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Introduction. Recently, the theory of contact manifolds has been developed
by many authors. As well-known, a contact form  on a (2n + 1)-dimensional
differentiable manifold M is by definition a global 1-form such that @ A de™ %= 0
on whole M. Through a theorem of E. Cartan, the condition ® A de"” %0
means that there exist local coordinates (x;,«««, T, Vi, +, Y, 2) of M, where
the contact form o may be written as

@ = dz — Zyldxl

i=1

In the theory of contact manifolds treated by the method of differential forms,
it seems that the above local expression of the contact form has played an
important role.

In the present paper, we shall show first that the fundamental relations
concerning the contact structures can be derived easily without use of the
theorem of E. Cartan, in more general forms. In the following sections, we
shall arrange the theory of contact manifolds in our view-point.

Moreover, in §8 we shall get some results on the existence of dynamic
contact structures over complex analytic manifolds, and in §9 and §10 we shall
investigate into the infinitesimal transformations of cosymplectic manifolds.

1. Vector fields and differential forms. In the beginning, let us arrange
some notions, for the later use, related to the vector fields and the differential
forms on a C~-manifold M.

Let U be an open set of the C~-manifold M, and let A(U), B(U) and A*(U)
denote respectively the ring of all real valued C=-functions on U, the A(U)-
module of all C* vector fields on U, and the A(U)-module of all p-forms on
U. Then, A(U), BU), A*(U) are also regarded as R-modules, where R denotes
the real number field, and with respect to the natural restrictions

AWU) — AWV), BWU) — B(V), ArU) — A7(V),

for open sets U DV, each of them constructs a presheaf of R-modules. In the
followings, we shall write as
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A =AU), B=BU), A» = A»(U),
abbreviating the open set U.
A wvector field X € L is a map

X:UA-U f—Xf,

satisfying the following axioms.

(i) R-linear.

(ii) Derivation: X(fg) = (Xf)g + f(Xg), f.g < .

(iii) Sectional : (Xf)(x,) =0, if f = 0 on a neighborhood of a point x, € M.
It is easily seen that Xc = 0 for a constant ¢ € R c U. Moreover, the product

BxB—-0B, (XY)-[X,Y]
can be defined by
(X, Y]f = XXf) - Y(XSf), f e,

and the R-module 5 becomes a Lie-algebra.

A p-form @ € A is a map

@: Bx...xB"->U (X,..,X,)—>ep(X,.--, X)),

satisfying the following conditions.

(1) Y-multilinear.

(ii) Alternate.

(iii) Commutative with the restrictions.
In particular, we set A° = U, and we can see ¥” = 0 for p > dim M.

The exterior product of forms

A X A > W (@, ¥) =@ AP,

can be defined uniquely so that the following conditions may be satisfied.

(i) 9U-bilinear.

(i1) Associative.

(ili) 1 Ae =g, for @ € A",

iv) (@ A« A @)Xy, e v 0, Xp) = det(@u(X))), for @, € A, X; € B.

With respect to this multiplication, the direct sum
A¥* = Z 9P
¥4

becomes a graded U-algebra, and it is obvious that the exterior product is
anti-commutative :
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e ANY=(—1" Ag, for @ € AP, e A
Therefore, if p is odd, it holds that
’=p ANp =0, for @ € U,
The exterior derivation of forms
d: - A o —dp
can be defined uniquely so that the map d may satisfy the following axioms.
(i) R-linear.
(ii) Anti-derivation: d(@ AY) =dp ANV + (— 1)Pp A\ dr,pec AP, Y e AL
(ii1)) Order 2: dod = 0.
(iv) dfX)=Xf,for f e A, X ¢ B.

Then, the R-algebra 9* with the derivation d becomes a cochain complex. It
is notable that any p-form @ € %? can be written locally as a finite sum

¢:ngdfk1/\---/\dfkp, gk,fm-e%
x

which is evident if we observe an expression of the form @ in local coordinates
of M, and then the exterior derivative of the form ¢ is given by

d(pzzdgk /\dfm AN /\dfkp-

The inner product for a vector field X ¢ LB,
1(X): A - A o —i(X)p,
can be defined by the relation
(X)p(¥Yy,ee0, Y, )=9p(X,Y,.+.,Y,,), Y, € B.
Then, the map #(X) is characterized by the following axioms.
(1) %U-linear.
(ii) Anti-derivation.
(iii) Order 2: #(X)oi(X) = 0.
(iv) «(X)1 =0.
(v) i(X)p = @(X), for @ € AL
Moreover, we have the map
i: B — Homyg (U7, AP7Y), X —i(X),
having the properties
(i) %U-linear,
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(ii) #(X)ei(Y) = —i(Y)i(X), X,Y ¢ Q.
The Lie derivative of forms with respect to a vector field X € 3,
£X): WA, 09— £(X)p,
can be defined by the formula
£(X) = i(X)od + doi(X).
Then the map £(X) is characterized by the following axioms.
(i) R-linear.
(ii) Derivation: £(X)@ A ¥) = £X)@ A ¥ + 9 A LN, @4 < .
Gii) £X)f = Xf, for f e A
(iv) £X)df = dXf), for f € U
In regard to the product of the Lie-algebra &5, we have the formulas
(X, Y]) = £(X)ei(Y) — i(Y)o£(X),
(X Y] = £(X)L(Y) — £X)L(X), XY e T,

which are proved easily if we observe that their right hand sides satisfy the
axioms of the inner product #([X,Y]) and the Lie derivative £([X, Y) respectively.

2. The canonical field and the Lagrange brackets of an almost
contact manifold. A C~-manifold M of odd dimension 2xn + 1 is said to be an
almost contact manifold, if a global 1-form o ¢ A'(M) and a global 2-form
m ¢ (M) are given so that they satisfy the condition @ A 7”0 at every
point of M, where the forms e, are called the almost contact forms on M.

If the almost contact forms o, 7 are given on M, then there exist uniquely

a global vector field E € B(M) and maps
LA —-B, ¢—lp),
L:A-B, f— L),

which satisfy respectively the followng formulas.

