SOME PROPERTIES ON MANIFOLDS WITH ALMOST CONTACT STRUCTURES

YOSUKE OGAWA

(Received January 23,1963)

Introduction. Recently S.Sasaki [1] has introduced the notion of an almost contact structure over an $(2n+1)$ -dimensional differentiable manifold M (differentiability means class C^{∞} always in the following) by three tensors ϕ , ξ , η of types (1, 1), (0, 1) and (1, 0) on *M* satisfying some relations. The importance of this structure is in the fact that if *M* has a contact structure defined by a 1-form *η,* then *η* induces an almost contact (metric) structure taking a suitable metric in *M,* and in this contact case, many interesting results have been obtained. But for an almost contact structure which is not necessarily a contact structure, it seems to me that few results are known. In this paper, we consider mainly an almost contact structure.

In their paper [2], S.Sasaki and Y.Hatakeyama defined four tensors N^i_{jk} , N_{jk} , N^i _j and N_j for an almost contact structure by the method of constructing an almost complex structure in $M \times R$ (R denotes the additive group of real number field) and computing its Nijenhuis tensor. Regarding this product space as a trivial bundle space over M , we consider to generalize this method to a principal fibre bundle *P* with a base space *M* and a structural group *A* which is a 1-dimensional real abelian Lie group.

I should like to express my hearty gratitude to Prof. S.Sasaki and Mr. Y. Hatakeyama for their valuable criticism.

1. Nijenhuis tensors of almost contact structures. Let *M* be an almost contact manifold and its defining tensor fields of types $(1, 1)$, $(1, 0)$ and $(0,1)$ be *φ, ξ* and *η* respectively. We take a real 1-dimensional abelian Lie group *A,* and denote its Lie algebra over *R* by ?f. Suppose that there exists a differenti able principal A-bundle $P(M, p, A)$ over M with a projection $p: P \rightarrow M$. Then we can take in this principal bundle a differentiable infinitesimal connection with a connection form *ω* which is an Sl-valued 1-form on *P* satisfying the following two relations :

(1. 1) $\omega(\overline{u}s) = \omega(\overline{u}), \qquad u \in P, s \in A, \overline{u} \in T_u(P),$

$$
(1. 2) \t\t \t\t \omega(u\bar{s}) = s^{-1}\bar{s}, \t\t \t\t u \in P, s \in A, \ \bar{s} \in T_s(A),
$$

where $T_u(P)$ (resp. $T_s(A)$) denotes the tangent space to P (resp. A) at $u \in P$ (resp.

 $s \in A$). Since \mathfrak{A} is a 1-dimensional vector space over *R* with a generator α , we can identify $\mathfrak A$ with R by the mapping $r \in R \leftrightarrow r\alpha \in \mathfrak A$. Then every $\mathfrak A$ -valued mapping can be considered as an R -valued mapping. In this way we consider ω to be an R-valued 1-form.

Let $F(P)$ (resp. $F(M)$) denotes the set of all real valued differentiable functions on P (resp. on M), and let $\mathfrak{X}(P)$ (resp. $\mathfrak{X}(M)$) be an $F(P)$ -module (resp. $F(M)$ module) of the totality of differentiable vector fields on P(resp. on *M).* Then the latter is at the same time a vector space over R. Let $\mathfrak{X}^r(P)$ be a vector subspace of ϊ(P) over *R* consisting of the right invariant differentiable vector field with respect to the group operation of A. As any element of $\mathfrak{X}(P)$ is generated by vertical and horizontal vector fields, $\mathfrak{X}(P)$ is generated by $\mathfrak{X}(P)$ over $F(P)$. Moreover it is easily seen that every vector field $X \in \mathfrak{X}(P)$ belongs to $\mathfrak{X}^r(P)$ if and only if it is projectable and $\omega(X)$ is in the dual image of $F(M)$ by projection p , i.e., $pX \in \mathfrak{X}(M)$, and $\omega(X) \in p^*F(M)$.

Now using the almost contact structure (ϕ, ξ, η) on M and the connection form ω, we define an almost complex structure on *P* as follows : If we take a right invariant vector field X on P, then as $\omega(X) \in p^*F(M)$, there exists a unique function $\tilde{\omega}(X) \in F(M)$ such that

$$
p^*\overline{\omega}(X)=\omega(X)
$$

on P. Then we define a vector field $JX \in \mathfrak{X}(P)$ by the two equations:

(1. 3) *ω(JX)* = -

$$
(1. 4) \t\t p(JX) = \phi(pX) + \tilde{\omega}(X)\xi.
$$

If we take a vector field $X \in \mathfrak{X}^r(P)$ and a function $f \in F(P)$ such that $fX \in \mathfrak{X}^r(P)$, then f must satisfy $f(us) = f(u)$ for $u \in P$, $s \in A$. Therefore, there exists a function $\overline{f} \in F(M)$ such that $f = p^* \overline{f}$, and we have

$$
p(J(fX)) = \phi(\overline{f}pX) + \overline{\omega}(fX)\xi = \overline{f}(pJX),
$$

$$
\omega(J(fX)) = -p^*\eta(\overline{f}pX) = f\omega(JX).
$$

And so the relation

$$
JfX = fJX
$$

holds good. Next we extend the above definition to an arbitrary vector field $X \in \mathfrak{X}(P)$. For this X, as there exist functions $f_{\lambda} \in F(P)$ and vector fields $X_{\lambda} \in \mathfrak{X}^r(P)$ such that $X = \sum_{\lambda} f_{\lambda} X_{\lambda}$ on P, we define $JX \in \mathfrak{X}(P)$ by $JX = \sum_{\lambda} f_{\lambda} J X_{\lambda}.$

