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1. Let f{¢) be a measurable function satisfying the conditions;

1. 1) fit+ 1) =10, j; ' fdt =0 and fo 1 FA)dt < + oo.

In [1] M.Kac proved that if f(¢) is a function of Lip &, a> 1/2, or of bounded
variation, then it is seen that, for — c0o < @ < + oo,
{t‘OStSI —1=§f(2"t)ﬁ o } }= %fm e~y
== a0 = N2 J_., >

k=0

1. 2) lim

N—>co

provided that the following limit is positive ;

l 1 1 n—-1 . 2 d
? = lim —— 2kt } z.
g nl—nn 0 {N/ n Ef( )

At the end of that paper he proposed the problem to replace the sequence {2*}
in (1. 2) by a sequence of real numbers satisfying the Hadamard’s gap condition.
In this direction R.Salem and A.Zygmund proved the central limit theorem of
lacunary trigonometric series (c.f. [2]). Also they showed that if f{(t) = cos 2nt
+ cos 4nt and n, =2F—1, k=1,2,...-, then

i w]3|cosxz
lim {t;Oétél,—i%Zf(nkt)ém} =:/.—17—fldxf | ,e‘“””du.
0 —eco

N—>co kel

In this note we consider the sequence {f(¢*t)}, where ¢ is any real number
greater than 1. To state our result we need some definitions. For any mea-
surable set A in (— oo, o) we define its relative measure uz{A} as follows ;

.1
pe{A} =lim 25 [A N (= T, 7)1,

and for any measurable function g(¢) defined on (— oo, o) its relative mean

M{g(t)} as follows;
Mig®)} = lim o [ g0,

provided the two limits exist (cf. [4]). It is easily seen that if g¢() is
periodic with period 1 and integrable on the interval (0, 1), then



234 S. TAKAHASHI

M{gt)} = f 9()dt, and that if f(¢) satisfies the condition (1.1), then for each n
0

the set { ;> f(¢"t) < w} has the relative measure for any ¢ and w.
k=0

The purpose of the present note is to prove the following

THEOREM. Let q be any real number gfeater than 1 and f(t) satisfy the
condition (1. 1) and, for some &€ >0,

(1. 3) | fo LAD) — S.0) |2d¢] " = Ol(log n)-2+], as n—> + oo,

where S,(t) denotes the n-th partial sum of the Fourier series of f(t). Then
the following limit
*)
'}

. 1 n-1
2 = k
o -hmMHJn ,;)f(qt)
exists and if o® is positive, we have for any o,

N »e0

. ) 1% s
T <ol =—F5— -2 du.
ngpﬂ{t’m\/n gf(qt)__m} 27 f_we “
REMARK 1. If ¢* is an irrational number for any positive integer %, then

)
we have ¢? = / {f®)}dt (cf. the proof of Lemma 1).
0 .
REMARK 2. If ¢ = 2, then we have, for each n,

1 n-1 . 1 n-1
R <elt={t-0<r<1 —— kp) < .
bilts o RO S 0 =|{t: 05051, oS flg = o |
Hence if ¢ > 0, then (1. 2) holds under the condition (1. 3) which is weaker
than that of M.Kac.

To prove (1. 2) Kac approximated 3 f(2°#) by sums of independent func-
tions using the system of Rademacher functions. To prove our theorem we
approximate = f{g*t) by sums of gap sequences with infinite gaps (cf.[3]).

2. From now on let f{t) and g satisfy the conditions of the theorm. Further
without loss of generality we may assume that the Fourier series of f{¢) con-
tains cosine terms only. This assumption is introduced solely for the purpose of
shortening the formulas. Let us put

J@& ~ > acos2wkt, and S.(t) = >_ aycos2mke.

k=1 k=1

From (1. 3) it is seen that

*) ¢ denotes a non-negative number.
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en  [[10-s0ia] =(3Ta) s Alog neen

k>n

Further let us put, for 2=0,1,-....n and n =1,2,......,

(2 2) Nk,n = k[nﬂ], Nk,n = INg+1m — [10g2n]1
N'iyn
2. 3) Ten®) = 2. ga(g't), and Rie () = 2 g.(q'0),
lwNgyn Ny a<l<Nianyn
where
(2 4) g'n(t) = S[np/z] (t) s
and B is a constant such that
(2. 5) 0<B<1/3
Then we have
nBl2 o 1/2
@6 @IS X lal = (Tat) = Awe.
k=1 k=1

LEMMA 1. The following limit exists;

o = tim M{| 7 D Ao |
PROOF. We have
M{| Zf(g*t) | = Mirey + 2T % Mifgtora )
= [\P0ar + 23 (1 - ) M) fign).