(1) (Ego N7"=dg \N=", g e
(2) Up)go N7 =np Ndg N \N7"', g € U
(3) L(fHge N7 =ndf Ndg Nw N7, g € U

In fact, the functions Eg,l(p)g, L(f)g € U are uniquely determined, since the
(2n + 1)-form o A 7" gives a base of the Y-module A*"*!(M), and it is obvious
from the formulas that the maps E,I(p), L(f): U — U satisfy the axioms of
vector field in the preceding section.

The vector field E is called the canonical field of the almost contact
structure and both the maps I, L are called the Lagrange brackets of the
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almost contact structure. From the definitions, we can easily obtain the following

PROPOSITION 1. Let [, L be the Lagrange brackets of the almost contact
structure.
1° L(f) =1Idf), f e U
2° The map [: U — B is N-linear, that is,
I(fipy + fops) = fill@y) + fll@s), fi,fz € U, @i, 90 € AL
3° The map L: U — Y is R-linear and a derivation, that is,
Lic, fi + eofy) = alL(f1) + e.L(f2),
L(f\ f2) = AAL(f2) + f2L(f), ¢ € R, fi,fy € ¥,
£ Lfig=— L@)f, frg <,

Let us notice that each 1-form ¢ € UA' can be written locally as a finite
sum

0= Z hka’gk, he, 9c € ¥,
k

and then the inner product i(X)# for any vector field X ¢ L is given by
i(X)0 = 6(X) = > hXgy.
k

Then, we can write respectively the formulas (1), (2), (3) in more general
forms :
(1) 6E)o A7 =60 AN=", ¢ W,
(2) b6l@)o AT =np ANONo A7, 6,0 c A,
(3 6L(fNo ANT"=ndf NONo A7t 6 U, fel
THEOREM 1. Let o,m be the almost contact forms on a (2n+ 1)-
dimensional manifold M. Then, the canonical field E and the Lagrange
brackets I, L are characterized by the following properties.
1° X =FE e BM), if and only if
(i) i(X)w =1,
(it) i(X)mr = 0.
2° X=Ulp) ¢ B for p € N, if and only if
(1) iX)o =0,
(ii) {(X)r = p(E)o — @.
3° X = L(f) for f € U, if and only if
(i) iX)o =0,
(i)  i(X)m = (If o — df.
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PROOF. Let us notice that any (2n + 2)-form on a (2zn + 1)-dimensional
manifold is identically zero, and that the inner product i(Y) for a vector field
Y ¢ & is an anti-derivation on the forms.

1° Putting ¢ = @ into the formula (1), we have

o(E)o A7 =wo A\ 7,

which implies {(E)o = o(E) = 1. Moreover, putting § = #(Y)7w and Y € { into
(1), we have

7Y, E)o A\ 7" = i(Y)r \ = = i(Y )+t = 0,

1
n+1
since the inner product #(Y) is an anti-derivation and the (2n + 2)-form #"*! is
identically zero. It follows that

(E)ym)(Y) =m(E,Y) = —mY,E)=0

for any vector field Y. This proves (E)r = 0.
Conversely, assume that a vector field X has the properties (i), (ii).
Then, considering the 2z + 2)-form dg N\ © A\ =" = 0, we have

i(X)dg N o A ") =0
= (Xgo N 7" —dg N\ o(X)m" + dg N\ @ N\ ni(X)m \ 7"
= (XQw N\ 7" —dg \ ="
This proves
Xgo N7 —dg N7 =0

which is nothing but the formula (1). Hence X = E.
2° Assume that X = l(p). Putting ¢ = @ into the formula (2)’, we have

o(Xo AT =np No No \ 7" =

which implies #(X)o = o(X) = 0. Moreover, putting 8 = i(Y)mw, ¥ ¢ L, into
(2Y, and considering the (27 + 2)-form ¢ A ® A 7" = 0, we have

Y, X)o A" =np Ami(Y)m AN o \ 771,
iY) e No A7) =0
=pY)o A7 — @ N oY) + np A o N\ iY)m A\ 7L

Therefore, applying the formula (1), we have

(Y, )()a) AT =Yoo N\ 7" — @ N o(Y)m"
= {p(Y) — oY)p(E)}o A 7.

It follows that

((X)m)(Y) = — =Y, X) = p(E)o(Y) — ()
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for any vector field Y. This proves
1(X)r = p(E)o — .

Conversely, assume that a vector field X has the properties (i), (ii). Then,
considering the (2n + 2)-form dg¢ A @ A ™ = 0, we have

(X)dg Now A™) =0

= (Xo N7 —dg \ o(X)m" + dg N\ o \ ni(X)ymr N\ 7!
= Xg)o N7+ ndg \ o \ (p(E)o — @) A 7"}
=Xgo N7 —ndg No N @ N\ 7L,

This proves

Xgo A" —np Ndg N o \ 7" =0,
which is nothing but the formula (2). Hence, X = I(p).
3° This is a special case of 2° where ¢ = df.
Now, we define a vector field K(f) € ¥ for a function f € A, by the

relation
K(f) =fE + L(f).
Then, we have the map
K: A, f— K(f),

and, from the Proposition 1 and the Theorem 1, we can obtain easily the
followings.

PROPOSITION 2. The map K: U — B staisfies the conditions :

(i) R-linear,

(ii) K(fg) =fK(g) + gK(f) — f9E, fig <L

THEOREM 2. Let w,m be the almost contact forms on M. Then the
vector field X = K(f) € & for a function f € A is characterized by the
properties :

(i) i(X)e =1,

(ii) dX)r = (Ef)o — df.

COROLLARY. The R-linear map K: U — B is an injection, and the left
inverse map of K is given by the 1-form o: T — .

PROOF. o(K(f)) = i(K(f)) @ = f for f e %A This proves that the map

woK : A — A is identical.



