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Introduction. Recently S.Sasaki [ 1 ] has introduced the notion of an almost
contact structure over an (2n+l)-dimensional differentiable manifold M (diffe-
rentiability means class C°° always in the following) by three tensors φ, ξ, η of
types (1, 1), (0, 1) and (1, 0) on M satisfying some relations. The importance of
this structure is in the fact that if M has a contact structure defined by a 1-form
η, then η induces an almost contact (metric) structure taking a suitable metric in
M, and in this contact case, many interesting results have been obtained. But
for an almost contact structure which is not necessarily a contact structure, it
seems to me that few results are known. In this paper, we consider mainly an
almost contact structure.

In their paper [ 2 ], S.Sasaki and Y.Hatakeyama denned four tensors Nι

jk,
Njk, Nlj and Nj for an almost contact structure by the method of constructing
an almost complex structure in M x R (R denotes the additive group of real
number field) and computing its Nijenhuis tensor. Regarding this product space
as a trivial bundle space over M, we consider to generalize this method
to a principal fibre bundle P with a base space M and a structural group A
which is a 1-dimensional real abelian Lie group.

I should like to express my hearty gratitude to Prof. S.Sasaki and Mr. Y.
Hatakeyama for their valuable criticism.

1. Nijenhuis tensors of almost contact structures. Let M be an almost
contact manifold and its defining tensor fields of types (1, 1), (1, 0) and (0,1)
be φ, ξ and η respectively. We take a real 1-dimensional abelian Lie group
A, and denote its Lie algebra over R by ?f. Suppose that there exists a differenti-
able principal A-bundle P(M, p> A) over M with a projection p:P-*M. Then
we can take in this principal bundle a differentiable infinitesimal connection
with a connection form ω which is an Sl-valued 1-form on P satisfying the
following two relations :

(1. 1) ω(ΰs) = ω(S), u € P, 5 € A, u £ TU{P\
(1. 2) ω(us) = s-'sy u z P, s z A,~s z TS{A\

where TU(P) (resp. TS(A)) denotes the tangent space to P(resp.A) at u £ P (resp.
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s £ A). Since 81 is a 1-dimensional vector space over R with a generator cc, we
can identify 21 with i? by the mapping r € i? <H> roi € 81. Then every Sί-valued
mapping can be considered as an i?-valued mapping. In this way we consider
ω to be an i?-valued 1-form.

Let F(P) (resp. F{M)) denotes the set of all real valued differentiable functions
on P(resp. on M\ and let ί(P) (resp. £(M)) be an F(P)-module (resp. F(M)-
module) of the totality of differentiable vector fields on P(resp. on M). Then the
latter is at the same time a vector space over R. Let ϊ r(P) be a vector subspace of
ϊ(P) over R consisting of the right invariant differentiable vector field with respect
to the group operation of A. As any element of ϊ(P) is generated by vertical
and horizontal vector fields, ϊ (P) is generated by A r(P) over F(P). Moreover it is
easily seen that every vector field X £ J(P) belongs to £r(P) if and only if it
is projectable and ω(X) is in the dual image of F(M) by projection p, i. e.,
pX e 3E(M), and ω(X) € p*F(M).

Now using the almost contact structure (φ, ξ, η) on M and the connection
form ω, we define an almost complex structure on P as follows : If we take a
right invariant vector field X on P, then as ω(X) £ p*F(λl), there exists a
unique function ω(X) £ F(M) such that

/>*δ(X) = ω(X)

on P. Then we define a vector field JX £ 3£ (P) by the two equations :

(1. 3) ω(JX) = -

(l 4) />(JX)

If we take a vector field X e 3Er(F) and a function/ e F(F) such that/X e 3er(F),
then /" must satisfy f{us) = f(u) for u & P, s <z A. Therefore, there exists a

function / e F(M) such that / = />*/, and we have

P(J(fX)) = φifpX) + ω(fX)ξ = fipJX),

ω(J(fX)) = - p*ηϊfpX) =fω(JX).

