SOME PROPERTIES ON MANIFOLDS WITH ALMOST CONTACT STRUCTURES

YOSUKE OGAWA

(Received January 23, 1963)

Introduction. Recently S.Sasaki [1] has introduced the notion of an almost contact structure over an (2n+1)-dimensional differentiable manifold M (differentiability means class C^{∞} always in the following) by three tensors ϕ, ξ, η of types (1, 1), (0, 1) and (1, 0) on M satisfying some relations. The importance of this structure is in the fact that if M has a contact structure defined by a 1-form η , then η induces an almost contact (metric) structure taking a suitable metric in M, and in this contact case, many interesting results have been obtained. But for an almost contact structure which is not necessarily a contact structure, it seems to me that few results are known. In this paper, we consider mainly an almost contact structure.

In their paper [2], S.Sasaki and Y.Hatakeyama defined four tensors N^{i}_{jk} , N_{jk} , N^{i}_{j} and N_{j} for an almost contact structure by the method of constructing an almost complex structure in $M \times R$ (R denotes the additive group of real number field) and computing its Nijenhuis tensor. Regarding this product space as a trivial bundle space over M, we consider to generalize this method to a principal fibre bundle P with a base space M and a structural group A which is a 1-dimensional real abelian Lie group.

I should like to express my hearty gratitude to Prof. S.Sasaki and Mr.Y. Hatakeyama for their valuable criticism.

1. Nijenhuis tensors of almost contact structures. Let M be an almost contact manifold and its defining tensor fields of types (1, 1), (1, 0) and (0,1) be ϕ, ξ and η respectively. We take a real 1-dimensional abelian Lie group A, and denote its Lie algebra over R by \mathfrak{A} . Suppose that there exists a differentiable principal A-bundle P(M, p, A) over M with a projection $p: P \to M$. Then we can take in this principal bundle a differentiable infinitesimal connection with a connection form ω which is an \mathfrak{A} -valued 1-form on P satisfying the following two relations:

(1. 1) $\omega(\overline{us}) = \omega(\overline{u}), \qquad u \in P, s \in A, \ \overline{u} \in T_u(P),$

(1. 2) $\omega(u\bar{s}) = s^{-1}\bar{s}, \qquad u \in P, \ s \in A, \ \bar{s} \in T_s(A),$

where $T_u(P)$ (resp. $T_s(A)$) denotes the tangent space to P(resp.A) at $u \in P(\text{resp.}A)$

 $s \in A$). Since \mathfrak{A} is a 1-dimensional vector space over R with a generator α , we can identify \mathfrak{A} with R by the mapping $r \in R \leftrightarrow r\alpha \in \mathfrak{A}$. Then every \mathfrak{A} -valued mapping can be considered as an R-valued mapping. In this way we consider ω to be an R-valued 1-form.

Let F(P) (resp. F(M)) denotes the set of all real valued differentiable functions on P(resp. on M), and let $\mathfrak{X}(P)$ (resp. $\mathfrak{X}(M)$) be an F(P)-module (resp. F(M)module) of the totality of differentiable vector fields on P(resp. on M). Then the latter is at the same time a vector space over R. Let $\mathfrak{X}^r(P)$ be a vector subspace of $\mathfrak{X}(P)$ over R consisting of the right invariant differentiable vector field with respect to the group operation of A. As any element of $\mathfrak{X}(P)$ is generated by vertical and horizontal vector fields, $\mathfrak{X}(P)$ is generated by $\mathfrak{X}^r(P)$ over F(P). Moreover it is easily seen that every vector field $X \in \mathfrak{X}(P)$ belongs to $\mathfrak{X}^r(P)$ if and only if it is projectable and $\omega(X)$ is in the dual image of F(M) by projection p, i.e., $pX \in \mathfrak{X}(M)$, and $\omega(X) \in p^*F(M)$.

Now using the almost contact structure (ϕ, ξ, η) on M and the connection form ω , we define an almost complex structure on P as follows: If we take a right invariant vector field X on P, then as $\omega(X) \in p^*F(M)$, there exists a unique function $\overline{\omega}(X) \in F(M)$ such that

$$p^* \widetilde{\omega}(X) = \omega(X)$$

on P. Then we define a vector field $JX \in \mathfrak{X}(P)$ by the two equations:

(1. 3)
$$\omega(JX) = -p^*\eta(pX),$$

(1. 4)
$$p(JX) = \phi(pX) + \widetilde{\omega}(X)\xi.$$

If we take a vector field $X \in \mathfrak{X}^r(P)$ and a function $f \in F(P)$ such that $fX \in \mathfrak{X}^r(P)$, then f must satisfy f(us) = f(u) for $u \in P$, $s \in A$. Therefore, there exists a function $\overline{f} \in F(M)$ such that $f = p^*\overline{f}$, and we have

$$p(J(fX)) = \phi(\overline{f}pX) + \overline{\omega}(fX)\xi = \overline{f}(pJX),$$

$$\omega(J(fX)) = -p^*\eta(\overline{f}pX) = f\omega(JX).$$

And so the relation

$$JfX = fJX$$

holds good. Next we extend the above definition to an arbitrary vector field $X \in \mathfrak{X}(P)$. For this X, as there exist functions $f_{\lambda} \in F(P)$ and vector fields $X_{\lambda} \in \mathfrak{X}'(P)$ such that $X = \sum_{\lambda} f_{\lambda} X_{\lambda}$ on P, we define $JX \in \mathfrak{X}(P)$ by $JX = \sum_{\lambda} f_{\lambda} J X_{\lambda}$.