234 S. TAKIZAWA

At the end of the present section, let us remark on some relations between
the vector fields and the 1-forms of the almost contact manifold M. Let o,

7 be the almost contact forms on M.
A vector field X € 8 is said to be horizontal, if ®(X) =0, and a p-form
@ < U is said to be basic, if i(E)p = 0. Then, we have exact sequences of

A-modules

08— B ——r A0,
(E
O—>58‘—>‘2[‘l(—>>91—>0,
where 5, B' denote respectively the 2-module of all horizontal fields, and the
A-module of all basic 1-forms. The U-linear maps r(E): A > B, r(w): A - A’
defined by »(E)f = fE, r(0)f = fo for f € A give respectively splittings of the
above exact sequences, namely both the U-linear maps wor(E) and i(E)er(w)

are identical on .
Now, consider the U-linear map 7: LB — A' defined by =(X) = i(X)mr for
X € B. Then we have the following

PROPOSITION 3. The U-linear map m gives a bijection between the
A-modules W and B, and its inverse map is given by the Lagrange bracket
—1 restricted on B'.

Accordingly, there exists a natural isomorphism between the exact sequences
of Y-modules such as

(0]

0 iy LB A 0

el |

01— g g,
where the maps «,a™! are given by
a=m+ rl®cw, a'l=—I1+ r(E)i(E).

PrROOF. A 1-form m(X) = i{(X)r € A' for any vector field X is basic, since
(E)yoi(X)mr=m(X,E) = 0. A vector field /(p) ¢ 8 for any l-form ¢ € A' is
horizontal, since w(/(®)) = 0. For a basic 1-form @ < B!, it holds that

@) =p(E)o — @ = — @,

since @(E) = 0. This proves that the map mo( — ) is identical on B'.
Moreover, if i(X)r = 0 for a horizontal field X € €, then applying the

Theorem 1, we have X = [(0) = 0, because the conditions {(X)e = 0, i{(X)r =0

are satisfied. This proves that the map 7: @ — B! is an injection. Hence, the
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map (— l)omr is identical on 2B.

It is clear from the above considerations that the %-linear map a: B — A*
is a bijection whose inverse map is given by «a' and the diagram is com-
mutative.

3. Infinitesimal contact transformations of a contact manifold. A
(2n+ 1)-dimensional manifold M is said to be a contact manifold, if a global
1-form o € A'(M) is given so that it satisfies the condition ® A de™ # 0 at
every point of M, where the form w is called the contact form of the contact
structure. Then, the forms ®, do give an almost contact structure on M, and
so we have the canonical field E, Lagrange brackets /, L and the R-linear map
K defined in the preceding section. They are characterized by the following
properties.

1° X =E e BM), if and only if

(1) iX)eo =1, (i) i(X)dw = 0.
2° X=Up) € B for p € A" if and only if

(1) {X)o =0, (1) i(X)de = p(E)o — @.
3° X=L(f) e B for f € U, if and only if

(1) X))o =0, (i) i(X)dw = (Ef )0 — df.
4° X =K(f) € B for f € U, if and only if

(1) (X =1, (i) {(X)de = (Ef )0 — df.

Let » be the contact form on M. A vector field X ¢ B is called an
infinitesimal contact transformation, if there exists a function 2 € U such that
£(X)o = ko, where £ denotes the Lie derivative. Moreoiver, a vector field
X € B is called an infinitesimal automorphism of the contact structure, if
£(X)o = 0. Let €, &, denote respectively, the R-module of all infinitesimal
contact transformations, and the R-module of all infinitesimal automorphisms of
the contact structure. Then €, becomes an R-submodule of €.

PROPOSITION 4. For an infinitesimal contact transformation X € €, the
Sunction k € U such that £(X)o = ko, is given by k = Eo(X).
PROOF. Assume that X € &. Then, by definitions,
£ X))o = do(X) + i(X)do = ko.
Applying the inner product i(E) to this, and taking account of the property 1°,
we have Eo(X) = k.

THEOREM 3. Let o be the contact form on M. The R-linear map
K:UA— B gives a bijection between the R-modules N and S, and its inverse
map is given by the form o: LB — U restricted on €.
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PROOF. First, we shall show that a vector field X = K(f) for any function

f € ¥ is an infinitesimal contact transformation. From the property 4°, we have
L£X)o = di(X)o + i(X)dow = df + (Ef )o — df = (Ef )o.

Hence, X € € and o(K(f)) = o(X) = i{(X)o = f. This proves that the R-linear

map ooK is identical on .

Next, let us consider a function f = o(X) € A for any X € €. Then we
have

i(X)o = o(X) =1,
and £(X)o = kw, where £ = Eo(X) = Ef by the Proposition 4. Therefore,
i(X)do = £(X)o — di(X) 0 = (Ef Jo — df
Hence, it follows from the property 4° that

X = K(f) = K(o(X)).

This proves that the R-linear map Koo is identical on €.
COROLLARY. E=K(1) e G,

The Theorem 3 and the Proposition 4 show that an exact and com-
mutative diagram of R-modules

SiZA

0—>G, G~

holds, where %, denotes the R-module of all first integrals of the vector field
E, and p denotes the R-linear map which maps each vector field X € € to its
multiple factor 2 € U such that £(X)w = ke.

Let us assume always that the manifold M is paracompact. Taking the
sheaves of germs of the above R-modules, we have an exact and commutative
diagram of sheaves on M

E
0 A ——>A A 0

% 1

oellx |

C, C A 0,
where the map E: A — A becomes a surjection, because the differential equation
Ef = g for a given function g € ¥ has always a local solution f € . Since
the sheaf A is fine, so is the sheaf C. Therefore, from the cohomology sequence,
we have the following result which was shown by Gray [ 4 ].
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0— (M) — (M) - AM) — H' (M, Cy)— 0,
H'(M,C,) =0, g=2.
It is easy to see that the R-module € is a Lie-algebra by the product [X, Y]
for X,Y €@, and €, is a subalgebra of €. By the bijection ®, the R-module ¥
becomes also a Lie-algebra whose product we denote by [f,g] for f,9 € «.

Moreover, U is a commutative ring. By the bijection K, the R-module &
becomes also a commutative ring, whose product we denote be XoY for

XY G,

PROPOSITION 5. Let X = K(f), Y = K(g) for f,g € U be infinitesimal
contact transformations.
1° L(f)g = do(X,Y).
2° 1f,91=o(X,Y]) = L(f)g + fEg — 9Ef.
3° XoY = K(fy) = fK(g) + gK(f) — fgE
= o(X)Y + o(¥)X — o(X)o(Y)E.