And so the relation

JfX=fJX

holds good. Next we extend the above definition to an arbitrary vector field
X € ϊ(P). For this X, as there exist functions fλ £ F(P) and vector fields

Xλ z 3Γ(P) such that X = ΣfxXx on P, we define J X € £(P) by

= £/λjχλ.
λ

By virtue of the above consideration, this definition is consistent. J is a tensor
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field on P of type (1, 1). It is noticed that the tensor field J is completely
dependent on the connection ω on P.

THEOREM 1. J is an almost complex structure on P which commutes
with the operation of A.

PROOF. For every vector field X z xr(P), we can first see that JX £ 3tr(P)
according to p(JX) £ £(M), ω(JX) £ p*F(M). Therefore we have RSJX = JRSX
= JX for X € T(P), s € A If / e F(P\ then

RsJ(fX) = (R*j%R,JX) = J(Rff(RsX)) = J2?.(/X),

which shows that the tensor field J commutes with group operation. For any
X e %r(P\ as JX also belongs to lr(P), we have

a>(J2X) = - fripJX) = - P*η(φpX + ω(X)f)

p(J*X) = φ(pJX) + ω(JX)ξ = φ(φpX + ω{X)ξ) + (
= -PX+ η(pX)ξ - η(pX)ξ = - PX,

Therefore J satisfies for all X £ 3£%P) the equation

J2X = - X.

Since J is a tensor field on P and any vector field is generated by right
invariant vector fields, this equation must hold on J(F). Q.E.D.

In the following we calculate the Nijenhuis tensor of this almost complex
structure J on P. It is defined by the tensor N of type (1, 2)

N(X, Y) = [X, Y] + J[JX, Y] + J[X, JY] - [JX, JYl

We have only to calculate it for the right invariant vector fields. Formerly
S.Sasaki and Y.Hatakeyama [ 2 ] has defined tensors N1^, Njk, Nιj and Nj
associated to the almost contact structure (φ, ξ, η) on M by the following way.
Let Po = M x R be a trivial i?-bundle over M with a natural integrable connec-
tion ω0, then we can define an almost complex structure Jo on Po by the same
way as above. In fact, for a right invariant vector field X + Λ, X e ϊ(M),
Λ. € J(JfJ), such that RsAt = Ats(t, s z R), we have

J0(X + A) = (φX + ωo(Λ)f) + ( - η{X)Za\

where a denotes a generator of the Lie algebra of R such that ωo(Z«) = 1, Za

being a fundamental vector field corresponding to a. We can calculate straight-
forwardly the Nijenhuis tensor field iV0(X + Λ, Y + Γ) of this almost complex
structure Jo, and if we define the tensor fields Nu N2, N3 and iV4 of types
respectively (1, 2), (0, 2), (1, 1) and (0, 1) on M by
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N0(X, Y) = JVi(X, Y) + N2(X, Y)Za,

N0(X, Za) = N3(X) + Ni(X)Zx,

then we have the following equations.

N^X, Y) = [X, Y] + φ[φX, Y] + φ[X, φY] - [φX, φY]

+ (Y.η(X) - X'η(Y))ξ,

NIX, Y) = (£(φX)n)Y - (UφY)n)X,

N3(X) = (£(ξ)Φ)Y,

These are the same results as those of [ 2 ].
Now returning to the case of general principal A-bundle with a connection

ω, we also calculate the Nijenhuis tensor of the almost complex structure on P

denned by (1. 3) and (1. 4). We notice that for any function / = />*/ £ F{P)
and for any projectable vector field X £ ϊ(F), the relation

£{X)p*f= P*(£(pX)f)

holds good. As dω is a horizontal 2-form on P, there exists a 2-form % on
M such that dω = p*χ. If X, Y are right invariant vector fields on P, so are
JX,JY, [XyY] and so on. Therefore we can compute pN(X,Y)9 ω(N(X,Y))
and we have

LEMMA 1. For all right invariant vector fields X,Y on P, we have

pN(X, Y) = N,(pX, pY) + ω(Y)N3(pX) -

, Y)) = p*N2(pX,pY) + ω(YWN,(pX) - ω(X)p*N,{pY)

- {dω(X, Y) - dω(JX, JY)}.