By (2. 1), we have

oo

=(Ta)" (X a) =are.

k=l mzqr

IMUOAGH =5 | 5 anas
m=kq"

Hence > | M{ft) f{g’t)}| < + oo, and this proves the lemma.
LEMMA 2. We have

Nogn—1
. kg
}‘1_)12 M '\/Nn,n ch . fq*e) /\/Nn.n Zk-o T, .(2)

=0

and

*) Now and later A will denote a constant not necessarily the same.
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—
8
L

lim M{ '~ = T} =0

=0

L

PROOF. We have

Npyn—1

’ IN= = U - gg'0)

Nuyn—1

éﬁ’ |A) — 9.2 de +2 3 |MI{f() — 9.®)} fqt) — g.(@t)}]I.

ral

By (2. 1) and (2. 4), we have

1

[ 1fo-g@la=5 T a

0 k>”s/z
and

IMULAD - g LF(g0) — gulgoN]| = ]l S aa|= A T a) .

ey o
Since > ai—0 as n— + oo, it follows that
snBl2
Non—1 .

2.7 li k k =
@n  imu[| AT e - atenn]]
On the other hand from (2. 3), we have

Nayn—1
(2 8) Z gn(qkt) - Z Tk n(t) Z Rk n(t)

k=0 k=0

The maximum frequency of cosine terms of Ry, ,(¢)is g%+ [#n*?] and the minimum
frequency of terms of Ry.;,.(t) is ¢"é+1s", and by (2. 2), g%i+un*

> q"+ua ' [nP?] if n > n,. Therefore the sequence {R, .(t)}, k=0,1,...n —1,
is orthogonal on (— oo, + oo) with respect to the relative measure if 7 > n,*

Further we have, by (2. 3), (2. 6) and (2. 2),
?c,”(t) = A(Nk+l.ﬂ - Mc,n)2 nf? < Anﬂlzlog4n-
Hence we have, by (2. 5),

(2. 9) [ A DR } = 2 M (RA®)

*) We say that f(¢#) and g(¢) are orthogonal on (— o, o) with respect to the relative
measure if M{g(¢)f(¢). = 0.
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=A” e (log n) = o(1), as n —+ oo,

By (2. 7), (2. 8), (2. 9) and the Minkowski’s inequality, we can prove the first
part of the lemma. By Lemma 1 and the relation just proved it is seen that

=

In the same way as {R;..(#)} we can see that {7.#)} k=0,1,..,n—1,is

orthogonal on the interval (— oo, 00) with respect to the relative measure if
n > n,. Hence we have

lim M{

N—»co

'\/Nn n ,,ZU Tk,n(t)

lim M{

N—>oco

N Z Tk, n(t)

MR k=g

Z M{T?(t)} = o

Ny k=0

This is the second part of the lemma.

3. LEMMA 3. We have

lim M{ N ,,Z=0T 2 (f) — } 0.
PROOF. We have, by (2. 3) and (2. 4),
N Nivn Nhur
Teo®) = 22 9d)+2 2 3 gdd't)gdq7e),
-N[;;Iz] rel laNg g
guq't) = Z ai{1 + cosdmsq't}

8=1

+ > apaf{cos 2mq'(m — s)t + cos 2mqi(m + s)t},
0<s<m=nPl2
and

9q't)9.(q'*"t) = % ana.{1 + cos 4mwqg'mt}

=3q"
0< s<nB/2
1
+ = > ama,{cos 2rg'(m — sq")t + cos 2mwq'(m + sq")t}
2 0<m,s<nbB/2
0< [m—!q I<1
+ % > amas{cos 2mg'(m — sq")t + cos 2mwq'(m + sq")t},
o<m, s<nB2
|m— sqr |1

and then we can write T} 4(¢) in the following form

B 1 Tin(t) = M{TEn(2)} + Uput) + Vi ul®),

where
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N -
3. 2) Vialt) = Z > > apa, cos 2mq'(m—sq")t,
ral  I=Niq 0<m s<nB/2