PROOF. Since w = K™! on €, we have f = o(X), g = o(Y).
1° do(X,Y) = — i(X)i(Y)do = — i(X)(Eg)e — dg)
= — fEg + K(f)g = L(f)g.

2° By the formula at the end of §1, we have

o (X, Y]) =i(X,Y])o = £(X)oi(Y)o — i(Y)o£(X)o

= Xg — (Ef)o(Y) = K(f)g — gEf = L(f)g + fEg — gEf.

3° By the Proposition 2, it holds that

K(fg) = fK(9) + gK(f) — f9E.

4. The contact structure in the wide sense. In this section, we
concern ourselves with the contact structure in the wide sense introduced by
Spencer.

Let {U,}.; be an open covering of a (2n + 1)-dimensional manifold M. If
a system of local contact forms

{@:}icr, o € AU,), o; \ do? #0
is given and there exists a system of functions {¢;;}i s such that
®; = gijwj in Ui n U]', g“- S QI(UZ N Uj),

then we call M a contact manifold in the wide sense. Of course, we suppose
that two systems of contact forms {U;, ®;} and {Uj, w;}define the same contact
structure on M, if their union gives also a contact structure on M.

Let R*, R* denote respectively the multiplicative group of all non-zero
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real numbers, and its subgroup of all positive numbers. Then, we have an exact
sequence of abelian groups

0> R*—>R*T 7,550,
where Z, = {0,1} denotes the cyclic group of order 2, which we represent as

an additive group. Taking the sheaves on M of germs of C~-functions with
values in R*, R¥, Z, respectively, we get an exact sequence of sheaves

O—>R+—>R*—]—>Zg—>0.
Since, the map log: R* — A gives a bijection between the sheaves of abelian

groups R* and A, the sheaf R* is fine like the sheaf A of germs of C~-functions.
Therefore, by the cohomology sequence, we have a bijection

0— H'(M,R¥) L H\(M, Z,)— 0
E _— wl(&)’

where a cohomology class & € H' (M, R¥) gives a C* R*-bundle structure, that
is, the associated principal bundle of a C> line bundle on M, and the class
w,(E) denotes the Stiefel-Whitney class of the R*-bundle &.

Whenever a contact structure {U,, o;}ir, @ = gi0;5, is defined on M, we
get uniquely a C* R*-bundle 5 = {g,;} € H'(M,R¥), since ¢;; # 0. On the other
hand, it holds that

o; \ do} = ¢ii"'w; N\ dof,

which shows that the cohomology class »~"+" ¢ H'(M,R) gives the canonical
line bundle, that is,the line bundle on M consisting of the (2n + 1)-forms.
Because, each non-zero (2n + 1)-form w; A do? on U; can be regarded as a
local cross-section of the principal bundle associated to the canonical line
bundle, and so the functions {¢;;7"*"} give the transition functions of the
bundle structure. Hence, the class j*#**' ¢ H(M,Z,) gives the 1-st Stiefel-
Whitney class w,(M) of the manifold M. Therefore, setting o = j%(n) = w,(n),
we have the formula

(n + Do = w,(M),
which implies the following results derived by Gray [4].
1° If n is odd, then M is orientable.
2° If n is even, then o = w,(M).

Moreover, taking into account that j¥ is a bijection, we have clearly the
following :

3° If n is even and M is orientable, then any contact structure in the
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wide sense is given by a global contact form o € UA(M).

Similar results hold for the complex analytic contact structure. Let M be
a complex analytic manifold of complex dimension 2z + 1. In this case, we
consider an exact sequence of abelian groups

0——>Z——>C£}ip»C*—>0,

where Z,C, C* denote respectively the ring of integers, the complex number
field, and the multiplicative group of all non-zero complex numbers. Taking
the sheaves on M of germs of holomorphic functions with values in Z,C,C¥
respectively, we get an exact sequence of sheaves

0—Z—C,—E cr 0.

Then, by the cohomology sequence, we have the homomorphism

8%
— H'(M, C¥) — H M, Z) —
& —a = Cl(é);
where a cohomology class & € H'(M, C}) gives an analytic C*-bundle structure,
that is, the associated principal bundle of a complex analytic line bundle on

M, and the class ¢,(§) denotes the Chern class of C*-bundle &.

If a complex analytic contact structure {U,, @;}is, @, = g,0,, is given, then
we get an analytic C*-bundle 5 = {g,;} € H'(M,C}). Setting a = ¢,(5), we have
easily the following formula derived by Kobayashi [ 5]:

(n + Da = (M),

where the class ¢,(M) € HXM,Z) denotes the 1-st Chern class of the manifold
M.

5. The Poisson brackets of an almosts symplectic manifold. A C*-manifold
M of even dimension 2z is said to be an almost symplectic manifold, if a
global 2-form Q € A*(M) is given so that it satisfies the condition Q" # 0 at
every point of M, where the form Q is called the almost symplectic form on
M.

If the almost symplectic form Q is given on M, then there exist uniquely
maps
p: U =B, o—plo),
P: AT, foPf),

which satisfy respectively the following formulas.

(4) Hp)gQ" =np Ndg NQ™', g € A
(5) P(f)gQ" = ndf N dg N O, ¢ < 9.
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In fact, it is trivial by the condition Q" = 0 and the definitions that the maps
@), P(f): A —>A are determined uniquely and they satisfy the axioms of
vector field. Both the maps p, P are called the Poisson brackets of the almost
symplectic structure. Obviously, we get the following.

PROPOSITION 6. Let p, P be the Poisson brackets of the almost
symplectic structure.

1° PKf)=pdf), fe

2° The map p: ' —> B is A-linear.
3° The map P: U —> B is R-linear.
© P(f)g=—Pgf, fige

Let us notice that each 1-form ¢ ¢ %' can be written locally as
6= ; hidge, hi, g € ¥,

and then the inner product /(X)é is given by
(X)) =4X) = ; hXgr, X e DB.

Then, we can obtain clearly the formulas:

(4) Kp(@NQ" = np A6 \ Q"' 6,9 c A,
(5) KP(f)Q =ndf N6 NQ™", 6 e, fe

THEOREM 4. Let Q be the almost symplectic form on a 2n-dimensional
manifold M. Then, the Poisson brackets p, P are characterized by the
Sfollowing properties.