By virtue of the above consideration, this definition is consistent. *J* is a tensor

field on P of type $(1, 1)$. It is noticed that the tensor field J is completely dependent on the connection ω on *P.*

THEOREM 1. *J is an almost complex structure on P which commutes with the operation of A.*

PROOF. For every vector field $X \in \hat{\pi}^r(P)$, we can first see that $JX \in \hat{\pi}^r(P)$ according to $p(JX) \in \mathfrak{X}(M)$, $\omega(JX) \in p^*F(M)$. Therefore we have $R_s JX = JR_sX$ $= JX$ for $X \in \mathfrak{X}^r(P)$, $s \in A$. If $f \in F(P)$, then

$$
R_{s}J(fX) = (R_{s}^{*}f)(R_{s}JX) = J(R_{s}^{*}f(R_{s}X)) = JR_{s}(fX),
$$

which shows that the tensor field *J* commutes with group operation. For any $X \in \mathfrak{X}^r(P)$, as JX also belongs to $\mathfrak{X}^r(P)$, we have

$$
\omega(J^2X) = -p^*\eta(pJX) = -p^*\eta(\phi pX + \overline{\omega}(X)\xi)
$$

= $-p^*\overline{\omega}(X)p^*\eta(\xi) = -\omega(X),$

$$
p(J^2X) = \phi(pJX) + \overline{\omega}(JX)\xi = \phi(\phi pX + \overline{\omega}(X)\xi) + (-\eta(pX)\xi)
$$

= $-pX + \eta(pX)\xi - \eta(pX)\xi = -pX.$

Therefore *J* satisfies for all $X \in \mathfrak{X}^r(P)$ the equation

$$
J^2X=-X.
$$

Since J is a tensor field on P and any vector field is generated by right invariant vector fields, this equation must hold on $\mathfrak{X}(P)$. Q.E.D.

In the following we calculate the Nijenhuis tensor of this almost complex structure *J* on *P.* It is defined by the tensor *N* of type (1, 2)

$$
N(X, Y) = [X, Y] + J[JX, Y] + J[X, JY] - [JX, JY].
$$

We have only to calculate it for the right invariant vector fields. Formerly S.Sasaki and Y.Hatakeyama [2] has defined tensors $N^i{}_{jk}$, N_{jk} , $N^i{}_j$ and $N^j{}_j$ associated to the almost contact structure (ϕ, ξ, η) on M by the following way. Let $P_{\text{o}} = M \times R$ be a trivial R-bundle over M with a natural integrable connec tion ω_0 , then we can define an almost complex structure J_0 on P_0 by the same way as above. In fact, for a right invariant vector field $X + \Lambda$, $X \in \mathfrak{X}(M)$, $A \in \mathfrak{X}(R)$, such that $R_s \Lambda_t = \Lambda_{ts}(t, s \in R)$, we have

$$
J_0(X+\Lambda)=(\phi X+\omega_0(\Lambda)\xi)+(-\eta(X)Z_\alpha),
$$

where α denotes a generator of the Lie algebra of R such that $\omega_0(Z_\alpha) = 1$, Z_α being a fundamental vector field corresponding to α . We can calculate straightforwardly the Nijenhuis tensor field $N_0(X + \Lambda, Y + \Gamma)$ of this almost complex structure J_0 , and if we define the tensor fields N_1, N_2, N_3 and N_4 of types respectively $(1, 2), (0, 2), (1, 1)$ and $(0, 1)$ on M by

$$
N_0(X, Y) = N_1(X, Y) + N_2(X, Y)Z_{\alpha},
$$

$$
N_0(X, Z_{\alpha}) = N_3(X) + N_4(X)Z_{\alpha},
$$

then we have the following equations.

$$
N_1(X, Y) = [X, Y] + \phi[\phi X, Y] + \phi[X, \phi Y] - [\phi X, \phi Y] + (Y \cdot \eta(X) - X \cdot \eta(Y))\xi,
$$

$$
N_2(X, Y) = (\mathfrak{L}(\phi X)\eta)Y - (\mathfrak{L}(\phi Y)\eta)X,
$$

$$
N_3(X) = (\mathfrak{L}(\xi)\phi)Y,
$$

$$
N_4(X) = - (\mathfrak{L}(\xi)\eta)X.
$$

These are the same results as those of $[2]$.

