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Introduction. Recently, the theory of contact manifolds has been developed
by many authors. As well-known, a contact form ω on a (2n + l)-dimensional
differentiate manifold M is by definition a global 1-form such that ω Λ dωn Φ 0
on whole M. Through a theorem of E. Cartan, the condition ω Λ dωn Φ 0
means that there exist local coordinates (xu , xn,yi, ,yn,z) of M, where
the contact form ω may be written as

n

In the theory of contact manifolds treated by the method of differential forms,
it seems that the above local expression of the contact form has played an
important role.

In the present paper, we shall show first that the fundamental relations
concerning the contact structures can be derived easily without use of the
theorem of E. Cartan, in more general forms. In the following sections, we
shall arrange the theory of contact manifolds in our view-point.

Moreover, in §8 we shall get some results on the existence of dynamic
contact structures over complex analytic manifolds, and in §9 and §10 we shall
investigate into the infinitesimal transformations of cosymplectic manifolds.

1. Vector fields and differential forms. In the beginning, let us arrange
some notions, for the later use, related to the vector fields and the differential
forms on a C°°-manifold M.

Let U be an open set of the C°°-manifold M, and let 3l(t/)> 33 (t/) and Sl*(!7)
denote respectively the ring of all real valued C°°-functions on U, the 5I(C/)-
module of all C°° vector fields on U, and the 2ί(ϊ7)-module of all ^-forms on
U. Then, 81(17), 33(C7), 8ίp(f7) are also regarded as i?-modules, where R denotes
the real number field, and with respect to the natural restrictions

«([/) -> 8100, S3(C7) -• 33(10, Ψ(U) -> 81*00,

for open sets U D V, each of them constructs a presheaf of i?-modules. In the
folio wings, we shall write as
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δt = δί(t/), S3 = »([/), 8P = «*([/),

abbreviating the open set C7.

A vector field X € §5 is a map

X:δl->δί, /->X/,

satisfying the following axioms.

(ii) Derivation: X(fg) = (Xf)g+ftXg)9 f,g * 81.

(iii) Sectional : (Xf)(x0) = 0, if / = 0 on a neighborhood of a point .cc0 ̂  Λί".

It is easily seen that Xc = 0 for a constant c € R c δί. Moreover, the product

ίδ x » - S , (X,y)->[X,Y]

can be defined by

[X, Y]f = X(Yf) - Y(Xf), f e 21,

and the R-module 25 becomes a Lie-algebra.
A p-form φ £ 81v is a map

p : 35 x . . . x 25->Sί, (Xl9...,Xp)-+φ(Xl9...,Xp)9

satisfying the following conditions.

( i ) Sl-multilinear.

(ii) Alternate.

(iii) Commutative with the restrictions.

In particular, we set Sί° = Si, and we can see Sίp = 0 for p > dim M.
The exterior product of forms

ΪP X 2Γ7 -> δl^ 5, (<p, f ) - > ^ Λ ψ ,

can be defined uniquely so that the following conditions may be satisfied.

( i ) Sί-bilinear.

(ii) Associative.

(iii) 1 Λ ψ = φ, for φ e 2ίp.

(iv) fa Λ Λ φPXXu , Xp) = det^^X,)), for ^ ^ δί1, X5 e » .

With respect to this multiplication, the direct sum

a* = 2Z δp

becomes a graded δt-algebra, and it is obvious that the exterior product is
anti-commutative:
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φ Λ ψ = ( - l)pqψ Λ φ, for φ € «*, ψ € SΓ7.

Therefore, if p is odd, it holds that

φ2 = φ A ψ = 0, ίor φ € SP\

The exterior derivation of forms

can be defined uniquely so that the map d may satisfy the following axioms.

( i ) R-linear.

(ii) Anti-derivation: d(φ Λ ψ) = dφ Λ ψ + (— l)pφ Λ dψ, φz 31^,^^ 8lc.