By virtue of the above consideration, this definition is consistent. J is a tensor

field on P of type (1, 1). It is noticed that the tensor field J is completely dependent on the connection ω on P.

THEOREM 1. J is an almost complex structure on P which commutes with the operation of A.

PROOF. For every vector field $X \in \mathfrak{X}^r(P)$, we can first see that $JX \in \mathfrak{X}^r(P)$ according to $p(JX) \in \mathfrak{X}(M)$, $\omega(JX) \in p^*F(M)$. Therefore we have $R_sJX = JR_sX$ = JX for $X \in \mathfrak{X}^r(P)$, $s \in A$. If $f \in F(P)$, then

$$R_s J(fX) = (R_s * f)(R_s JX) = J(R_s * f(R_s X)) = JR_s(fX),$$

which shows that the tensor field J commutes with group operation. For any $X \in \mathfrak{X}^r(P)$, as JX also belongs to $\mathfrak{X}^r(P)$, we have

$$\begin{split} \omega(J^2X) &= -p^*\eta(pJX) = -p^*\eta(\phi pX + \overline{\omega}(X)\xi) \\ &= -p^*\overline{\omega}(X)p^*\eta(\xi) = -\omega(X), \\ p(J^2X) &= \phi(pJX) + \overline{\omega}(JX)\xi = \phi(\phi pX + \overline{\omega}(X)\xi) + (-\eta(pX)\xi) \\ &= -pX + \eta(pX)\xi - \eta(pX)\xi = -pX. \end{split}$$

Therefore J satisfies for all $X \in \mathfrak{X}^r(P)$ the equation

$$J^2 X = -X$$

Since J is a tensor field on P and any vector field is generated by right invariant vector fields, this equation must hold on $\mathfrak{X}(P)$. Q.E.D.

In the following we calculate the Nijenhuis tensor of this almost complex structure J on P. It is defined by the tensor N of type (1, 2)

$$N(X, Y) = [X, Y] + J[JX, Y] + J[X, JY] - [JX, JY].$$

We have only to calculate it for the right invariant vector fields. Formerly S.Sasaki and Y.Hatakeyama [2] has defined tensors $N^{i}{}_{jk}$, N_{jk} , $N^{i}{}_{j}$ and N_{j} associated to the almost contact structure (ϕ, ξ, η) on M by the following way. Let $P_{0} = M \times R$ be a trivial R-bundle over M with a natural integrable connection ω_{0} , then we can define an almost complex structure J_{0} on P_{0} by the same way as above. In fact, for a right invariant vector field $X + \Lambda$, $X \in \mathfrak{X}(M)$, $\Lambda \in \mathfrak{X}(R)$, such that $R_{s}\Lambda_{t} = \Lambda_{ts}(t, s \in R)$, we have

$$J_0(X + \Lambda) = (\phi X + \omega_0(\Lambda)\xi) + (-\eta(X)Z_{\alpha}),$$

where α denotes a generator of the Lie algebra of R such that $\omega_0(Z_\alpha) = 1$, Z_α being a fundamental vector field corresponding to α . We can calculate straightforwardly the Nijenhuis tensor field $N_0(X + \Lambda, Y + \Gamma)$ of this almost complex structure J_0 , and if we define the tensor fields N_1, N_2, N_3 and N_4 of types respectively (1, 2), (0, 2), (1, 1) and (0, 1) on M by

$$egin{aligned} N_0(X,Y) &= N_1(X,Y) + N_2(X,Y) Z_lpha, \ N_0(X,Z_lpha) &= N_3(X) + N_4(X) Z_lpha, \end{aligned}$$

then we have the following equations.

$$\begin{split} N_{\mathrm{I}}(X,Y) &= [X,Y] + \phi[\phi X,Y] + \phi[X,\phi Y] - [\phi X,\phi Y] \\ &+ (Y \cdot \eta(X) - X \cdot \eta(Y))\xi, \\ N_{\mathrm{2}}(X,Y) &= (\pounds(\phi X)\eta)Y - (\pounds(\phi Y)\eta)X, \\ N_{\mathrm{3}}(X) &= (\pounds(\xi)\phi)Y, \\ N_{\mathrm{4}}(X) &= - (\pounds(\xi)\eta)X. \end{split}$$

These are the same results as those of [2].