0< m— —3¢7| <1

and U, ,(¢) is the sum of cosine terms whose frequencies are not less than ¢”*» and
not greater than 2q‘v’é’” [#P%]. Therefore {U,,.(t)}, £=0,1,2, ... ,n—1, is ort-
hogonal on (— oo, + o) with respect to the relative measure if n > n,. On the
other hand from the definition of U,,.(¢) and (2.3) (2.4), we have

812 812
|Ues®) ZWaw = Ne (3 1ae | ) = w2 (a2
k=l

k=1

Since {U,,.(¢)} is orthogonal, we have ,by (2.5) and the above relation,

n-1

> U0} = N 2 MUen(®)

Ny k=0

(3. 3) M{

n +o8
éAW=0(1), as n— + oo,

In the same way we have, for any fixed # and r such that 640 and 0 <~
< N.n,

M” Nl EN;ZT costrq’Ht’ }= le ZM{

™R kml l=Ng, ™"h k=0

>~ cos2mq'ot [2}

‘-Nt »

<An(ﬁ;’: <A w9, if n> n,

Changing the order of summation and apply the Minkowski’s inequality to (3. 2),
we have, by (2. 1) and the above relation,

1 ! 2)1/2
Gy My IV}
ﬂ:n n-1 Nk” -7

=2 2 lanal 1\4“1\,1 > > cos 2mgi(m — sq")t

7=l 0<m,s5n TR k=l lmNgy

1/2

}

< m—3gr| <1
= An~ 0P8 Z Z Iamaa |=An-@+P2 Z Z |as| {|asen| + | @saryia | }
r=l 0<m,ssn 7rm] 8=l
0< Im—=3gr| <1
<t S (Sa) (£, ) s aremn s e o
- rm]l MSwl mz[qr] T=l

as n— + oo,

From (3. 1), (3. 3) and (3 4),it is seen that
. 1 n1 2 2
im M[ |- S 1h - o S M) [] =

™R k=l TN k=)
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Thus by Lemma 2, we can prove the lemma.
Let us put for any real number A,

_ o Tk.n(t)
(3. 5) P = ’!IO { 142 «/—_N",,.}~

Then we have the following

LEMMA 4. There exists an integer n, depending only on q such that
n > n, implies

M{|P,(tM)|*}=e¥4, and M{P,(t\)} = 1.
PROOF. By the definition of T%,,(¢) and Lemma 2, we have

M{Z‘z["?';(]t—)} = M{ Nl ETk?n(t)} —a?, as n— + oo,

M gag
Further by (2. 1) and (3. 2), we have
No’vk Nk’m‘r

Vel =22 2 2 lasail

n=1 laNg, 0<m,s<nBl2

0< Im=sqrj <1
(> 12 1/2
éAn"Z{z aﬁ} { > a},,} = Ant.
Tm] 8§=1 ‘m>qr—1

Hence we have, by (3. 1) and Lemma 2 and the above relations,

Tia®) - A | Upa(®
N, =2t N

This implies, by (3. 5),

3. 6) Per=10 {14+ 24 2D}

mn

Now let d,cos2mu;t be a term of U,,,(2), then ¢"»» =< u, =< 2nPq"'»~. Therefore
by (2. 2), it follows that for any & < n,

k-1 k-1
U, — Z u; = qu — OpBl2 Z qN,,,‘
i=0 J=0

k-1
= q%.n (1 —2nPi2 glosm 3" g=k=1-)) ["ﬂ]) >0, if n> n,
3=0
This implies that for any 0 = j, <j, <----<j, <mn, we have

l
M{H cos 27ru,,,,t} =0, for n > n,.

m=0

Thus we have
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n—1
2 2__4 2Uk’—"(t)]
:(1+X2é>”§eluy forn>n0'
n

In the same way we can prove the second assertion of the lemma.

4. LEMMA 5. If ¢ > 0, then we have for any fixed \,

lim M [exp {ax/i)ltf— E Tk,,,(t)}] = ¢ M2

n->e0 MR g =0

PrOOF. If we put

1 n-1 3

En = {t; N”)n E)Tk‘” (t) B 0-2 <1},
then by Lemma 3 and the Tchebyschev’s inequality, it follows that
4. 1) im we{E,} =1

N->c0
By (2. 3), (2. 5) and (2. 6), we have
(4.2) Max Tf”ZGLQ = An V281t = (1), as n— + oo,
Therefore if ¢ € E,, then it is seen that
n-—1
T a@)p Tin® | _ o _