From this Lemma, we have the following result:

THEOREM 2. If M2n+ί is a normal almost contact manifold, then every
almost complex structure of a principal A-bundle P(M2n+1, p, A) associated
to an infinitesimal connection ω is integrable if and only if the connection
satisfies the relation

(1. 5) dω(JX, Y) + dω(X9 JY) = 0

for all vector fields X and Y on P.

PROOF. It is well known that in an almost contact structure, the vani-
shing of the tensor Nx means the vanishing of the other tensors N29 N3 and
JV4. In this case Lemma 1 shows that relations
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pN(X, Y) = - (xίpJX, pY) + χ(pX, pJY))ξ,
ωN(X, Y) = - (dω(X, Y) - dω(JX, JY))

hold good for X, Y £ £%P). Therefore it is evident that the vanishing of the
tensor N is equvalent to (1. 5). Q.E.D.

For any vector fields X\ Y' £ J(Λf), if we take their lift X, Y which are
right invariant horizontal vector fields on JP, then we obtain, by virtue of
Lemma 1, the following relations:

pN(X, Ϋ) = N^X', YO - {χ(φX\ Y') + χ(X\ φY')}ξ,
ωN(X, Y) = i*N2(X', Y') - {dω(X, Y) - dω(JX, JY)}.

On the other hand, if M is a contact manifold with a contact form ηy then an
almost contact structure can be induced from η choosing a suitable metric on
M. In this case the tensors N2 and iV4 vanish. Therefore, if we suppose that
the almost complex structure on P defined by a contact structure on M and an
infinitesimal connection on P is integrable, then M must be normal, and moreover
ω satisfies (1. 5). In fact, by virtue of the vanishing of N, we have

Since ΛΓ2 = 0 is equivalent to ηNλ = 0, we get Nx = 0. We rewrite this result
as a theorem.

THEOREM 3. Suppose that an almost complex structure on P is defined
by a contact structure on M'2n+ί and an infinitesimal connection ω on F, then
the almost complex structure J is integrable if and only if M2n+1 is a normal
contact manifold and ω satisfies (1. 5).

2. Infinitesimal (φ, ξ, ^-transformations. In this section we shall study
some relations between the vector fields on P and vector fields on M. We suppose
that P has an almost complex structure J defined by an almost contact structure
(φ, ξ, η) on M and an infinitesimal connection ω on P. A vector field X on P
which verifies the condition

£(xμ = o
is called an almost analytic vector field. We denote the set of all almost
analytic vector fields on P by S. In the next place, we call a vector field X'
on M an infinitesimal (φ, ξ, ^-transformation when it satisfies the conditions

£(XOΦ = 0, £(X> = 0,

and the set of all of them is denoted by ΐ). Since A is an abelian group, a
fundamental vector field Za on P corresponding to a generator a of Si such
that ω(Z«) = 1 is right invariant. By virtue of Thee re n 1, as the tensor J is
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invariant by the operation of A on P, we have £,(Zα)J — 0, that is, Za is an
almost analytic vector field. At first we shall seek for the condition under
which JZa is almost analytic. Since JZa is right invariant, we have by virtue
of Lemma 1 for any vector field X £ 3T(P),

pN(X, Za) = N3(pX) - χ(pX, ξ)ξ,

ωN(X,Za) = f{NtpX) + χ(φpX,ξ)}.

On the other hand we have for any vector field X e J(P)

N(X, Za) = (UZ«)J)JX + (£(JZa)J)X

and so the conditions N(X, Za) = 0 for all X € $(P) and JZa belongs to 8 are
equivalent with each other. Therefore if we assume that the curvature form
dω = p*χ on P satisfies the condition

(2.1)

for all X' £ Ϊ(M), then JZΆ belongs to 9 if and only if the tensor N3 of M in
consideration vanishes.