Now returning to the case of general principal A-bundle with a connection ω , we also calculate the Nijenhuis tensor of the almost complex structure on P defined by (1. 3) and (1. 4). We notice that for any function $f = p^*\overline{f} \in F(P)$ and for any projectable vector field $X \in \mathfrak{X}(P)$, the relation

$$\mathfrak{L}(X)p^*\overline{f} = p^*(\mathfrak{L}(pX)\overline{f})$$

holds good. As $d\omega$ is a horizontal 2-form on P, there exists a 2-form χ on M such that $d\omega = p^*\chi$. If X, Y are right invariant vector fields on P, so are JX, JY, [X, Y] and so on. Therefore we can compute $pN(X, Y), \omega(N(X, Y))$ and we have

LEMMA 1. For all right invariant vector fields X,Y on P, we have

$$pN(X,Y) = N_1(pX, pY) + \overline{\omega}(Y)N_3(pX) - \overline{\omega}(X)N_3(pY) - \{\chi(pJX, pY) + \chi(pX, pJY)\}\xi,$$

$$\omega(N(X,Y)) = p^*N_2(pX, pY) + \omega(Y)p^*N_4(pX) - \omega(X)p^*N_4(pY) - \{d\omega(X,Y) - d\omega(JX, JY)\}.$$

From this Lemma, we have the following result:

THEOREM 2. If M^{2n+1} is a normal almost contact manifold, then every almost complex structure of a principal A-bundle $P(M^{2n+1}, p, A)$ associated to an infinitesimal connection ω is integrable if and only if the connection satisfies the relation

(1. 5)
$$d\omega(JX,Y) + d\omega(X,JY) = 0$$

for all vector fields X and Y on P.

PROOF. It is well known that in an almost contact structure, the vanishing of the tensor N_1 means the vanishing of the other tensors N_2 , N_3 and N_4 . In this case Lemma 1 shows that relations

$$pN(X, Y) = -(\chi(pJX, pY) + \chi(pX, pJY))\xi,$$

$$\omega N(X, Y) = -(d\omega(X, Y) - d\omega(JX, JY))$$

hold good for $X, Y \in \mathfrak{X}^r(P)$. Therefore it is evident that the vanishing of the tensor N is equivalent to (1. 5). Q.E.D.

For any vector fields X', $Y' \in \mathfrak{X}(M)$, if we take their lift $\widetilde{X}, \widetilde{Y}$ which are right invariant horizontal vector fields on P, then we obtain, by virtue of Lemma 1, the following relations:

$$pN(\widetilde{X},\widetilde{Y}) = N_1(X',Y') - \{\chi(\phi X',Y') + \chi(X',\phi Y')\}\xi,$$

$$\omega N(X,Y) = p^*N_2(X',Y') - \{d\omega(X,Y) - d\omega(JX,JY)\}.$$

On the other hand, if M is a contact manifold with a contact form η , then an almost contact structure can be induced from η choosing a suitable metric on M. In this case the tensors N_2 and N_4 vanish. Therefore, if we suppose that the almost complex structure on P defined by a contact structure on M and an infinitesimal connection on P is integrable, then M must be normal, and moreover ω satisfies (1. 5). In fact, by virtue of the vanishing of N, we have

$$N_{1}(X',Y') = \{ \boldsymbol{\chi}(\boldsymbol{\phi}X',Y') + \boldsymbol{\chi}(X',\boldsymbol{\phi}Y') \} \boldsymbol{\xi}.$$

Since $N_2 = 0$ is equivalent to $\eta N_1 = 0$, we get $N_1 = 0$. We rewrite this result as a theorem.

THEOREM 3. Suppose that an almost complex structure on P is defined by a contact structure on M^{2n+1} and an infinitesimal connection ω on P, then the almost complex structure J is integrable if and only if M^{2n+1} is a normal contact manifold and ω satisfies (1. 5).

2. Infinitesimal (ϕ, ξ, η) -transformations. In this section we shall study some relations between the vector fields on P and vector fields on M. We suppose that P has an almost complex structure J defined by an almost contact structure (ϕ, ξ, η) on M and an infinitesimal connection ω on P. A vector field X on Pwhich verifies the condition

$$\pounds(X)J = 0$$

is called an almost analytic vector field. We denote the set of all almost analytic vector fields on P by \mathfrak{g} . In the next place, we call a vector field X'on M an infinitesimal (ϕ, ξ, η) -transformation when it satisfies the conditions

$$\pounds(X')\phi = 0, \quad \pounds(X')\eta = 0,$$

and the set of all of them is denoted by \mathfrak{h} . Since A is an abelian group, a fundamental vector field Z_{α} on P corresponding to a generator α of \mathfrak{A} such that $\omega(Z_{\alpha}) = 1$ is right invariant. By virtue of Theorem 1, as the tensor J is