(iii) Order 2 : Jo J = 0.

(iv) J/(X) = Xf, for / € 9ί°, X € Sδ.

Then, the i^-algebra 2ί̂  with the derivation d becomes a cochain complex. It
is notable that any p-ίorm φ € 3P can be written locally as a finite sum

f*i Λ Λ dfkP9 gk,fkj € 5ί,
A:

which is evident if we observe an expression of the form ψ in local coordinates
of M, and then the exterior derivative of the form φ is given by

Λ dfkl Λ Λ dfkp.
k

The inner product for a vector field X <Ξ 35,

can be defined by the relation

Then, the map i(X) is characterized by the following axioms.

( i ) Sl-linear.

(ii) Anti-derivation,

(iii) Order 2 : i(X)°i(X) = 0.

(iv) i(X)l = 0.

(v) ί(XV = <p(X), for ̂> e Si1.

Moreover, we have the map

having the properties

( i ) a-linear,
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(ii) i(X)oi(Y) = - i(Y)oi(X\ X,Y e 25.

The Lie derivative of forms with respect to a vector field X € 2),

£(X) :«>->«", φ

can be defined by the formula

£(X) = i(X)od +

Then the map £(X) is characterized by the following axioms.

( i ) i?-linear.

(ii) Derivation: £(X)(<? Aψ) = £(X)<? Λ f + <?Λ £(Xty, p .ψ e Si.

(iii) £ ( X ) / = X / , f o r / e Si.

(iv) £ ( X ) # = J(X/), for / 6 St.

In regard to the product of the Lie-algebra S3, we have the formulas

i([X,Yϊ) = £(X)°ί(Y) - »W°£(X),

£([X, Y]) = £(X)o£(Y) - £(Y)o£(X), X, y e S5,

which are proved easily if we observe that their right hand sides satisfy the
axioms of the inner product i([X, Y]) and the Lie derivative £,([X, Y]) respectively.

2. The canonical field and the Lagrange brackets of an almost
contact manifold. A C°°-manifold M of odd dimension 2n + 1 is said to be an
almost contact manifold, if a global 1-form ω € Sl^Λf) and a global 2-form
7r € 912(M) are given so that they satisfy the condition ω /\irn ^0 at every
point of M, where the forms ω, TΓ are called the almost contact forms on M.

If the almost contact forms ω, ir are given on M, then there exist uniquely
a global vector field E € 3&(M) and maps

Z: 2r->35, <?->%>),
L: SC —85, f-Uf),

which satisfy respectively the followng formulas.

( 1 ) (Eg)ω Λ TΓ" = dg Λ τrw, g e 21.

( 2 ) /(̂ )flrω Aτrn = nφ Adg Aω A τrn-\ g z Si.

(3) L(f)gω A τrn = ndf A dg A ω A τrn~\ g € Si.

In fact, the functions Eg,l(φ)g, L(f)g € 21 are uniquely determined, since the
(2n + l)-form ω A πn gives a base of the Sί-module Ψn+1(M), and it is obvious
from the formulas that the maps E,l(φ),L(f): 81 —> S( satisfy the axioms of
vector field in the preceding section.

The vector field E is called the canonical field of the almost contact
structure and both the maps I, L are called the Lagrange brackets of the
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almost contact structure. From the definitions, we can easily obtain the following

PROPOSITION 1. Let /, L be the Lagrange brackets of the almost contact
structure.

1° L(f) = l{df\ f € 81.

2° The map Z : Si1 —> SS is %-linear, that is,

KfiΨi + / > 2 ) =fil(<Pi) + /2%>2)> / i ,/ 2 € SI, φl9φ2 € SI1.