1° X = pl@) for @ € ', if and only if {(X)Q = — ¢.

2° X = P(f) for f € U, if and only if i{(X)Q = — df.

PROOF. Let us notice that any (22 + 1)-form on a 2#n- dimensional
manifold is identically zero.

1° Assume that X = p(p). Putting 6 = «(Y)Q for ¥ ¢ 8 into (4), and
considering the (2z + 1)-form @ A Q" = 0, we have
QY,X)Q" = np N\ i(Y)Q A Q™Y
i(Y) e NQ") =0
=o(Y)Q" — @ A\ ni(Y)Q N\ Q1.

Therefore, we have Q(Y, X)Q" = o(Y)Q". It follows that
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@(XO0)X) = -, X) = — @)
for any vector field Y. This proves {(X)Q = — o.
Conversely, assume that a vector field X has the property in 1°. Then,
considering the 2z + 1)-form dg A Q" = 0, we have
i(X)dg N Q") =0
= (Xg)Q" — dg \ ni(X)Q N\ Q"'
= (Xg)Q" + ndg N p \ Q"""
This proves
X"+ ndg N N Q"' =0,
which is nothing but the formula (4). Hence X = p(o).
2° This is a special case of 1° where ¢ = df.

COROLLARY. The U-linear map p: W' — B is a bijection, and its inverse
map p~': B - A is given by p'(X) = — i(X)Q for X € B.

6. Infinitesimal automorphisms of a symplectic manifold. A 2x-
dimensional manifold M is said to be a symplectic manifold, if a global 2-form
Q is given so that it satisfies the conditions Q" #% 0 and dQ = 0 at every point
of M. Of course, the form Q gives an almost symplectic structure on M, and
so we have the Poisson brackets p, P defined in the preceding section.

PROPOSITION 7. Let Q be the symplectic form on M, If X = p(p) for
@ < U, then

£X)Q = — dp.
PROOF. Since dQ = 0 and #(X)Q = — @, we have
£(X)Q = i(X)dQ + di(X)Q = — do.

Let © be the symplectic form on M. A vector field X € f is called an
infinitesimal automorphism of the symplectic structure, if £(X)2=0. On a
symplectic manifold, a vector field X € B(M) such that £(X)Q = kQ, &k € AM),
is trivial, because we can see easily when n > 1 that % is a constant if M is
connected, and that 2 = 0 if M is compact [ 6 ].

THEOREM 5. Let &, be the R-module of all infinitesimal automorphisms
of the symplectic structure and let 3' denote the R-module of all closed

1-forms. Then the R-linear map p gives a bijection between the R-modules
3! and G,.

PROOF. Tt is known that the map p: W' —> LB is a bijection, and if
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X = p(@), then £(X)Q = — dp. Therefore, X € &, if and only if dp = 0.

7. Connections on principal bundles. Now, let us introduce some
terminologies being useful in the next section.

We dente by T(M), T,(M) respectively, the tangent vector bundle of a
differentiable manifold M, and the tangent vector space at a point x € M.
Then, concerning the topological product M X N of two differentiable manifolds
M, N, we can see that there exist natural bijecticns

TM x N)=T(M) x T(N), T @oy(M x N)=T, (M) + T,N).
A differentiable map a: M — N induces a map of tangent bundles given by
a: T(M)—T(N), (aX)f = X(fea), for f e %A on N,

which we designate by the same letter a. In particular, let us consider a
differentiable map from a topological product M X N to another manifold K,
expressed as a multiplication

M x N— K, (z,y) —> xy.
Taking a point a € M and a point b € N, we have maps
a: N> K, y—ay, and »(b): M — K, x — xb,

whose induced maps are expressed also as multiplications

a: TIN)->T(K), Y —aY, and 7(b):T(M)— T(K), X — Xb.
Then, the induced map of the multiplication is given by

T(M) x T(N) - T(K), (X,Y)—> Xy + xY,

where X € T,(M),Y € Ty(N) and x € M, y € N.

Let B(M, G) be a differentiable or complex analytfc G-bundle over M, and
let us denote the projection and the right translation for an element g € G by

p: B—>M, and r(¢g): B— B, b—byg,

respectively. A point b € B can be regarded as a map so called an admissible
map

b:G_)Gx, g__)bg’

where G, is a fibre of B over a point x = p(b) € M. Moreover, let us denote
the Lie-algebra of G by g to be identified with the tangent vector space T(G)
at the unit element e € G. A tangent vector X € T(B) is said to be wvertical
if pX = 0. Then, any vertical vector X € T(B) at a point b € B is given by
uniquely in the form X = bA, where A € 9. Hence, we have an injection

A Bx$—->T(B), (b,A)—bA.
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Since it holds that bg(g~'Ag) = (bA)g for ¢g € G, dividing the spaces B X g
and 7T(B) by the group G, we have an exact sequence of vector bundles over
M so called the fundamental sequence of B

A
0— LM) =~ QM) & T(M) — 0,

where L(M) = B X 49 is the associated vector bundle of B determined by
the adjoint representation of G on 4, and QM) = T(M)/»(G) is the quotient
space of T(B) by the equivalent relation X ~ X¢ for g € G.

A connection of a principal bundle B(M, G) is defined by a global §-valued
l-form o € A'(B,9) on B satisfying the following conditions.

(i) oor(g) = ad(¢g™)w, g € G.

(ii) o(bA)=A, be B, A 4.
Then, the curvature form of the connection o is a §-valued 2-form Q € A% B, 9)
on B, given by

X, Y) = (o + 5 [0,0]))(X, V) = da(X, Y) + [a(X), o(Y)]

for X,Y e Ty(B), and it satisfies the conditions :
(i) Qor(g) = ad(g™)Q, ¢ < G,
(ii) AUX,Y) =0, if X is vertical.
In the case of G being abelian, it is notable that
ad(g)A = A, [A,B] =0, for all g € G, A,B < 4.