THEOREM 4. When the condition (2. 1) is verified, then JZa is almost
analytic if and only if the tensor N3 vanishes.

It is noteworthy that the relation (1. 5) implies (2. 1). In particular, when
P is a product bundle M x R and ω is an integrable connection (dω = 0), then
JZa on P is almost analytic if and only if N3 = 0. Moreover in contact case,
if the vector field JZa is almost analytic on P, then we have N3 = 0 and the
connection ω satisfies (2. 1). In fact, as we know, in the almost contact structure
associated with a contact structure the tensor JV4 vanishes. So we have

χ(φX',ξ)=-Ni(X') = 0

for all X' £ ϊ(M), and this means that the condition (2. 1) is valid.
Taking into consideration of the fact that JZa is a lift of ξ with respect

to the connection ω, we proceed to study the condition in order that the lift
of a vector field on M is almost analytic on P. For this purpose, we shall prove
the following lemma.

LEMMA 2. For any right invariant vector fields X and Y on P on
which an almost complex structure J is given by (1. 3) and (1. 4), the relations

and
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ω((£(X)J)Y) = - /*(£(X»Y' - £(JY)ω(X) - dω(X,JY)

hold good, where X' and Yf denote the projections of X and Y.

PROOF. Since JX, JY, [X,Y] and so on are in 3Γ(P) if X,Y € 3£r(F), we
have

= p{[X, JY] - J[X, Y]}

In the same way, we see that

ω((£(X)J)Y) = ω{[X, JY] - J[X, Y]}

= - dω(X, JY) - £(JY>ω(X) -

= - />*(£(X>Y') - £(JY) ω(X) - Jω(X, JY). Q.E.D.

Now we suppose that M is an almost contact manifold and P has an integrable
connection ω. An example for such a bundle space P is for instance a product
bundle M x R with a natural trivial connection (see §1). In this case, if M
is normal almost contact, the almost complex structure J defined on P associated
with ω is integrable by virtue of Theorem 2, and we have the following
theorem :

THEOREM 5. Let P(M2n+\ p, A) be a principal bundle which has an inte-
grable connection ω and a base space M2n+1 with an almost contact manifold. If
ω(X) is constant on P for a right invariant vector field X, then X belongs to
® if and only if pX belongs to ΐ). In other words, if X is an almost analytic
right invariant vector field, then ω(X) = constant if and only if pX is an
infinitesimal (φ, ξ, η)-transformation.

PROOF. We first suppose that ω(X) = const, on P for a vector field
X € 3ΓCP). Then, by virtue of Lemma 2, for any Y £ J r(P) we have the
relations

If £(X)J = 0, then replacing the vector field Y by the fundamental vector field
Za in the first equation, we have [X', ξ] — 0 and therefore X' £ ΐ). Conversely,
if X' belongs to ΐ), then it can be verified easily that [X', ξ] = 0. And we have
at once (£(X)J)Y = 0 for all Y £ W(P) and therefore X is an almost analytic
vector field. Next we suppose a vector field X £ £r(P) to be almost analytic.
Then according to Lemma 2, we have

= 0,
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- P*(£(X')y)Y' - (£(J10) ω(X) = 0.

In the same way as above, we can see easily that ω(X) — const, on P is
equivalent to X' £ £). Q.E.D.

COROLLARY 1. On the same principal bundle as Theorem 5, every vector
field X; on M2n+1 belongs to ί) if and only if its lift X with respect to the
connection ω belongs to 9.

PROOF. Since the lift X is right invariant and satisfies ω(X) = 0 on P,

by virtue of Theorem 5 we have £,(X)J = 0 if and only if X' — pX € fj.
Q.E.D.

COROLLARY 2. In a normal almost contact manifold M2n+\ for every
infinitesimal (φ, ξ, η)-transformation X\ φX' belongs to ΐ) if and only if η(X')
= constant on M2n+ί.