Now returning to the case of general principal A-bundle with a connection , we also calculate the Nijenhuis tensor of the almost complex structure on *P* defined by (1. 3) and (1. 4). We notice that for any function $f = p^* \overline{f} \in F(P)$ and for any projectable vector field $X \in \mathfrak{X}(P)$, the relation

$$
\mathfrak{L}(X)p^*\overline{f} = p^*(\mathfrak{L}(pX)\overline{f})
$$

holds good. As $d\omega$ is a horizontal 2-form on P, there exists a 2-form χ on *M* such that $d\omega = p^*\chi$. If X, Y are right invariant vector fields on P, so are $JX, JY, [X, Y]$ and so on. Therefore we can compute $pN(X, Y)$ *, w*($N(X, Y)$) and we have

LEMMA 1. For all right invariant vector fields X,Y on P, we have
\n
$$
pN(X,Y) = N_1(pX, pY) + \overline{\omega}(Y)N_3(pX) - \overline{\omega}(X)N_3(pY)
$$
\n
$$
- \{\chi(pJX, pY) + \chi(pX, pJY)\}\xi,
$$
\n
$$
\omega(N(X,Y)) = p^*N_2(pX, pY) + \omega(Y)p^*N_4(pX) - \omega(X)p^*N_4(pY)
$$
\n
$$
- \{\text{do}(X,Y) - \text{do}(JX, JY)\}.
$$

From this Lemma, we have the following result:

THEOREM 2. *If M2n+ί is a normal almost contact manifold, then every almost complex structure of a principal A-bundle P(M2n+1 , p, A) associated to an infinitesimal connection ω is integrable if and only if the connection satisfies the relation*

$$
(1. 5) \t d\omega(JX, Y) + d\omega(X, JY) = 0
$$

for all vector fields X and Y on P.

PROOF. It is well known that in an almost contact structure, the vani \mathbf{A} ing of the tensor N_{1} means the vanishing of the other tensors N_{2}, N_{3} and N_4 . In this case Lemma 1 shows that relations

$$
pN(X, Y) = -(\chi(pJX, pY) + \chi(pX, pJY))\xi,
$$

$$
\omega N(X, Y) = -(\omega(X, Y) - \omega(JX, JY))
$$

hold good for $X, Y \in \mathfrak{X}^r(P)$. Therefore it is evident that the vanishing of the tensor N is equvalent to $(1, 5)$. $Q.E.D.$

For any vector fields $X', Y' \in \mathfrak{X}(M)$, if we take their lift $\widetilde{X}, \widetilde{Y}$ which are right invariant horizontal vector fields on P , then we obtain, by virtue of Lemma 1, the following relations:

$$
pN(\widetilde{X},\widetilde{Y})=N_1(X',Y')-\{\chi(\phi X',Y')+\chi(X',\phi Y')\}\xi,
$$

$$
\omega N(X,Y)=p^*N_2(X',Y')-\{d\omega(X,Y)-d\omega(JX,JY)\}.
$$

On the other hand, if *M* is a contact manifold with a contact form *η^y* then an almost contact structure can be induced from *η* choosing a suitable metric on *M*. In this case the tensors N_{2} and N_{4} vanish. Therefore, if we suppose that the almost complex structure on *P* defined by a contact structure on *M* and an infinitesimal connection on *P* is integrable, then *M* must be normal, and moreover ω satisfies (1. 5). In fact, by virtue of the vanishing of N, we have

$$
N_1(X',Y')=\{\chi(\phi X',Y')+\chi(X',\phi Y')\}\xi.
$$

Since $N_{\scriptscriptstyle 2}=0$ is equivalent to $\eta N_{\scriptscriptstyle 1}=0$, we get $N_{\scriptscriptstyle 1}=0$. We rewrite this result as a theorem.

THEOREM 3. *Suppose that an almost complex structure on P is defined by a contact structure on M'2n+ί and an infinitesimal connection ω on* F, *then the almost complex structure J is integrable if and only if M2n+1 is a normal contact manifold and ω satisfies* (1. 5).

2. Infinitesimal (ϕ, ξ, η) -transformations. In this section we shall study some relations between the vector fields on *P* and vector fields on *M.* We suppose that *P* has an almost complex structure *J* defined by an almost contact structure *(φ, ξ, η)* on *M* and an infinitesimal connection ω on *P.* A vector field *X* on *P* which verifies the condition

$$
\mathfrak{L}(X)J=0
$$

is called an almost analytic vector field. We denote the set of all almost analytic vector fields on *P* by S. In the next place, we call a vector field *X'* on *M* an infinitesimal (ϕ, ξ, η) -transformation when it satisfies the conditions

$$
\mathfrak{L}(X')\phi=0, \qquad \mathfrak{L}(X')\eta=0,
$$

and the set of all of them is denoted by ΐ). Since *A* is an abelian group, a fundamental vector field Z_α on P corresponding to a generator α of $\mathfrak A$ such that $\omega(Z_{\alpha}) = 1$ is right invariant. By virtue of Theorem 1, as the tensor J is