3° The map L : 2ί —> 3ΰ is R-linear and a derivation, that is,

+ c,ft) = cMA) + cMM
) =fMfi) +AUA), cltct e R,fuft € %

4° UJ)g = - L{g)f, f,g e SI,

Let us notice that each 1-form θ £ Si1 can be written locally as a finite
sum

θ = Σ hkdgk9 hk9 gk e Si,

and then the inner product i(X)θ for any vector field X £ S3 is given by

i(X)θ = Θ{X) = Σ, htXsr*
k

Then, we can write respectively the formulas (1) , (2 ), ( 3 ) in more general
forms:

( 1 )' θ(E)ω Λ τrn - θ Λ ir", 6» € SI1,

( 2 )' 0(Z(cp))(B A'7Γ7' = nφAβAωA -jrn~\ θ, φ € Si1,

(3)' θ{L{f))ω Aτrn = ndfAΘ Λω A TΓ"'1, 0 € Si1, / € 31.

THEOREM 1. Let ω, π be the almost contact forms on a (2n + 1)-
dimensional manifold M. Then, the canonical field E and the Lagrange
brackets I, L are characterized by the following properties.

1° X = E € S3(M), if and only if

( i ) i(X)ω=l,

(ii) i(X)τr = 0.

2° X = l(φ) s 33 for ψ e SI1, if and only if

( i ) ί(X)» = 0,

(ii) i(X)τr = φ(E)ω — >̂.

3° X - L(/) /or / € SI, if and only if

( i) i(X)ω - 0,

(ii) i(X)τr=(Ef)m-df.
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PROOF. Let us notice that any (2n + 2)-form on a (2n + l)-dimensional
manifold is identically zero, and that the inner product i(Y) for a vector field
Y £ S3 is an anti-derivation on the forms.

1° Putting θ — ω into the formula (1)', we have

ω(E)ω /\τrn = ω Aτrn,

which implies i(E)ω = ω{E) = 1. Moreover, putting θ — i(Y)π and Y € §5 into
(1) ' , we have

τr(Y, E)ω Aτrn = i(Y)ir Aπn = ~^-γ i(Y)τrn+1 = 0,

since the inner product i(Y) is an anti-derivation and the (2n + 2)-form τrn+1 is
identically zero. It follows that

{ί(E)τr)(Y) = 7r(£, Y)=- -π{Y, E) = 0

for any vector field Y. This proves i{E)π — 0.
Conversely, assume that a vector field X has the properties ( i ) , (ii).

Then, considering the (2n + 2)-form dg f\ ω Λ ττw = 0, we have

i(X)(dg Λ ω Λ τrn) = 0

= (Xg)ω Aπn - dg /\ ω(X)τrn + dg Λ ω Λ ni(X)τr Λ TΓ""1

= (Xίf)ω /\πn - dg /\ τrn.

This proves

(X<7)ω Λ TΓ" - rfgr Λ τrw = 0

which is nothing but the formula (1) . Hence X — E.
2° Assume that X = l(φ). Putting θ = ω into the formula ( 2 )', we have

ω(X)ω Aπn = nφAωA<oA τrn~ι = 0

which implies i(X)ω — ω(X) = 0. Moreover, putting θ = i(Y)τr, Y € S5, into
( 2 )', and considering the (2n + 2)-form ?̂ Λ ω Λ τrn = 0, we have

τr(y, X)ω Aτrn = nφ Aπ i{Y)τr Λ ω Λ TΓ^1,

ί(YXφ Λ ω Λ τr?0 = 0

- p(Y> Λ τrri - φ A ω(Y)τr?i + nφ Aω A i(Y)π A TΓ71""1.

Therefore, applying the formula (1) ' , we have

τr(Y, X)ω A τrn = ^(Y)ω Λ τrn - ^ Λ ω(Y)τrn

= te(Y) - ω(l>(JE)}ω Λ 7ΓW.

It follows that

- τr(Y, X) = ^(£)α>(Y) - φ(Y)
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for any vector field Y. This proves

i{X)π = φ(E)ω — φ.

