+s+§(i (7\1 - 1)17, + v, A — 1)1717 + (A2 — 1)&)
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Case 4) From (26), we have
X = (xt,;‘(l)9 x‘:,i,s+§(77> Z;))

= X s Frirrsiriil(E 7y B O isi5,riars(E E2vmm)
((xr, X7 1), )
= ZhigivirsarE OV — Dy, £ v (0 — Dy + (A — 1)0).
Therefore we have U,¢ is contained in G and G” = G'.
Now we have the following theorem.

THEOREM 2. Let G’ be a group defined by a real simple Lie algebra g
and a field K = K(6) as in 4.1. Then G’ is simple except the following
cases

a) K, is a finite field with 2 elements and A* is of type A,, B, or G,.

b) K, is a finite field with 3 elements and A* is of type A, or B,.

PROOF. Let N be a normal subgroup #=(1) of G’. Then in the same way
as the proof of lemma 9, we have that there exists a maximal subgroup G’y
such that NG’y = G'. Let U be a subgroup of G’y generated by the
subgroups Ul for all 7* € S, then it is normal in G’;,. Since Nll4 is a normal
subgroup of G’ and contains U+, we have N4 = G". Then

G'/N:Nll.a)/NZIlm/llmﬂN.

Since G’/ N is its own commutator group and 14 is nilpotent, we have G’/ N
= (1), i.e., G = N. This completes the proof of the theorem.
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