invariant by the operation of *A* on *P*, we have $\mathcal{L}(Z_{\alpha})J = 0$, that is, Z_{α} is an almost analytic vector field. At first we shall seek for the condition under which JZ_{α} is almost analytic. Since JZ_{α} is right invariant, we have by virtue of Lemma 1 for any vector field $X \in \mathfrak{X}^r(P)$,

$$
pN(X, Z_{\alpha}) = N_s(pX) - \chi(pX, \xi)\xi,
$$

\n
$$
\omega N(X, Z_{\alpha}) = p^* \{N_s(pX) + \chi(\phi pX, \xi)\}.
$$

On the other hand we have for any vector field $X \in \mathfrak{X}(P)$

$$
N(X, Z_{\alpha}) = (\mathfrak{L}(Z_{\alpha})J)JX + (\mathfrak{L}(JZ_{\alpha})J)X
$$

$$
= (\mathfrak{L}(JZ_{\alpha})J)X,
$$

and so the conditions $N(X, Z_\alpha) = 0$ for all $X \in \mathfrak{X}(P)$ and JZ_α belongs to 9 are equivalent with each other. Therefore if we assume that the curvature form $d\omega = p^* \chi$ on *P* satisfies the condition

$$
\chi(X',\xi)=0
$$

for all $X' \in \mathfrak{X}(M)$, then JZ_{α} belongs to g if and only if the tensor N_3 of M in consideration vanishes.

THEOREM 4. *When the condition* (2. 1) *is verified, then JZ^a is almost analytic if and only if the tensor N³ vanishes.*

It is noteworthy that the relation (1.5) implies $(2. 1)$. In particular, when *P* is a product bundle $M \times R$ and ω is an integrable connection $(d\omega = 0)$, then JZ_a on *P* is almost analytic if and only if $N_3 = 0$. Moreover in contact case, if the vector field JZ_{α} is almost analytic on *P*, then we have $N_3 = 0$ and the connection ω satisfies (2. 1). In fact, as we know, in the almost contact structure associated with a contact structure the tensor N_4 vanishes. So we have

$$
\chi(\phi X',\xi)=-N_4(X')=0
$$

for all $X' \in \mathfrak{X}(M)$, and this means that the condition $(2, 1)$ is valid.

Taking into consideration of the fact that *JZ^a* is a lift of *ξ* with respect to the connection ω, we proceed to study the condition in order that the lift of a vector field on *M* is almost analytic on *P.* For this purpose, we shall prove the following lemma.

LEMMA 2. *For any right invariant vector fields X and Y on P on which an almost complex structure J is given by* (1. 3) *and* (1. 4), *the relations*

$$
\begin{aligned} \phi((\mathfrak{X}(X)J)Y) &= (\mathfrak{X}(X')\phi)Y' + \overline{\omega}(Y)[X',\xi] \\ &+ (\mathfrak{X}(Y')\overline{\omega}(X))\xi + \chi(X',Y')\xi \end{aligned}
$$

and

$$
\omega((\textbf{E}(X)J)Y)=-\not{p}*(\textbf{E}(X')\eta)Y'-\textbf{E}(JY)\omega(X)-d\omega(X,JY)
$$

hold good, where X' and Y^f denote the projections of X and Y.

PROOF. Since JX , JY , $[X, Y]$ and so on are in $\mathfrak{X}^r(P)$ if $X, Y \in \mathfrak{X}^r(P)$, we have

$$
p(\mathfrak{L}(X)J\cdot Y) = p\{[X,JY] - J[X,Y]\}
$$

= $(\mathfrak{L}(X')\phi)Y' + \overline{\omega}(Y)[X',\xi] + (\mathfrak{L}(Y')\cdot \overline{\omega}(X))\xi + \chi(X',Y')\xi.$

In the same way, we see that

$$
\omega((\mathfrak{L}(X)J)Y) = \omega\{[X,JY] - J[X,Y]\}
$$

= $-d\omega(X,JY) - \mathfrak{L}(JY)\cdot\omega(X) - p^*(\mathfrak{L}(X')\cdot\eta(Y'))$
+ $p^*(\eta([X',Y'])$
= $-p^*(\mathfrak{L}(X')\eta\cdot Y') - \mathfrak{L}(JY)\cdot\omega(X) - d\omega(X,JY).$ Q.E.D.

Now we suppose that *M* is an almost contact manifold and *P* has an integrable connection *ω.* An example for such a bundle space *P* is for instance a product bundle $M \times R$ with a natural trivial connection (see §1). In this case, if M is normal almost contact, the almost complex structure *J* defined on *P* associated with *ω* is integrable by virtue of Theorem 2, and we have the following theorem :

THEOREM 5. Let $P(M^{2n+1}, p, A)$ be a principal bundle which has an inte*grable connection ω and a base space M2n+1 with an almost contact manifold. If* ω(X) *is constant on P for a right invariant vector field X, then X belongs to* ® *if and only if pX belongs to* ΐ). *In other words, if X is an almost analytic right invariant vector field, then* $\omega(X) = constant$ *if and only if pX is an infinitesimal (φ, ξ, η)-transformation.*