invariant by the operation of A on P, we have $\mathfrak{L}(Z_{\alpha})J = 0$, that is, Z_{α} is an almost analytic vector field. At first we shall seek for the condition under which JZ_{α} is almost analytic. Since JZ_{α} is right invariant, we have by virtue of Lemma 1 for any vector field $X \in \mathfrak{X}^{r}(P)$,

$$pN(X, Z_{\alpha}) = N_{3}(pX) - \chi(pX, \xi)\xi,$$

$$\omega N(X, Z_{\alpha}) = p^{*}\{N_{4}(pX) + \chi(\phi pX, \xi)\}.$$

On the other hand we have for any vector field $X \in \mathfrak{X}(P)$

$$N(X, Z_{\alpha}) = (\pounds(Z_{\alpha})J)JX + (\pounds(JZ_{\alpha})J)X$$
$$= (\pounds(JZ_{\alpha})J)X,$$

and so the conditions $N(X, Z_{\alpha}) = 0$ for all $X \in \mathfrak{X}(P)$ and JZ_{α} belongs to \mathfrak{g} are equivalent with each other. Therefore if we assume that the curvature form $d\omega = p^*\chi$ on P satisfies the condition

(2. 1)
$$\chi(X',\xi) = 0$$

for all $X' \in \mathfrak{X}(M)$, then JZ_{α} belongs to \mathfrak{g} if and only if the tensor $N_{\mathfrak{z}}$ of M in consideration vanishes.

THEOREM 4. When the condition (2. 1) is verified, then JZ_{α} is almost analytic if and only if the tensor N_3 vanishes.

It is noteworthy that the relation (1. 5) implies (2. 1). In particular, when P is a product bundle $M \times R$ and ω is an integrable connection ($d\omega = 0$), then JZ_{α} on P is almost analytic if and only if $N_3 = 0$. Moreover in contact case, if the vector field JZ_{α} is almost analytic on P, then we have $N_3 = 0$ and the connection ω satisfies (2. 1). In fact, as we know, in the almost contact structure associated with a contact structure the tensor N_4 vanishes. So we have

$$\boldsymbol{\chi}(\boldsymbol{\phi} X',\boldsymbol{\xi}) = - N_4(X') = 0$$

for all $X' \in \mathfrak{X}(M)$, and this means that the condition (2. 1) is valid.

Taking into consideration of the fact that JZ_{α} is a lift of ξ with respect to the connection ω , we proceed to study the condition in order that the lift of a vector field on M is almost analytic on P. For this purpose, we shall prove the following lemma.

LEMMA 2. For any right invariant vector fields X and Y on P on which an almost complex structure J is given by (1, 3) and (1, 4), the relations

$$p((\pounds(X)J)Y) = (\pounds(X')\phi)Y' + \overline{\omega}(Y)[X',\xi] + (\pounds(Y')\overline{\omega}(X))\xi + \chi(X',Y')\xi$$

and

$$\omega((\pounds(X)J)Y) = -p^{*}(\pounds(X')\eta)Y' - \pounds(JY)\omega(X) - d\omega(X,JY)$$

hold good, where X' and Y' denote the projections of X and Y.

PROOF. Since JX, JY, [X, Y] and so on are in $\mathfrak{X}^r(P)$ if $X, Y \in \mathfrak{X}^r(P)$, we have

$$p(\pounds(X)J\cdot Y) = p\{[X, JY] - J[X, Y]\}$$

= $(\pounds(X')\phi)Y' + \overline{\omega}(Y)[X', \xi] + (\pounds(Y')\cdot\overline{\omega}(X))\xi + \chi(X', Y')\xi.$

In the same way, we see that

$$\omega((\pounds(X)J)Y) = \omega\{[X, JY] - J[X, Y]\}$$

= $-d\omega(X, JY) - \pounds(JY) \cdot \omega(X) - p^*(\pounds(X') \cdot \eta(Y'))$
+ $p^*(\eta([X', Y']))$
= $-p^*(\pounds(X')\eta \cdot Y') - \pounds(JY) \cdot \omega(X) - d\omega(X, JY).$ Q.E.D.

Now we suppose that M is an almost contact manifold and P has an integrable connection ω . An example for such a bundle space P is for instance a product bundle $M \times R$ with a natural trivial connection (see §1). In this case, if M is normal almost contact, the almost complex structure J defined on P associated with ω is integrable by virtue of Theorem 2, and we have the following theorem :

THEOREM 5. Let $P(M^{2n+1}, p, A)$ be a principal bundle which has an integrable connection ω and a base space M^{2n+1} with an almost contact manifold. If $\omega(X)$ is constant on P for a right invariant vector field X, then X belongs to \mathfrak{G} if and only if pX belongs to \mathfrak{h} . In other words, if X is an almost analytic right invariant vector field, then $\omega(X) = \text{constant if and only if } pX$ is an infinitesimal (ϕ, ξ, η) -transformation.