(4. 3) Icz=:0 JN.. =A %\élkzg N T C, = o), as n— -+ oo,
and

MEZT 2 Lin (2) "4 o
(4. 4) P, (t, G) = g(1+x azNM)geA :

We have by (4. 1) and the fact that the integrand is less than one,

‘M [exp { ;71.)\1\7* i Tm(t)}]

MR k=)

v
exp {a «/NT.,ZE, Tm(t)} dr

where E, = (— o0, 0) — E, and u(E,)—>0, as n— + co.
Using the relation exp z = (1 + 2) exp {2?/2 + O(|z|*)} as |2|—0, and (4. 2),
(4. 3) and (4. 4), we have

lim ~5 ex {—17::27’ (t)} dt

Tae 2T p aa/ N, ken

(-1, 7NE, Tn k=0

. 1 ’
— }'1_1;2 'QT } = /‘R(En)a

(=7, 7)NE,
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P, (t, %) exp { —M "XE T? n(t)]’ dt + o(1),

ﬂ’n k=0

— lim L
150 2T (-T,1)NE,

as n— + oo,

By (4. 4) and (4. 1), it is seen that if ¢ € E,, then

P, (t’ %) [exp { 2 N Z Ts. n(t)} —e—A’IZ]

MmN k=0

Yo -1 }

mn k=g

=B

where B, is a constant depending on A.
By Lemma 3, the relative mean of the right hand side of the above formula
tends to zero as n— + co. Hence for the proof of lemma it is sufficient to show

that

A
lim P, (t, -—) dt =1+ o(1), as n— + oo,
lim 577 emon "\ )

and by the second assertion of Lemma 4, the above relation reduces to

N
A
lim P, (t, —) dt = o(1), as n— + oo,
T—oco 2T (T, T)NE ag

By (4. 1) and the first part part of Lemma 4, we have

im o [ P(e)a = [0{ P (e 2) iz ] = o,

as n— + oo,
LEMMA 6. If ¢®*> 0, then we have for any o,

1 ® ’
lim Tl =0t = —F— e ™" du.
lim {5 JNn,"kZ_E, )=o) = o [ e
PROOF. Let us put
1 ~1
ot T, a(t).
Q ) ’\/Nn n kz=o k )

Further let @ (¢) (or @:(¢)) be the familar trapezoidal function equal to 1 in the
interval (w;, ®,) (or (@, + & @, — &) ) vanishing outside the interval (o, — &,
w; + &) (or (w,, ®,)) and linear elsewhere, where & is a real number such that
0 <26 < w;, — w,;. Then we have

(4. 5) M{p: (Qx0)} = pplts 01 = Qu(t) = 00} = M{@(Qa(2)} .
If we put

*) Since & (Q,(t)) are uniformly almost periodic, M{9:* (Q,(2))} exist.
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O(E) = f T gt dt,

then ®(£) are absolutely integrable on (— oo, 00). Therefore we have
@6  MigHQ = 5 [ SEMlexp (800} ds

Since @} (£) are absolutely integrable and M [exp{i£Q,(¢)}] converges bounbedly
to e ¥* as n— + oo, we have by (4.5), (4.6) and the Prancherel’s relation,

o | wwerde = o [ et g

=lim p,{t; 0, = Q) = 0.} = hm pplt; 0, = Qut) = o}

nooo

=5- f_“ D" (E)etdt = :/——27 . T gl

Since & is arbitrary we can prove the lemma.

5. Proof of the Theorem. By Lemma 1, we can prove the first part of
the theorem. By the first assertion of Lemma 2 and Lemma 6, we obtain

Npyn—1 1 )
k — - —ut/2
N/Nn.n,,zﬂ, fq t)=w} = Jom f_we du.
On the other hand we have, by (2. 2),

(5. 1) 1m%{

. +1,n+
hm”—]’"l—=1

N—>co nn

By the above relation and Lemma 1, we have for any m such that N, ., <m
é N n+ln+1

M~ Npyn

M{| Aoz oot =i A A
éAN@ﬁﬁ%M”*Q as m—> + oo,
and
ke Bl <ol e

as m—> + oo,

Hence we have
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Nayn—1

l«/m Zf(qkt) :\/N Z flg"t)

k=0

} = o(1), as m— + oo,

By the above relation and (5. 1), we can prove the theorem.
The author thanks Professors S.Jzumi and T.Tsuchikura for their help and

corrections.
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