PROOF. We take a principal A-bundle P with an integrable connection ω,
and give it a complex structure J by (1. 3) and (1. 4). For any X; e ί), if we take

a lift X in P with respect to ω, then from the above Corollary 1, X is an almost

analytic vector field on P. Since J is a complex structure we have ^(JX)J = 0.

By virtue of Theorem 5, ω(JX) is constant on P if and only if p{JX) belongs
to ΐ), that is to say, — η(X') is constant on M if and only if φX' belongs
to f). Q.E.D.

It is known that in a contact manifold, the Lie algebra of all infinitesimal
contact transformations of M is infinite dimensional. While in an almost contact
structure associated with the contact structure, an infinitesimal transformation
of M which leaves invariant thetensors φ and η is necessarily a Killing vector
field. Hence the set of all such infinitesimal transformations is a finite dimen-
sional Lie algebra. In a manifold with an almost contact structure, we can
get the following theorem under an additional assumption of compactness on
M.

THEOREM 6. Let M2n+ί be a compact differentiate manifold with a
normal almost contact structure. Then the Lie algebra ί) of all infinitesimal
(φ, ξ, η)-transformations on M2n+1 is finite dimensional.

PROOF. Take a principal circle bundle P(M, p, S1) over M with an
integrable connection ω, and we define an almost complex structure J on P as-
sociated with this connection, by (1. 3) and (1. 4). Then by virtue of Theorem 2, P
is a complex manifold with complex structure J. Now we denote by So a set of all
right invariant almost analytic vector fields X on P such that ω(X) = constant.
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It can be easily verified that So is a subalgebra of 9. We can identify the Lie
algebra Sί of S1 with a 1-dimensional subalgebra of 90 generated by a funda-
mental vector field Za. Then there exists a natural exact sequence

To any X' £ \ let its lift be X € 80. Then this mapping X'->X is clearly a
splitting of the above exact sequence, and therefore we have

So - Sί Θ ί),

which means that ί) may be considered as a subalgebra of 80 From the
assumption of compactness of M, P is also a compact complex manifold.
Therefore 9 is a finite dimensional Lie algebra. Hence its subalgebra 90> and
also ΐ) is finite dimensional. Q.E.D.

3. Almost contact metric structures. Suppose M be a manifold with an
almost contact metric structure (φ, ξ, η, g), and as in the previous sections
consider a principal A-bundle P(M, p, A) with base space M. We give to P an
almost complex structure making use of an infinitesimal connection ω by
the equations (1. 3) and (1. 4). Moreover, since M has a Riemannian metric
g, we can give a Riemannian metric to the manifold P by the following
relation

(3. 1) G(X, Y) = p*g(pX, pY) + ω(X)ω(Y)

for all right invariant vector fields X, Y. If fX, hY is in 3Γ(P) for functions /, h
on P and vector fields X, Y € Jr(P), then we can easily verify that

G(fX,hY) = fhG(X,Y),
therefore we can extend this definition to the vector fields on Ϊ(P). The tensor
G of type (0, 2) is clearly symmetric. Moreover for any X € Jr(P) we have

G(X, X) = p*g(pX, pX) + ω(X)ω(X) ^ 0,

and the vanishing of G(X,X) means the vanishing of g(pX, pX) and ω(X) and
therefore X is at the same time vertical and horizontal, which implies X = 0.
Therefore G is positive definite. As this metric G is invariant by the operation
of the group A on the right, that is R$G = G, the fundamental vector field
Z« is a unit Killing vector field with respect to the metric G. We shall prove
the following

THEOREM 7. The Riemannian metric G and the almost complex structure
J give an almost Hermitian structure on P.

PROOF. For any two vector fields X, Y € 3Er(P), we know that JX, JY
€ 3ΓCP), and from the definition (3. 1), we have

G(JX, JY) = p'gipJX, pJY) + ω(JX)ω(JY)
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= p*{g(φpX,φpY) + ω(X)ω(Y)g(ξ,ξ) + v(pX)η(pY)}

= P*ff(pX, PY) + ω(X)ω(Y) = G(X, Y).