PROOF. We first suppose that $\omega(X) = \text{const.}$ on P for a vector field $X \in \mathfrak{X}^r(P)$. Then, by virtue of Lemma 2, for any $Y \in \mathfrak{X}^r(P)$ we have the relations

$$p((\pounds(X)J)Y) = (\pounds(X')\phi)Y' + \overline{\omega}(Y)[X',\xi],$$

$$\omega((\pounds(X)J)Y) = -p^*(\pounds(X')\eta)Y'.$$

If $\mathfrak{L}(X)J = 0$, then replacing the vector field Y by the fundamental vector field Z_{α} in the first equation, we have $[X', \xi] = 0$ and therefore $X' \in \mathfrak{h}$. Conversely, if X' belongs to \mathfrak{h} , then it can be verified easily that $[X', \xi] = 0$. And we have at once $(\mathfrak{L}(X)J)Y = 0$ for all $Y \in \mathfrak{X}^r(P)$ and therefore X is an almost analytic vector field. Next we suppose a vector field $X \in \mathfrak{X}^r(P)$ to be almost analytic. Then according to Lemma 2, we have

$$(\pounds(X')\phi)Y' + \overline{\omega}(Y)[X',\xi] + (\pounds(Y')\cdot\overline{\omega}(X))\xi = 0,$$

$$-p^*(\pounds(X')\eta)Y' - (\pounds(JY))\cdot\omega(X) = 0.$$

In the same way as above, we can see easily that $\omega(X) = \text{const.}$ on P is equivalent to $X' \in \mathfrak{h}$. Q.E.D.

COROLLARY 1. On the same principal bundle as Theorem 5, every vector field X' on M^{2n+1} belongs to \mathfrak{h} if and only if its lift \widetilde{X} with respect to the connection ω belongs to \mathfrak{g} .

PROOF. Since the lift \widetilde{X} is right invariant and satisfies $\omega(\widetilde{X}) = 0$ on P, by virtue of Theorem 5 we have $\pounds(\widetilde{X})J = 0$ if and only if $X' = p\widetilde{X} \in \mathfrak{h}$. Q.E.D.

COROLLARY 2. In a normal almost contact manifold M^{2n+1} , for every infinitesimal (ϕ, ξ, η) -transformation X', $\phi X'$ belongs to \mathfrak{h} if and only if $\eta(X') = \text{constant on } M^{2n+1}$.

PROOF. We take a principal A-bundle P with an integrable connection ω , and give it a complex structure J by (1. 3) and (1. 4). For any $X' \in \mathfrak{h}$, if we take a lift \widetilde{X} in P with respect to ω , then from the above Corollary 1, \widetilde{X} is an almost analytic vector field on P. Since J is a complex structure we have $\pounds(J\widetilde{X})J = 0$. By virtue of Theorem 5, $\omega(J\widetilde{X})$ is constant on P if and only if $p(J\widetilde{X})$ belongs to \mathfrak{h} , that is to say, $-\eta(X')$ is constant on M if and only if $\phi X'$ belongs to \mathfrak{h} . Q.E.D.

It is known that in a contact manifold, the Lie algebra of all infinitesimal contact transformations of M is infinite dimensional. While in an almost contact structure associated with the contact structure, an infinitesimal transformation of M which leaves invariant thetensors ϕ and η is necessarily a Killing vector field. Hence the set of all such infinitesimal transformations is a finite dimensional Lie algebra. In a manifold with an almost contact structure, we can get the following theorem under an additional assumption of compactness on M.

THEOREM 6. Let M^{2n+1} be a compact differentiable manifold with a normal almost contact structure. Then the Lie algebra \mathfrak{h} of all infinitesimal (ϕ, ξ, η) -transformations on M^{2n+1} is finite dimensional.

PROOF. Take a principal circle bundle $P(M, p, S^1)$ over M with an integrable connection ω , and we define an almost complex structure J on P associated with this connection, by (1. 3) and (1. 4). Then by virtue of Theorem 2, P is a complex manifold with complex structure J. Now we denote by \mathfrak{g}_0 a set of all right invariant almost analytic vector fields X on P such that $\omega(X) = \text{constant}$.

It can be easily verified that \mathfrak{g}_0 is a subalgebra of \mathfrak{g} . We can identify the Lie algebra \mathfrak{A} of S^1 with a 1-dimensional subalgebra of \mathfrak{g}_0 generated by a fundamental vector field Z_{α} . Then there exists a natural exact sequence

$$0 \to \mathfrak{A} \to \mathfrak{g}_0 \to \mathfrak{h} \to 0.$$

To any $X' \in \mathfrak{h}$, let its lift be $\widetilde{X} \in \mathfrak{g}_0$. Then this mapping $X' \to \widetilde{X}$ is clearly a splitting of the above exact sequence, and therefore we have

$$\mathfrak{g}_{\mathfrak{o}}\cong\mathfrak{A}\oplus\mathfrak{h}$$

which means that \mathfrak{h} may be considered as a subalgebra of \mathfrak{g}_0 . From the assumption of compactness of M, P is also a compact complex manifold. Therefore \mathfrak{g} is a finite dimensional Lie algebra. Hence its subalgebra \mathfrak{g}_0 , and also \mathfrak{h} is finite dimensional. Q.E.D.