Conversely, assume that a vector field X has the properties ( i ) , (ii). Then,
considering the (2n + 2)-form dg A ω Λ πn = 0, we have

i(X)(dg A ω Λ πn) = 0

= (Xg)ω Λ τrn - dg A ω(X)τrn + dg A ω A ni(X)τr A TΓ^1

= (Xg)ω A τrn Λ-ndg Aω A (<p(E)ω -φ) A τrn-1

= (Xg)ω Aπn -ndg Aω Aφ A 7rn~\

This proves

(Xg)ωAπn -nφ Adg Aω A ^n~x = 0,

which is nothing but the formula (2) . Hence, X — l(φ).

3° This is a special case of 2° where φ = df.

Now, we define a vector field K(f) e 23 for a function / £ Si, by the
relation

Then, we have the map

and, from the Proposition 1 and the Theorem 1, we can obtain easily the
followings.

PROPOSITION 2. The map K : SI —> 35 staisfies the conditions :

( i ) R-linear,

(ii) K(fg) =fK(g) + gK{f) -fgE, / ^ e Si.

THEOREM 2. Let ω, ir be the almost contact fo?~ms on M. Then the
vector field X — K{f) € 93 for a function f £ SI is characterized by the
properties:

( i ) z'(X)ω=/,

(ii) i(X)τr = (Ef)ω - df.

COROLLARY. The R-linear map K: SI —> S3 is an injection, and the left
inverse map of K is given by the 1-form ω: S3 —> St.

PROOF, ω(K(f)) = i(K(f)) ω = / f o r / e Si, This proves that the map
ωoK : % —> 21 is identical.
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At the end of the present section, let us remark on some relations between
the vector fields and the 1-forms of the almost contact manifold M. Let ω,
7r be the almost contact forms on M.

A vector field X € 23 is said to be horizontal, if ω(X) = 0, and a p-ίorm
φ € 2P is said to be basic, if i{E)φ — 0. Then, we have exact sequences of
Sl-modules

ω
0 - > 2B - > S3 - SI -* 0,

O — S δ 1 - ^ 1 — « - > 0 ,

where SB, 56 * denote respectively the 8I-module of all horizontal fields, and the
δϊ-module of all basic 1-forms. The Si-linear maps r(E): ST —> SS, r(ω): 81 -* SI1

defined by r{E)f — fE, r (ω)f — fω for / £ 31 give respectively splittings of the
above exact sequences, namely both the Sί-linear maps ωor(E) and i(E)°r(ω)
are identical on Sί.

Now, consider the Sί-linear map π: S3 —• SI1 defined by 7r(X) = i(X)π for
X ^ 23. Then we have the following

PROPOSITION 3. The %-linear map π gives a bijection between the
^-modules 2B and 23\ and its inverse map is given by the Lagrange bracket
— I restricted on 35 \

Accordingly, there exists a natural isomorphism between the exact sequences
of Si-modules such as

(ό

o — > m — - 2 3 — - s i — - o

i(E)
0 _ + 581 -SΓ-^-i Si > 0,

where the maps a, a~x are given by

a = 7r + r(ω)oω, a~ι = - / + r{E)oi{E).

PROOF. A 1-form τr(X) = i(X)τr <z SI1 for any vector field X is basic, since
i(E)oi(X)τr=τr(X,E) = 0. A vector field /(<?) € 23 for any 1-form ψ £ SI1 is
horizontal, since ω(l(φ)) = 0. For a basic 1-form φ € S51, it holds that

since ^?(£) = 0. This proves that the map 7ro( — Z) is identical on S51.
Moreover, if i(X)τr = 0 for a horizontal field X <Ξ SB, then applying the

Theorem 1, we have X = l{ 0) = 0, because the conditions i(X)ω = 0, i(X)τr = 0
are satisfied. This proves that the map π: SC5—>25ι is an injection. Hence, the
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map (— Z)oτr is identical on SB.
It is clear from the above considerations that the Sί-linear map a: S3 —> SI1

is a bijection whose inverse map is given by or1 and the diagram is com-
mutative.