PROOF. We first suppose that $\omega(X) = \text{const.}$ on P for a vector field $X \in \mathfrak{X}^r(P)$. Then, by virtue of Lemma 2, for any $Y \in \mathfrak{X}^r(P)$ we have the relations

$$
p((\mathfrak{L}(X)J)Y) = (\mathfrak{L}(X')\phi)Y' + \overline{\omega}(Y)[X', \xi],
$$

$$
\omega((\mathfrak{L}(X)J)Y) = -p^*(\mathfrak{L}(X')\eta)Y'.
$$

If $\mathcal{L}(X)J = 0$, then replacing the vector field Y by the fundamental vector field *Z*_{*a*} in the first equation, we have $[X', \xi] = 0$ and therefore $X' \in \mathfrak{h}$. Conversely, if X' belongs to $\mathfrak h$, then it can be verified easily that $[X', \xi] = 0$. And we have at once $(\mathfrak{X}(X)J)Y = 0$ for all $Y \in \mathfrak{X}'(P)$ and therefore X is an almost analytic vector field. Next we suppose a vector field $X \in \mathfrak{X}^r(P)$ to be almost analytic. Then according to Lemma 2, we have

$$
(\mathfrak{L}(X')\phi)Y' + \overline{\omega}(Y)[X',\xi] + (\mathfrak{L}(Y')\cdot\overline{\omega}(X))\xi = 0,
$$

$$
- p^*(\mathfrak{L}(X)\eta)Y' - (\mathfrak{L}(JY))\cdot \omega(X) = 0.
$$

In the same way as above, we can see easily that $\omega(X) = \text{const.}$ on P is equivalent to $X' \in \mathfrak{h}$. Q.E.D.

COROLLARY 1. *On the same principal bundle as Theorem* 5, *every vector* field X' on M^{2n+1} belongs to ${\mathfrak h}$ if and only if its lift \widetilde{X} with respect to the *connection ω belongs to* 9.

PROOF. Since the lift \widetilde{X} is right invariant and satisfies $\omega(\widetilde{X}) = 0$ on *P*, by virtue of Theorem 5 we have $\mathfrak{L}(\widetilde{X})J = 0$ if and only if $X' = p\widetilde{X} \in \mathfrak{h}$. Q.E.D.

COROLLARY 2. *In a normal almost contact manifold M2n+\ for every infinitesimal* (ϕ, ξ, η) -transformation X', $\phi X'$ belongs to $\mathfrak h$ if and only if $\eta(X')$ $= constant$ on M^{2n+1} .

PROOF. We take a principal A-bundle *P* with an integrable connection ω, and give it a complex structure J by (1. 3) and (1. 4). For any $X' \in \mathfrak{h}$, if we take a lift \widetilde{X} in P with respect to ω , then from the above Corollary 1, \widetilde{X} is an almost analytic vector field on P. Since J is a complex structure we have $\mathbf{f}(\mathcal{I} \widetilde{X})J = 0$. By virtue of Theorem 5, $\omega(\widetilde{J}X)$ is constant on P if and only if $\omega(\widetilde{J}X)$ belongs to $\mathfrak h$, that is to say, $-\eta(X')$ is constant on M if and only if $\phi X'$ belongs to \mathfrak{h} . $Q.E.D.$

It is known that in a contact manifold, the Lie algebra of all infinitesimal contact transformations of *M* is infinite dimensional. While in an almost contact structure associated with the contact structure, an infinitesimal transformation of *M* which leaves invariant thetensors *φ* and *η* is necessarily a Killing vector field. Hence the set of all such infinitesimal transformations is a finite dimen sional Lie algebra. In a manifold with an almost contact structure, we can get the following theorem under an additional assumption of compactness on *M.*

THEOREM 6. Let M^{2n+1} be a compact differentiable manifold with a *normal almost contact structure. Then the Lie algebra* ί) *of all infinitesimal* (φ, *ξ, η)-transformations on M2n+1 is finite dimensional.*

PROOF. Take a principal circle bundle *P(M, p, S¹)* over *M* with an integrable connection ω , and we define an almost complex structure J on P associated with this connection, by (1. 3) and (1. 4). Then by virtue of Theorem 2, *P* is a complex manifold with complex structure J. Now we denote by $\mathfrak{g}_{\mathfrak{o}}$ a set of all right invariant almost analytic vector fields X on P such that $\omega(X) =$ constant.

It can be easily verified that $\mathfrak{g}_{\mathfrak{o}}$ is a subalgebra of $\mathfrak{g}_{\mathfrak{c}}$. We can identify the Lie algebra $\mathfrak A$ of $S^{\scriptscriptstyle 1}$ with a 1-dimensional subalgebra of $\mathfrak g_{\scriptscriptstyle 0}$ generated by a funda mental vector field *Z^a .* Then there exists a natural exact sequence

$$
0 \to \mathfrak{A} \to \mathfrak{g}_0 \to \mathfrak{h} \to 0.
$$

To any $X' \in \mathfrak{h}$, let its lift be $\widetilde{X} \in \mathfrak{g}_{0}$. Then this mapping $X' \rightarrow \widetilde{X}$ is clearly a splitting of the above exact sequence, and therefore we have

$$
\mathfrak{g}_0\cong \mathfrak{A}\oplus \mathfrak{h},
$$

which means that $\mathfrak h$ may be considered as a subalgebra of $\mathfrak g_{\scriptscriptstyle 0}$. From the assumption of compactness of *M, P* is also a compact complex manifold. Therefore $\mathfrak g$ is a finite dimensional Lie algebra. Hence its subalgebra $\mathfrak g_0$, and also $\mathfrak h$ is finite dimensional. $Q.E.D.$