Therefore the metric G and the almost complex structure J give an almost

Hermitian structure on P and its fundamental 2-form is given by

) = G(X,JY). Q.E.D.

Next we shall study when this almost Hermitian structure reduces to a

Kahlerian structure. For this porpose, we give some lemmas.

LEMMA 3. For any vector fields X,Y,Z z ϊ r(P), we have

(3. 2) 2G(V*r, Z) = 2p*g(tfx,Y\ Z') + ω(X)dω(Y, Z) - ω(Y)dω(Z, X)

+ ω(Z)dω(Y,X) + 2ω(Z)(£(X>ω(Y)),

where V (res^. V) denotes the covariant differentiation -with respect to the

Riemannian connection on P (resp. on M).

PROOF. From the formula

2G{v*Y, Z) = £(X)G(Y, Z) + £(Y)G(Z, X) - £(Z)G(X, Y)

- G(X, [Y, Z]) + G(X9 [Z, X]) + G(Z, [X, Y])

for any Riemannian metric G and for any vector fields X, Y, Z, we can verify

Lemma 3 without difficulty.

LEMMA 4. For any vector fields X,Y,Z <Ξ 3ΓCP), we have

(3. 3) 2/*0((vJO' - Vr/Y7, ZO = ω(X)ώ)(Y, Z) + ω(Y)Λ>(X, Z),

+ (VF«)X = 0 , i. e., ω is G-Killing.

PROOF. From the definition of metric G, we have

G(v*Y, Z) = p*g(ίvxY)', Z') + ω{vxY)ω(Z)

and by virtue of (3. 2) we have also

)' - V*Y', Z') = ω(X)dω(Y, Z) - ω(Y)dω(Z, X)

If we replace Z in this equation by vertical vector field Za, then we have

(V*ω)Y + (Vyω)X = 0, for all X J s lr(P).

This proves Lemma 4.

LEMMA 5. For any vector fields X,Y,Z e £%P), we have

(3. 4) M V ^ - V*Y0 = ω(X)%(Y', I) - ω(Y)χ(ξ, X'\
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y - WΓ), Z') = - ω{X)χ(Y',φZ') + ω(Y)χ(φZ', X').

PROOF. The projections of JZa and JZ — ω(Z)JZa are ξ and φZ'. Therefore

if we replace Z by JZa or JZ — ω(Z)JZa in (3. 3), then we can obtain (3 .4)

from the anti-symmetry of φ with respect to metric g.

LEMMA 6. For any vector fields X,Y,Z £ $r(P), we have

(3. 5) 2G((V*J)Y, Z) = ifi[2ff((yχ4)Y', Z') + vVΊxίZ', X') - v(Z')χ(Y\ X')

) + dω{Y9 JZ)}.

PROOF. We may deduce it by straightforward calculation using (3. 4) and

the fact that ω is a G-Killing form on P.

If we denote the fundamental 2-form of the almost Hermitian structure on

P by Ω, then P(J, G) is a Kahlerian manifold if ί l is a closed form and J is

integrable. As is well known, these conditions are equivalent to V*̂  = 0.

Investigating V<Λ we can deduce the following theorem.

THEOREM 8. If the almost Hermitian manifold P(J, G) is Kahlerian,

then we have for all X, Y £ £r(P),

(3. 6) dω( JX, Y) + dω(X, JY) = 0,

(3. 7) 2g((v,4)Y\ Z') = - v(Y'MZ\ X') + v(Z')χ(Y\ X'),
(3. 8)

Therefore η is a closed form and M'2n+ι has a normal almost contact metric

structure. Conversely, if the structure tensors (φ, ξ,η,gf) and connection ω satisfy

the conditions (3. 6), (3. 7) and (3. 8), then P(J, G) is a Kahlerian manifold.