3. Almost contact metric structures. Suppose M be a manifold with an almost contact metric structure (ϕ, ξ, η, g) , and as in the previous sections consider a principal A-bundle P(M, p, A) with base space M. We give to P an almost complex structure making use of an infinitesimal connection ω by the equations (1. 3) and (1. 4). Moreover, since M has a Riemannian metric g, we can give a Riemannian metric to the manifold P by the following relation

(3. 1)
$$G(X, Y) = p^* g(pX, pY) + \omega(X)\omega(Y)$$

for all right invariant vector fields X, Y. If fX, hY is in $\mathfrak{X}^r(P)$ for functions f, h on P and vector fields $X, Y \in \mathfrak{X}^r(P)$, then we can easily verify that

$$G(fX, hY) = fhG(X, Y),$$

therefore we can extend this definition to the vector fields on $\mathfrak{X}(P)$. The tensor G of type (0, 2) is clearly symmetric. Moreover for any $X \in \mathfrak{X}^r(P)$ we have

$$G(X, X) = p^*g(pX, pX) + \omega(X)\omega(X) \ge 0,$$

and the vanishing of G(X,X) means the vanishing of g(pX, pX) and $\omega(X)$ and therefore X is at the same time vertical and horizontal, which implies X = 0. Therefore G is positive definite. As this metric G is invariant by the operation of the group A on the right, that is $R_s^*G = G$, the fundamental vector field Z_{α} is a unit Killing vector field with respect to the metric G. We shall prove the following

THEOREM 7. The Riemannian metric G and the almost complex structure J give an almost Hermitian structure on P.

PROOF. For any two vector fields $X, Y \in \mathfrak{X}^r(P)$, we know that $JX, JY \in \mathfrak{X}^r(P)$, and from the definition (3. 1), we have

$$G(JX, JY) = p^*g(pJX, pJY) + \omega(JX)\omega(JY)$$

$$= p^* \{ g(\phi pX, \phi pY) + \overline{\omega}(X)\overline{\omega}(Y)g(\xi, \xi) + \eta(pX)\eta(pY) \}$$

= $p^* g(pX, pY) + \omega(X)\omega(Y) = G(X, Y).$

Therefore the metric G and the almost complex structure J give an almost Hermitian structure on P and its fundamental 2-form is given by

$$\Omega(X, Y) = G(X, JY).$$
 Q.E.D.

Next we shall study when this almost Hermitian structure reduces to a Kählerian structure. For this porpose, we give some lemmas.

LEMMA 3. For any vector fields
$$X, Y, Z \in \mathfrak{X}^r(P)$$
, we have
(3. 2) $2G(\nabla_X Y, Z) = 2p^*g(\overline{\nabla}_{X'}Y', Z') + \omega(X)d\omega(Y, Z) - \omega(Y)d\omega(Z, X) + \omega(Z)d\omega(Y, X) + 2\omega(Z)(\mathfrak{E}(X)\cdot\omega(Y)),$

where ∇ (resp. $\overline{\nabla}$) denotes the covariant differentiation with respect to the Riemannian connection on P (resp. on M).

PROOF. From the formula

$$2G(\nabla_X Y, Z) = \pounds(X)G(Y, Z) + \pounds(Y)G(Z, X) - \pounds(Z)G(X, Y) - G(X, [Y, Z]) + G(Y, [Z, X]) + G(Z, [X, Y])$$

for any Riemannian metric G and for any vector fields X, Y, Z, we can verify Lemma 3 without difficulty.

LEMMA 4. For any vector fields
$$X, Y, Z \in \mathfrak{X}^r(P)$$
, we have

(3. 3) $2p^*g((\nabla_X Y)' - \overline{\nabla}_{X'} Y', Z') = \omega(X)d\omega(Y, Z) + \omega(Y)d\omega(X, Z),$ $(\nabla_X \omega)Y + (\nabla_F \omega)X = 0, \quad \text{i. e., } \omega \text{ is } G\text{-Killing.}$

PROOF. From the definition of metric G, we have

$$G(\nabla_X Y, Z) = p^* g((\nabla_X Y)', Z') + \omega(\nabla_X Y)\omega(Z)$$

and by virtue of (3. 2) we have also

$$2p^*g((\nabla_X Y)' - \overline{\nabla}_{X'}Y', Z') = \omega(X)d\omega(Y, Z) - \omega(Y)d\omega(Z, X) + \omega(Z)\{(\nabla_X \omega)Y + (\nabla_Y \omega)X\}.$$

If we replace Z in this equation by vertical vector field Z_{α} , then we have $(\nabla_{x}\omega)Y + (\nabla_{F}\omega)X = 0$, for all $X, Y \in \mathfrak{X}^{r}(P)$.