3. Almost contact metric structures. Suppose *M* be a manifold with an almost contact metric structure (ϕ, ξ, η, g) , and as in the previous sections consider a principal A-bundle *P(M, p, A)* with base space *M.* We give to *P* an almost complex structure making use of an infinitesimal connection *ω* by the equations (1. 3) and (1. 4). Moreover, since *M* has a Riemannian metric *g,* we can give a Riemannian metric to the manifold *P* by the following relation

(3. 1)
$$
G(X, Y) = p^*g(pX, pY) + \omega(X)\omega(Y)
$$

for all right invariant vector fields X, Y. If fX , hY is in $\mathfrak{X}(P)$ for functions f, h on *P* and vector fields $X, Y \in \mathfrak{X}^r(P)$, then we can easily verify that

$$
G(fX, hY) = fhG(X, Y),
$$

therefore we can extend this definition to the vector fields on $\mathfrak{X}(P)$. The tensor *G* of type $(0, 2)$ is clearly symmetric. Moreover for any $X \in \mathfrak{X}^r(P)$ we have

$$
G(X, X) = p^*g(pX, pX) + \omega(X)\omega(X) \geq 0,
$$

and the vanishing of $G(X,X)$ means the vanishing of $g(pX, pX)$ and $\omega(X)$ and therefore X is at the same time vertical and horizontal, which implies $X = 0$. Therefore *G* is positive definite. As this metric *G* is invariant by the operation of the group A on the right, that is $R_*^*G = G$, the fundamental vector field Z_{α} is a unit Killing vector field with respect to the metric G. We shall prove the following

THEOREM 7. *The Riemannian metric G and the almost complex structure J give an almost Hermitian structure on P.*

PROOF. For any two vector fields $X, Y \in \mathfrak{X}^r(P)$, we know that JX, JY $\in \mathfrak{X}^r(P)$, and from the definition (3. 1), we have

$$
G(JX,JY) = p^*g(pJX,pJY) + \omega(JX)\omega(JY)
$$

$$
= p^*[g(\phi pX, \phi pY) + \overline{\omega}(X)\overline{\omega}(Y)g(\xi, \xi) + \eta(pX)\eta(pY)]
$$

= $p^*g(pX, pY) + \omega(X)\omega(Y) = G(X, Y).$

Therefore the metric *G* and the almost complex structure *J* give an almost Hermitian structure on *P* and its fundamental 2-form is given by

$$
\Omega(X, Y) = G(X, JY). \tag{Q.E.D.}
$$

Next we shall study when this almost Hermitian structure reduces to a Kahlerian structure. For this porpose, we give some lemmas.

LEMMA 3. For any vector fields
$$
X, Y, Z \in \mathfrak{X}^r(P)
$$
, we have
\n(3. 2)
$$
2G(\nabla_X Y, Z) = 2p^*g(\overline{\nabla}_{X'} Y', Z') + \omega(X) d\omega(Y, Z) - \omega(Y) d\omega(Z, X) + \omega(Z) d\omega(Y, X) + 2\omega(Z)(\mathfrak{X} \cdot \omega(Y)),
$$

where ∇ (resp. $\overline{\nabla}$) denotes the covariant differentiation with respect to the *Riemannian connection on P (resp. on M).*

PROOF. From the formula

$$
2G(\nabla_X Y, Z) = \mathcal{L}(X)G(Y, Z) + \mathcal{L}(Y)G(Z, X) - \mathcal{L}(Z)G(X, Y) - G(X, [Y, Z]) + G(Y, [Z, X]) + G(Z, [X, Y])
$$

for any Riemannian metric *G* and for any vector fields X, Y, Z, we can verify Lemma 3 without difficulty.

LEMMA 4. For any vector fields
$$
X, Y, Z \in \mathfrak{X}^r(P)
$$
, we have

(3. 3) $2p^*g((\nabla_x Y)' - \overline{\nabla}_{x'} Y', Z') = \omega(X) d\omega(Y, Z) + \omega(Y) d\omega(X, Z),$ $(\nabla_{\mathbf{x}^{\prime\omega}})Y + (\nabla_{\mathbf{x}^{\prime\omega}})X = 0$, i. e., ω is G-Killing.