PROOF. Suppose that P(J, G) is a Kahlerian manifold. Then as the

almost complex structure J is covariant constant, we see that the right hand

side of (3. 5) vanishes for any vector fields X,Y,Z £ 3Γ(P). Therefore, if we

replace X with the vertical vector field Za, then we have

dω(JY, Z) + dω(Y, JZ) = 0

for Y, Z e $r(P). We can deduce from this relation the following

for all X'. Y' e H{M). While if we replace Y with the vertical vector field Za,
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then we get (3. 8)

for X', Z' € £(M). Substituting these equations into (3. 5), we have (3. 7). Then
we have

2dη(X',Y') =
= χ(φX',Y')-χ(φY',X') = O.

Therefore 77 is a closed form on M, Next, as the almost complex structure J
is integrable, the Nijenhuis tensor N of J vanishes. Therefore, from Lemma 1
and (3. 6) we can obtain 2VΊ = 0 at once. The converse statement in the
theorem is evident. Q.E.D.

As is proved in [ 2 ], a manifold with an almost contact structure admits
a symmetric (φ, ξ, ??)-connection if and only if the almost contact structure is
normal and η is closed. Therefore, we can see by virtue of Theorem 8 that
the following is true: if the almost Hermitian manifold P(J, G) is a Kahlerian
manifold, then M admits a symmetric (φ, ξ, ^-connection. In general, the
metrical connection on M is not always (φ, ξ, ^-connection. But we can obtain
the following corollary from Theorem 8.

COROLLARY. Suppose that the almost Hermitian manifold P(J, G) is
Kahlerian manifold and that ξ is a Killing vector field on M2n+1. Then ω
is an integrable connection and the metrical connection of the base space M 2 n + 1

is a (φ, ξ, η)-connection. The converse is also true.

By virtue of Theorem 8, we see that if P is a Kahlerian manifold, then
dη — 0, and so M can not be a contact manifold. Therefore, on a contact
manifold M we can not admit a Kahlerian A-bundle defined by (1. 3), (1. 4)
and (3. 1) using an infinitesimal connection ω.

Next we study whether there exists a differentiable function p on Fsuch

that a metric G defined by

G = PG

and the almost complex structure J give an almost Kahlerian structure on P.
For this purpose, we calculate the fundamental 2-form O on P, then we have

O = f ^ + p*η Λ ω,

where ψ is a 2-form on M such that

If we calculate dΩ = dp /\ Ω + pdΩ, then we obtain
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(3. 9) ί{JZa)i(Za) dh = (ZaP)a> + (JZap)pη - pp*(£(ξ)V) - dp.

On the other hand, if we take an adapted coframe (ηu . ,̂ 2n> v) in a neigh-
borhood U of the almost contact structure on M, then we can take (p*ηi,
• •> P^Ήmy p*v>ω) a s a coframe in p~\U). Let its dual frame be (Z1 ?. . ,Z 2 n ,
JZa,Za). Then for any p £ F(P), we have

dp = (Zap)ω + {JZap)P*η + Σ, (Zkp)(P*ηk),

P*(Uξ)n) = Σ MP*V*) for some Ak e p*F{M),
k=\

because £,(ξ)η has no ^-component. Then we have the following

THEOREM 9. Suppose that the almost Hermitian structure (J, G) on P
is defined by an ίntegrable connection ω and an almost contact metric
structure associated with a contact structure η on M2n+1. Then the almost

Hermitian structure (J, G), G = pG, defines an almost Kdhlerian structure on
P if and only if the function p satisfies the equation

dp — — pω.

PROOF. Since M i s a contact manifold, we have

£(ξ)v = o,
fl = ffidη + p*η Λ ω.

Let P(J, G) is an almost Kahlerian manifold, then d£ί = 0, and therefore we
have

dp = (JZaP)p*η + (Zap)ω

by virtue of (3. 9). We can easily see that

0 = dΩ= dp f\Ω + pda

= (Zap + p)ω Λ fdη + (JZap)p*(η Λ dη).

As ω Λ p*dη and p*(η Λ dη) is mutually independent forms on P, we obtain

Zap + p = 0, (JZaP) = 0.

Therefore, the necessity of the theorem is proved. Sufficiency is evident. Q.E.D.
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