This proves Lemma 4.

LEMMA 5. For any vector fields
$$X, Y, Z \in \mathfrak{X}'(P)$$
, we have
(3. 4) $2\eta((\nabla_X Y)' - \overline{\nabla}_{X'} Y') = \omega(X)\chi(Y', \xi) - \overline{\omega}(Y)\chi(\xi, X'),$

$$2g(\phi((\nabla_X Y)' - \overline{\nabla}_{X'} Y'), Z') = -\overline{\omega}(X)\chi(Y', \phi Z') + \overline{\omega}(Y)\chi(\phi Z', X').$$

PROOF. The projections of JZ_{α} and $JZ - \omega(Z)JZ_{\alpha}$ are ξ and $\phi Z'$. Therefore if we replace Z by JZ_{α} or $JZ - \omega(Z)JZ_{\alpha}$ in (3. 3), then we can obtain (3.4) from the anti-symmetry of ϕ with respect to metric g.

LEMMA 6. For any vector fields
$$X, Y, Z \in \mathfrak{X}'(P)$$
, we have
(3. 5)
$$2G((\nabla_{\mathcal{X}}J)Y, Z) = p^*[2g((\overline{\nabla}_{\mathcal{X}'}\phi)Y', Z') + \eta(Y')\chi(Z', X') - \eta(Z')\chi(Y', X') + \overline{\omega}(Y)\{\chi(X', \phi Z') + 2((\overline{\nabla}_{\mathcal{X}'}\eta)Z')\} - \overline{\omega}(Z)\{\chi(X', \phi Y') + 2((\overline{\nabla}_{\mathcal{X}'}\eta)Y')\}] + \omega(X)\{d\omega(JY, Z) + d\omega(Y, JZ)\}.$$

PROOF. We may deduce it by straightforward calculation using (3. 4) and the fact that ω is a G-Killing form on P.

If we denote the fundamental 2-form of the almost Hermitian structure on P by Ω , then P(J, G) is a Kählerian manifold if Ω is a closed form and J is integrable. As is well known, these conditions are equivalent to $\nabla J = 0$. Investigating ∇J , we can deduce the following theorem.

THEOREM 8. If the almost Hermitian manifold P(J,G) is Kählerian, then we have for all $X, Y \in \mathfrak{X}^r(P)$,

(3. 6) $d\omega(JX,Y) + d\omega(X,JY) = 0,$

(3. 7)
$$2g((\nabla_{X'}\phi)Y',Z') = -\eta(Y')\chi(Z',X') + \eta(Z')\chi(Y',X'),$$

(3. 8) $2(\nabla_{X'}\eta)Y' = \chi(\phi X', Y').$

Therefore η is a closed form and M^{2n+1} has a normal almost contact metric structure. Conversely, if the structure tensors (ϕ, ξ, η, g) and connection ω satisfy the conditions (3, 6), (3, 7) and (3, 8), then P(J,G) is a Kählerian manifold.

PROOF. Suppose that P(J,G) is a Kählerian manifold. Then as the almost complex structure J is covariant constant, we see that the right hand side of (3. 5) vanishes for any vector fields $X, Y, Z \in \mathfrak{X}^r(P)$. Therefore, if we replace X with the vertical vector field Z_{α} , then we have

$$d\omega(JY,Z) + d\omega(Y,JZ) = 0$$

for $Y, Z \in \mathfrak{X}^r(P)$. We can deduce from this relation the following

$$egin{aligned} \chi(\phi X',Y') + \chi(X',\phi Y') &= 0, \ \chi(X',\xi) &= 0 \end{aligned}$$

for all X'. Y' $\in \mathfrak{X}(M)$. While if we replace Y with the vertical vector field Z_a ,

then we get (3, 8)

$$\chi(X',\phi Z') + 2(\overline{\nabla}_{X'}\eta)Z' = 0$$

for $X', Z' \in \mathfrak{X}(M)$. Substituting these equations into (3. 5), we have (3. 7). Then we have

$$2d\eta(X',Y') = 2(\overline{\nabla}_{X'}\eta)Y' - 2(\overline{\nabla}_{F'}\eta)X'$$

= $\chi(\phi X',Y') - \chi(\phi Y',X') = 0.$

Therefore η is a closed form on M, Next, as the almost complex structure J is integrable, the Nijenhuis tensor N of J vanishes. Therefore, from Lemma 1 and (3. 6) we can obtain $N_1 = 0$ at once. The converse statement in the theorem is evident. Q.E.D.