PROOF. From the definition of metric G, we have

$$
G(\nabla_X Y, Z) = p^* g((\nabla_X Y)', Z') + \omega(\nabla_X Y)\omega(Z)
$$

and by virtue of (3. 2) we have also

$$
2p^*g((\nabla_XY)'-\overline{\nabla}_{X'}Y',Z')=\omega(X)d\omega(Y,Z)-\omega(Y)d\omega(Z,X)+\omega(Z)\{(\nabla_X\omega)Y+(\nabla_Y\omega)X\}.
$$

If we replace Z in this equation by vertical vector field Z_α , then we have

 $(\nabla_X \omega)Y + (\nabla_Y \omega)X = 0$, for all $X, Y \in \mathfrak{X}^r(P)$.

This proves Lemma 4.

LEMMA 5. For any vector fields
$$
X, Y, Z \in \mathfrak{X}^r(P)
$$
, we have
(3. 4) $2\eta((\nabla_x Y)' - \overline{\nabla}_{x'} Y') = \omega(X)\chi(Y', \xi) - \overline{\omega}(Y)\chi(\xi, X')$,

$$
2g(\phi((\nabla_X Y)' - \overline{\nabla}_{X'} Y'), Z') = -\overline{\omega}(X)\chi(Y', \phi Z') + \overline{\omega}(Y)\chi(\phi Z', X').
$$

PROOF. The projections of *JZ^a* and *JZ — ω(Z)JZ^a* are *ξ* and *φZ'.* Therefore if we replace *Z* by JZ_{α} or $JZ - \omega(Z)JZ_{\alpha}$ in (3. 3), then we can obtain (3.4) from the anti-symmetry of ϕ with respect to metric q .

LEMMA 6. For any vector fields
$$
X, Y, Z \in \mathfrak{X}^r(P)
$$
, we have
\n(3. 5)
$$
2G((\nabla_X J)Y, Z) = p^*[2g((\nabla_{X'}\phi)Y', Z') + \eta(Y')\chi(Z', X') - \eta(Z')\chi(Y', X') + \overline{\omega}(Y)\{\chi(X', \phi Z') + 2((\nabla_{X'}\eta)Z')\} - \overline{\omega}(Z)\{\chi(X', \phi Y') + 2((\nabla_{X'}\eta)Y')\}] + \omega(X)\{d\omega(JY, Z) + d\omega(Y, JZ)\}.
$$

PROOF. We may deduce it by straightforward calculation using (3. 4) and the fact that *ω* is a G-Killing form on *P.*

If we denote the fundamental 2-form of the almost Hermitian structure on *P* by Ω , then $P(J, G)$ is a Kählerian manifold if Ω is a closed form and *J* is integrable. As is well known, these conditions are equivalent to $\nabla J = 0$. Investigating ∇J , we can deduce the following theorem.

THEOREM 8. *If the almost Hermitian manifold P(J, G) is Kahlerian, then we have for all* $X, Y \in \mathfrak{X}^r(P)$,

(3. 6) $d\omega(JX, Y) + d\omega(X, JY) = 0,$

(3. 7)
$$
2g((\nabla_{X'}\phi)Y', Z') = -\eta(Y')\chi(Z', X') + \eta(Z')\chi(Y', X'),
$$

 $2(\nabla_{X'}\eta)Y'=\chi(\phi X', Y').$ **(3. 8)**

Therefore η is a closed form and M'2n+ι has a normal almost contact metric structure. Conversely, if the structure tensors $(φ, ξ, η, g)$ *and connection* ω *satisfy the conditions* (3. 6), (3. 7) *and* (3. 8), *then P(J, G) is a Kahlerian manifold.*

PROOF. Suppose that *P(J, G)* is a Kahlerian manifold. Then as the almost complex structure *J* is covariant constant, we see that the right hand side of (3. 5) vanishes for any vector fields $X, Y, Z \in \mathfrak{X}^r(P)$. Therefore, if we $\mathbf{x} = \mathbf{y} \times \mathbf{y}$ at the vertical vector field Z_α , then we have

$$
d\omega(JY,Z) + d\omega(Y,JZ) = 0
$$

for $Y, Z \in \mathfrak{X}^r(P)$. We can deduce from this relation the following

$$
\chi(\phi X', Y') + \chi(X', \phi Y') = 0,
$$

$$
\chi(X', \xi) = 0
$$

for all X' , $Y' \in \mathfrak{X}(M)$. While if we replace Y with the vertical vector field Z_a ,

then we get (3. 8)

$$
\chi(X', \phi Z') + 2(\overline{\nabla}_{X'} \eta) Z' = 0
$$

for $X', Z' \in \mathfrak{X}(M)$. Substituting these equations into (3. 5), we have (3. 7). Then we have

$$
2d\eta(X',Y') = 2(\overline{\nabla}_{X'}\eta)Y' - 2(\overline{\nabla}_{Y'}\eta)X'
$$

= $\chi(\phi X', Y') - \chi(\phi Y', X') = 0.$

Therefore η is a closed form on M, Next, as the almost complex structure J is integrable, the Nijenhuis tensor *N* of *J* vanishes. Therefore, from Lemma 1 and (3. 6) we can obtain $N_1 = 0$ at once. The converse statement in the theorem is evident. $Q.E.D.$

As is proved in $[2]$, a manifold with an almost contact structure admits a symmetric (ϕ, ξ, η) -connection if and only if the almost contact structure is normal and *η* is closed. Therefore, we can see by virtue of Theorem 8 that the following is true: if the almost Hermitian manifold $P(J, G)$ is a Kählerian manifold, then M admits a symmetric (ϕ, ξ, η) -connection. In general, the metrical connection on *M* is not always (ϕ, ξ, η) -connection. But we can obtain the following corollary from Theorem 8.