The conditions (i),(i) of the connection form o show that to give a
connection on B means to give a splitting of the fundamental sequence of B,
namely, a homomorphism of vector bundles o : QM) — L(M) such that wor
= 1, where we denote by 1 the identical automorphism of the vector bundle
L(M). Applying a functor Hom(*, L) to the fundamental sequence, we have
an exact sequence of vector bundles over M

N
0 — Hom (T, L) > Hom (Q, L) ™ End(L) — 0.
Taking the sheaves of germs of local cross-sections of these vector bundles,

we obtain the cohomology sequence :

p* A S p¥
Y, H°(M, Hom(Q, L)) ~ H*(M, End(L)) - H'(M, Hom(T, L))

® 1 > &1,

Then, a connection can be regarded as a global section @ ¢ H(M, Hom(Q, L))
such that A*e = 1. Therefore, there exists a connecticn of B if and only if
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81 =0, by the exactness of the cohomology sequence. Thus, we can
suppose that the cohomology class &*1 ¢ H'(M, Hom(7T, L)) expresses the
obstruction of the existence of connection on B. With the consideration of the
class %1, we can get the following well-known results [ 1 ].

On a C* principal bundle there exists always a C~ connection, and on a
complex analytic principal bundle there exists a C= (1,0)- connection, that is, a
connection form o of type (1,0). Let o be a (1, 0)-connection form of a
complex analytic G-bundle B(M, G), and let Q be its curvature form. Then,
the (1, 1)-component Q' of the 2-form Q represents a cohomology class

Q" ¢ H'(M,Hom(T, L),) = H'QU*(M, L))

in the sense of the theorem of Dolbeault,and the class—Q' coincides with the
obstruction class 8*1 of the existence of analytic connection.

8. The dynamic contact structures. Now, let us consider a C* circle
bundle B(M, S") over M, where S' is the circle regarded as a 1-dimensional
abelian group. The Lie-algebra 38' of the group S' can be identified with the
additive group R of all real numbers, if we take a base e € &' to correspond
to 1 € R. Then we have a global vector field E ¢ B(B) called the wunit
fundamental field defined by

E: B->T(B), b—bl.

It is clear that the vector field E is vertical and is invariant under the right
translations. Therefore, a connection of the circle bundle B(M, S') is given by
a global real valued 1-form o € A'(B) satisfying the following conditions.

(i) wor(s) =w, s € S',
(ii) o(E)=1.

Moreover, the curvature form of the connection o is given by Q = dw € U*(B)
and has properties :

(1) Qor(s)=Q, s € S,
(i) {(E)Q =0,
which show that the 2-form Q on B may be regarded as a 2-form on M,

namely, there exists a unique 2-form Q" € A*(M) such that Q = Q'op, and we

can suppose Q to be identified with Q. Since dQ = 0, the 2-form Q € (M)
represents a cohomology class Q € H*(*(M)), which does not depend on the
choice of connection on B.

Let us consider an exact sequence of abelian groups

0->Z—>R—>S" —0.
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Taking the sheaves on M of germs of C~-functions with values in Z,R,S"
respectively, we get an exact sequence of sheaves of abelian groups

0—-Z—->R—->S"—0.

Since the sheaf R is fine, by the cohomology sequence, we have the bijection
0 — H'(M, SY 5SHX (M, Z) — 0

where a cohomology class £ € H'(M,S') expresses an S'-bundle structure and
the class 8% = (&) is the Euler-Poincaré class of the S'-bundle & On the other
hand, by the cohomology sequence for the constant -coefficients, we get
homomorphisms
— H'(M, S*)— H*M, Z) - H (M, R) —
x(E)—Q,

where Q is the curvature form of a connection on an S!'-bundle B of bundle
structure &, and it represents a cohomology class

Q ¢ HXU*(M)) = HX(M, R),

in the sense of the theorem of de Rham.

A contact form o € A(B), ® A do™ # 0, on a C~ S'-bundle B(M, S") over
a 2n-dimensional manifold M is said to be dynamic, if the 1l-form  defines
also a connection on B. Then, the canonical field E of the contact structure
coincides with the unit fundamental field of the S'-bundle B, since #(E)w =1
and {(E)do = 0. In this case, the curvature form Q = do € U (M) regarded
as a 2-form on M becomes a symplectic form on M, since it satisfies the
conditions Q" % 0 and dQ = 0. Moreover, the closed 2-form Q expresses an
integral cocycle which represents the Euler-Poincaré class of the S*'-bundle B,
in the sense of the theorem of de Rham.

Through the bijection &* : H'(M, S') — H*(M, Z), we get easily the following
result derived by Boothby and Wang [2].

Let O be a symplectic form on a 2n-dimensional C* manifold M. Then,
there exist a C* circle bundle B(M,S") over M and a C> dynamic contact
form o on B such that do = Q, if any only if the closed 2-form Q represents
an integral cohomology class of M.

Next, we make researches on the complex analytic C*-bundle. Let M be a
complex analytic manifold, and let us consider an exact sequence of abelian
groups

A ex
0->25C 8 cx o,

Taking the sheaves on M of germs of holomorphic functions with values in
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Z,C,C* respetively, we get an exact sequence of sheaves of abelian groups

A
0-25¢, 28 ¢ oo

Then, we have the cohomology sequence

% S§¥ A
EP M, ¢ S (M, Z) > H(M, C,) —
E——c(8), O — 67,

where the class §*& = ¢,(§) ¢ H*M, Z) expresses the Chern class of an analytic
C*-bundle structure & ¢ H'(M, C}). Moreover, if we denote an integral 2-cocycle
of M by a complex valued C~ closed 2-form ® ¢ 2*(M,C) in the sense of the
theorem of de Rham, then a cohomology class A* ® ¢ H*(M, C,) is represented
by the (0, 2)-component ®°* ¢ A"(M,C) of the 2-form ® in the sense of the
theorem of Dolbeault, that is,
® ¢ H*(M,Z)— H*(M, C) = HW*(M, C)),
0% ¢ H (M, C,) = H*(UA*(M, C)).
Let Q be a curvature form of any C~ connection on an analytic C*-bundle
B(M, C*). Then, the closed 2-form (1/2m)Q € A%(M,C) represents an integral
cohomology class of M which expresses the Chern class of B, being independent
on the choice of connection on B.
A complex valued C~ 1-form w € A'(M, C) on a complex (2n+ 1)-dimensional
analytic manifold M is called a C~ contact form on M, if it satisfies the
condition

(0w A\ do™) N (0 A do™) # 0

on M. Tt is clear that, if the 1-form ® is holomorphic, the condition of contact
form is reduced to w A do™ # 0. In this case, the contact form o is said to be
analytic.