As is proved in [2], a manifold with an almost contact structure admits a symmetric (ϕ, ξ, η) -connection if and only if the almost contact structure is normal and η is closed. Therefore, we can see by virtue of Theorem 8 that the following is true: if the almost Hermitian manifold P(J, G) is a Kählerian manifold, then M admits a symmetric (ϕ, ξ, η) -connection. In general, the metrical connection on M is not always (ϕ, ξ, η) -connection. But we can obtain the following corollary from Theorem 8.

COROLLARY. Suppose that the almost Hermitian manifold P(J,G) is Kählerian manifold and that ξ is a Killing vector field on M^{2n+1} . Then ω is an integrable connection and the metrical connection of the base space M^{2n+1} is a (ϕ, ξ, η) -connection. The converse is also true.

By virtue of Theorem 8, we see that if P is a Kählerian manifold, then $d\eta = 0$, and so M can not be a contact manifold. Therefore, on a contact manifold M we can not admit a Kählerian A-bundle defined by (1. 3), (1. 4) and (3. 1) using an infinitesimal connection ω .

Next we study whether there exists a differentiable function ρ on P such that a metric \widetilde{G} defined by

$$\widetilde{\widetilde{G}} = \rho G$$

and the almost complex structure J give an almost Kählerian structure on P. For this purpose, we calculate the fundamental 2-form Ω on P, then we have

$$\Omega = p^* \psi + p^* \eta \wedge \omega,$$

where ψ is a 2-form on M such that

$$\psi(X',Y') = g(X',\phi Y').$$

If we calculate $d\widetilde{\Omega} = d\rho \wedge \Omega + \rho d\Omega$, then we obtain

(3. 9)
$$i(JZ_{\alpha})i(Z_{\alpha})d\widetilde{\Omega} = (Z_{\alpha}\rho)\omega + (JZ_{\alpha}\rho)p^*\eta - \rho p^*(\pounds(\xi)\eta) - d\rho.$$

On the other hand, if we take an adapted coframe $(\eta_1, \dots, \eta_{2n}, \eta)$ in a neighborhood U of the almost contact structure on M, then we can take $(p^*\eta_1, \dots, p^*\eta_{2n}, p^*\eta, \omega)$ as a coframe in $p^{-1}(U)$. Let its dual frame be $(Z_1, \dots, Z_{2n}, JZ_{\alpha}, Z_{\alpha})$. Then for any $\rho \in F(P)$, we have

$$d\rho = (Z_{\alpha}\rho)\omega + (JZ_{\alpha}\rho)p^{*}\eta + \sum_{k=1}^{2n} (Z_{k}\rho)(p^{*}\eta_{k}),$$
$$p^{*}(\mathfrak{L}(\xi)\eta) = \sum_{k=1}^{2n} A_{k}(p^{*}\eta_{k}) \qquad \text{for some } A_{k} \in p^{*}F(M),$$

because $\pounds(\xi)\eta$ has no η -component. Then we have the following

THEOREM 9. Suppose that the almost Hermitian structure (J, G) on Pis defined by an integrable connection ω and an almost contact metric structure associated with a contact structure η on M^{2n+1} . Then the almost Hermitian structure $(J, \widetilde{G}), \widetilde{G} = \rho G$, defines an almost Kählerian structure on P if and only if the function ρ satisfies the equation

$$d
ho = -
ho\omega$$

PROOF. Since M is a contact manifold, we have

$$egin{aligned} & \mathbf{\pounds}(\xi)\eta = 0, \ & \Omega = p^*d\eta + p^*\eta \wedge \omega. \end{aligned}$$

Let $P(J, \widetilde{G})$ is an almost Kählerian manifold, then $d\widetilde{\Omega} = 0$, and therefore we have

$$d\rho = (JZ_{\alpha}\rho)p^*\eta + (Z_{\alpha}\rho)\omega$$

by virtue of (3. 9). We can easily see that

$$0 = d\widetilde{\Omega} = d\rho \wedge \Omega + \rho d\Omega$$

= $(Z_{\alpha}\rho + \rho)\omega \wedge p^* d\eta + (JZ_{\alpha}\rho)p^*(\eta \wedge d\eta).$

As $\omega \wedge p^* d\eta$ and $p^*(\eta \wedge d\eta)$ is mutually independent forms on P, we obtain

$$Z_{\alpha}\rho + \rho = 0, \qquad (JZ_{\alpha}\rho) = 0.$$

Therefore, the necessity of the theorem is proved. Sufficiency is evident. Q.E.D.

BIBLIOGRAPHY

[1] S.SASAKI, On differentiable manifolds with certain structures which are closely related

- to almost contact structure I, Tôhoku Math. Journ., 12(1960),456-476. [2] S. SASAKI AND Y. HATAKEYAMA, On differentiable manifolds with certain structures which are closely related to almost contact structure II, Tôhoku Math. Journ., 13(1961), 281-294.
- [3] J.-L. KOSZUL AND B. MALGRANGE, Sur certaines structures fibrées complexes, Arkiv der Math., 9(1958), 102-109.

TÔHOKU UNIVERSITY.