COROLLARY. *Suppose that the almost Hermitian manifold P(J, G) is Kahlerian manifold and that ξ is a Killing vector field on M2n+1 . Then ω is an integrable connection and the metrical connection of the base space* M^{2n+1} *is a* (φ, *ξ*, *η)-connection. The converse is also true.*

By virtue of Theorem 8, we see that if *P* is a Kahlerian manifold, then *dη —* 0, and so *M* can not be a contact manifold. Therefore, on a contact manifold *M* we can not admit a Kahlerian A-bundle defined by (1. 3), (1. 4) and $(3. 1)$ using an infinitesimal connection ω .

Next we study whether there exists a differentiable function ρ on P such that a metric \widetilde{G} defined by

$$
\overline{\widetilde{G}}=\rho G
$$

and the almost complex structure *J* give an almost Kahlerian structure on *P.* For this purpose, we calculate the fundamental 2-form Ω on P, then we have

$$
\Omega = p^*\psi + p^*\eta \wedge \omega,
$$

where ψ is a 2-form on M such that

$$
\psi(X', Y') = g(X', \phi Y').
$$

If we calculate $d\widetilde{\Omega} = d\rho \wedge \Omega + \rho d\Omega$, then we obtain

(3. 9)
$$
i(JZ_{\alpha})i(Z_{\alpha})d\widetilde{\Omega}=(Z_{\alpha}\rho)\omega+(JZ_{\alpha}\rho)p^*\eta-\rho p^*({\bf f}({\bf k})\eta)-d\rho.
$$

On the other hand, if we take an adapted coframe $(\eta_1, \ldots, \eta_{2n}, \eta)$ in a neigh borhood *U* of the almost contact structure on *M,* then we can take *(p*ηi,* \cdots , $p^*\eta_{2n}$, $p^*\eta$, ω) as a coframe in $p^{-1}(U)$. Let its dual frame be $(Z_1, \ldots, Z_{2n} ,$ JZ_{α}, Z_{α}). Then for any $\rho \in F(P)$, we have

$$
d\rho = (Z_{\alpha}\rho)\omega + (JZ_{\alpha}\rho)p^*\eta + \sum_{k=1}^{2n} (Z_k\rho)(p^*\eta_k),
$$

$$
p^*(\mathfrak{L}(\xi)\eta) = \sum_{k=1}^{2n} A_k(p^*\eta_k) \qquad \text{for some } A_k \in p^*F(M),
$$

because $\mathcal{L}(\xi)\eta$ has no η -component. Then we have the following

THEOREM 9. *Suppose that the almost Hermitian structure* (J, G) *on P is defined by an ίntegrable connection ω and an almost contact metric structure associated with a contact structure η on M2n+1 . Then the almost Hermitian structure* (J, \widetilde{G}) , $\widetilde{G} = \rho G$, defines an almost Kählerian structure on *P if and only if the function p satisfies the equation*

$$
d\rho=-\rho\omega.
$$

PROOF. Since M is a contact manifold, we have

$$
\mathfrak{L}(\xi)\eta=0,
$$

$$
\Omega=p^*d\eta+p^*\eta\wedge\omega.
$$

Let $P(J, \widetilde{G})$ is an almost Kählerian manifold, then $d\widetilde{\Omega} = 0$, and therefore we have

$$
d\rho = (JZ_{\alpha}\rho)p^*\eta + (Z_{\alpha}\rho)\omega
$$

by virtue of (3. 9). We can easily see that

$$
0 = d\widetilde{\Omega} = d\rho \wedge \Omega + \rho d\Omega
$$

= $(Z_{\alpha}\rho + \rho)\omega \wedge p^*d\eta + (JZ_{\alpha}\rho)p^*(\eta \wedge d\eta).$

As $\omega \wedge p^*d\eta$ and $p^*(\eta \wedge d\eta)$ is mutually independent forms on *P*, we obtain

$$
Z_{\alpha}\rho + \rho = 0, \qquad (JZ_{\alpha}\rho) = 0.
$$

Therefore, the necessity of the theorem is proved. Sufficiency is evident. Q.E.D.

BIBLIOGRAPHY

[1] S. SASAKI, On differentiable manifolds with certain structures which are closely related

to almost contact structure I, Tόhoku Math. Journ,, 12(1960),456-476.

- [2] S. SASAKI AND Y. HATAKEYAMA, On differentiable manifolds with certain structures which are closely related to almost contact structure II, Tohoku Math. Journ., 13(1961), 281-294.
- [3] J.-L. KOSZUL AND B. MALGRANGE, Sur certaines structures fibrees complexes, Arkiv der Math., 9(1958), 102-109.

TÔHOKU UNIVERSITY.