A complex valued C= 2-form Q ¢ A*(M,C) on a complex 2n-dimensional
analytic manifold M is called a C* symplectic form on M, if it satisfies the

conditions Q" A Q"0 and dQ =0 on M. It is clear that, if the 2-form Q is
holomorphic, the conditions of symplectic form are reduced to ©”+# 0 and
dQ = 0. In this case, the symplectic form Q is said to be analytic.

Let B(M, C*) be a complex analytic C*-bundle over a complex 2n-dimensional
manifold M. A C~ contact form o € U'(B,C) on B is said to be dynamic if
o defines also a C~ connection on B. Then the curvature form Q = de ¢ U*(M, C)
regarded as a 2-form on M becomes a C* symplectic form on M. In particular,
if ® is an analytic dynamic contact form on B, then the curvature form Q = dw
becomes an analytic symplectic form on M.

THEOREM 6. Let M be a complex 2n-dimensional analytic manifold,



CONTACT STRUCTURES OF MANIFOLDS 247

and let Q be a C symplectic form on M.

1° There exist a complex analytic C¥-bundle B(M,C*) over M and a
C” dynamic contact form o on B such that de = Q, if and only if theclosed
2-form (1/2mi)Q determines an integral cocycle on M and the (0, 2)-component
0" of the 2-form Q is coboundary with respect to the d’-cohomology.

2° There exists locally a (1, 0) dynamic contact form o of B(M,C¥)
such that do = Q, if and only if the closed 2-form (1/2mi)Q determines an
integral cocycle on M and Q°* = 0. Moreover, if H'(M,C,) = 0, then the (1, 0)
dynamic contact form o can be defined globally on B.

PROOF. Let us consider the cohomology sequence

3 * *
L HOL ) i, e S B0, 2) Y M, C)

A class £ € H'(M,C}) determines an analytic C*-bundle B(M, C¥). Let @ be a
C~ dynamic contact form on B, and let Q = dw be its curvature form. Then
the closed 2-form (1/2mi)Q represents the Chern class 8*& = ¢,(&) of B, which
is an integral cohomology class of M. The (0, 2)-component Q° of the 2-form
Q represents the class (2mi)A*08*¢ ¢ H*(M, C,), which is null by the exactness
of the cohomology sequence. Therefore, °* is coboundary.

Conversely, if ° is coboundary, by the exactness of the sequence, there
exists an analytic C*-bundle structure & € H'(M, C}) such that

5% = (1/2m)Q € (M, Z).

Taking a C*-bundle B(M,C*) of the structure & and a C* connection form ¢
on B, we can find a global 1-form @ € A'(M,C) on M such that dp = Q — db,
since both the closed 2-forms Q and df represent the same cohomology class
2mic(§) € H(M,C). Then, the l-form o =6+ @ € A(B,C) becomes a C=
dynamic contact form on B such that do = Q.

In particular, when Q°* = 0, if we take the connection form # to be of
type (1, 0), then the 1-form @ = @' + @' satisfies the condition d 9 = 0.
Hence, there exists a local C”-function f defined on a neighborhood of any
point x € M such that d"f = ¢°'. Setting ¥ = @' — d'f, we have

dy = dp" — d'df = dp" + d'g" = dp = Q — db.

Then, the (1, 0)-form o = 6 + ¥ becomes a local dynamic contact form such
that deo = Q.

Moreover, if H'(M,C,) =0, we can take the C~-function f globally on M,
through the Dolbeault isomorphism H'(M, C,) == H'(A°*(M, C)). Then, the
(1, 0)-form e is also defined globally on B. For instance, if M is a Stein
manifold, it holds that H'(M,C,) = 0.

Here, if the 2-form Q is holomorphic, that is, Q"' = Q" =0 and d"Q = 0,
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then the (1, 0)-form  is also holomorphic, since d“w0 = Q"' =0 Thus we get
the following

COROLLARY. Let Q be an analytic symplectic form on M. Then, there
exists locally an analytic dynamic contact form o of B(M,C¥*) such that
do = Q, if and only if the closed 2-form (1/2mwi)Q determines an integral
cocycle on M. Moreover, if H'(M,C,) = 0, then the analytic dynamic contact
Jorm o can be defined globally on B.

In this case, it is assured that there exists an analytic connection on B by
the condition Q!' = 0, because the form Q' represents the obstruction class of
the existence of analytic connection.

9. Infinitesimal cosymplectic transformations of a cosymplectic manifold
A real C~-manifold M of odd dimension 27 + 1 is said to be a cosymplectic
manifold, if a global 1-form o € A (M) and a global 2-form = ¢ (M) are

given so that they satisfy the conditions :
o ANT"#0,do=0,dr=0

on M, where the forms w, 7 are called the cosymplectic forms on M. Then, the
forms o, 7 give an almost contact structure on M, and so we have the canonical
field E and the Lagrange brackets [, L defined in §2. By the Proposition 3,
there exists a natural bijection & between the U-modules B and A' given by
a: B—A, X— o,
a(X) = iX)m + o(X)o, a(p)=— Up)+ p(E)E.

Since the cosymplectic forms o, 7 are closed, it holds that

LX) = dilX)w, £(X)m = di(X)r, X < B.

Let o, 7™ be the cosymplectic forms on M. A vector field X € B is called
an infinitesimal cosymplectic transformation, if there exists a function %2 € U
such that

£ X)o = dk, L£(X)m = A dk.

Moreover, a vector field X € B3 is called an infinitesimal automorphism of
the cosymplectic structure, if £(X)o =0 and £(X)r =0. Let €, , denote
respectively, the R-module of all infinitesimal cosymplectic transformations, and
the R-module of all infinitesimal automorphisms of the cosymplectic structure.
Obviously, &, is an R-submodule of ©.

PROPOSITION 8. For an infinitesimal cosymplectic transformationX € §,
the differential dk € U such that £(X)o = dk, is given by dk = de (X).

PROOF. If X € €, then £(X)o = di(X)o = dk.
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A pform @ € U is said to be E-invariant, if £(E)p = 0. For instance,
the 1-form o is E-invariant, since £(E)o = dw(E) = 0.

THEOREM 7. Let o, 7 be the cosymplectic forms on M. Let 8' denote
the R-module of all closed 1-forms, and let &' be the R-modules of all closed
E-invariant 1-forms. Then, the R-linear map a: L — W' gives a bijection
between the R-modules & and 3'. In particular. the map o gives a bijection
between the R-modules §, and &'

Accordingly, we get an exact and commutative diagram of R-modules

0 @IO @|d°‘° a
Tl “ iig@) H

0 ¢! 38! dA
where d¥ is an R-submodule of U' consisting of all differentials of functions
in .
PROOF. It is known that the map a: L& — U' is a bijection.
Assume that X € . Setting @ = a(X), we have @ = (X)) + o(X)w, and
dp = di(Xym + do(X) Ao = £(X)m + £(Xo /o
=w Ndk+ dk N\ o=0.
It follows that @ is closed.
Conversely, assume that @ € 8'. Setting X = a~'(@), we have
X =—lp) + p(E)E,
£(X)o = di(X)o = d{p(E)i(E)o} = d(@(E)),
L£(X)m = di(X)m = d{ — il@))m}
=d{ — p(E)o + ¢} = o \ dl@(E)).
It follows that X ¢ . Moreover, we can see that
dk = d@(E) = £(E)p, dk = da(X).
Therefore, X = a () € €,, if and only if £(E)p = 0.

COROLLARY. E=a'w) e G,

Let X,Y € @ be two infinitesimal cosymplectic transformations. Setting

dk = do(X), dh = do(Y), we have easily
L£(X, Yo = d(Xh — Yk),
£UX, Y)mr =2dk Ndh + o \ d( Xh — Yk).
This shows that [X,Y] ¢ € if and only if dk A dh = 0. Hence, the R-module
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€ does not constitute in general a Lie-algebra with respect to the prouct
[X,Y]. However, the R-module §, becomes a Lie-algebra.

10. Infinitesimal conformal transformations of a cosymplectic manifold.
Now, we make some remarks cn the infinitesimal conformal transformations
of the cosymplectic structure.

Let w,7 be the cosymplectic forms on a (27 + 1)-dimensional C*-manifold
M. A vector field X € B is called an infinitesimal conformal transformation
of =, if there exists a function A € ¥ such that £(X)7m = hw. Then, we get the
following result same as the case of symplectic structure in §6.

PROPOSITION 9. Assume that n>1. Let X ¢ BM) be a wvector field
such that £(X)r = hw.

1° If M is connected, then h is a constant.
2° If M is compact, then h = 0.

PROOF. The manifold M is orientable, since there exists a global non-zero
2n + 1)yform o A 7" e A1 (M). By assumption, £(X)r = di(X)m = hmw.
Applying the exterior derivation d, we have dh A = = 0, and hence dh N\ 7* = 0.
Therefore, applying an inner prcduct #(Y) for a vector field Y € B, we get

{(YXdh N 7)) =0
= Yhr? — dh A 2i(Y)m A 7= (Yh)r

Since 7* = 0, we have Yh = 0 for any vector field Y € 8. This proves that h
is constant on a connected component of M. Moreover, if i # 0, then it holds
that

d(thwAi(X)wAw""‘)z%a)/\h'rr/\'n'"‘l =o A7

This shows that the form A 7" becomes a coboundary with respect to the
d-cohomology, On the other hand, the non-zero (2 + 1)-form @ A 7" represents
a base of the real cohomology group H?*"*!'(M,R)= R of the orientable
manifold M, provided M to be connected and compact. This is impossible.
Hence A = 0.

Let o, be the cosymplectic forms on M. A vector field X € B is called
an infinitesimal conformal transformation of o, if there exists a function
k € U such that £(X)o= kw. Then we can see clearly £ = Eo(X). We denote
by ¥, ¥, respectively, the R-mcdule of all infinitesimal conformal transformations
of o, and an R-submcdule of T ccnsisting of all vector fields X € & such that
£X)o = 0.

THEOREM 8. Let o, m be the cosymplectic forms on M, and let D', D
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denote respectively the R-module of all 1-forms @ € U' such that dep(E) \ o
=0, and an R-submodule of D' consisting of all 1-forms @ € A' such that
dp(E) = 0. Then, the R-linear map o : L — U, defined by

a(X) =i X)r + o(X)o, X € B,

gives a bijection between the R-modules ¥ and D'. In particular, the map o
gives a bijection between the R-modules T, and D\.

Accordingly, we get an exact and commutative diagram of R-modules

0,3 2% g
el |

00— 99— D' —— U

PROOF. It is known that the map a: L — A" is a bijection whose inverse
map is given by
X=a(p)=— lp) + p(E)E
for @ < A'. This implies @ (X) = @(E), and hence
£ X)o = di(X)o = de(E).

Therefore, it holds that dp(E) = £(X)e = ko if and only if dep(E) A @ = 0.
Moreover, we have k = Eo(X) = Ep(E).
If @ € D}, then clearly Ep(E) = i(E)de(E) = 0. Conversely, if ¢ € D' and
Egp(E) = 0, then
dp(E) = — Ep(E)o + dp(E) = — {(E)Xde(E) \ o) = 0.

This shows that @ € &;.
PROPOSITION 10. If X € T, then £(X)m = dp, where ¢ = a(X).

PROOF. Setting ¢ = a(X) ¢ D' for X € ¥, we have
X=—Up)+ (E)E, (X)r = — p(E)o+ .

Since @ € D', we can see that
£ (X)r = di(X)ym = — dp(E) \ o + dp = do.

By this proposition, if X € ¥, and the 1-form @ = a(X) is closed, then X
becomes an infinitesimal automorphism of the cosymplectic structure.

Moreover, it is obvious that the R-module T constructs a Lie-algebra with
respect to the product [X,Y], and ¥, becomes a subalgebra of T,
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