3. Infinitesimal contact transformations of a contact manifold. A
(2n+ l)-dimensional manifold M is said to be a contact manifold, if a global
1-form ω € 3P(M) is given so that it satisfies the condition ω Λ dωn Φ 0 at
every point of M, where the form ω is called the contact form of the contact
structure. Then, the forms ω, dω give an almost contact structure on M, and
so we have the canonical field E, Lagrange brackets I, L and the i?-linear map
K defined in the preceding section. They are characterized by the following
properties.

1° X = E € 23(M), if and only if

( i ) z(X)ω = l, (ii) z"(X)*fe> = 0.

2° X = /(<?) € 23 /or φ € Si1 z/ and orc/ y z/

( i ) i{X)ω = 0, (ii) z'(X)dω = φ(E)ω - φ.

3° X = L(f) z 23 for f € 81, (f αwJ on/3; (f

( i ) ί(X)ω = 0, (ii) i(X)dω = (Ef)ω - df

4° X = ϋ:(/) € S3 /o r / € Si, (f α^^ wZy (f

( i ) i(X)ω=f (ii) i(X)dω = (Ef)ω - df

Let ω be the contact form on M A vector field X € S3 is called an
infinitesimal contact transformation, if there exists a function & € St such that
£,(X)ω = kω, where £, denotes the Lie derivative. Moreoiver, a vector field
X € S3 is called an infinitesimal automorphism of the contact structure, if
£(X)ω = 0. Let &, So denote respectively, the i?-module of all infinitesimal
contact transformations, and the .R-module of all infinitesimal automorphisms of
the contact structure. Then &0 becomes an i?-submodule of Sλ

PROPOSITION 4. For an infinitesimal contact transformation X € &,the
function k e SI such that £,(X)ω = kω9 is given by k — Eω(X).

PROOF. Assume that X € <£. Then, by definitions,

£(X)ω - dω(X) + i(X)dω = kω.

Applying the inner product i{E) to this, and taking account of the property 1°,
we have Eω{X) = k.

THEOREM 3. Let ω be the contact form on M. The R-linear map
K: Si —> S3 gives a bijection between the R-modules SI and (&, α/z<i /ί5 inverse
map is given by the form ω : S3 —> Si restricted on Sλ
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PROOF. First, we shall show that a vector field X = K(f) for any function
/ € 21 is an infinitesimal contact transformation. From the property 4°, we have

£(X)ω = di(X)ω + i(X)dω = df + (Ef)ω - df = (Ef)ω.

Hence, X € S and ω(K(f)) = ω(X) = i{X)ω = /. This proves that the /Minear
map ωoK is identical on Sί.

Next, let us consider a function / = ω(X) £ SI for any X € &. Then we
have

and £(X)ω = £ω, where k = Eω{X) = Ef by the Proposition 4. Therefore,

i(X)dω = £(X)ω - Λ(X) ω = (Ef)co - df

Hence, it follows from the property 4° that

X = K(f) = K(ω(X)).

This proves that the i?-linear map Koω is identical on ©-.

COROLLARY. E= K(l) z &0.

The Theorem 3 and the Proposition 4 show that an exact and com-
mutative diagram of i?-modules

0 Sί0 2̂1 - i Sί

\κω\\κ I
o —> &0 — & - ^ a

holds, where Sί0 denotes the i?-module of all first integrals of the vector field
E, and μ denotes the i?-linear map which maps each vector field X € & to its
multiple factor i ζ 9 such that £(X)ω = kω.

Let us assume always that the manifold M is paracompact. Taking the
sheaves of germs of the above .R-modules, we have an exact and commutative
diagram of sheaves on M

Π ^ A *- A - —^ A >• 0

ω\\κ

0 — > Co - C - A - 0,

where the map E: A —> A becomes a surjection, because the differential equation
£ f = # for a given function g € SI has always a local solution / € SI. Since
the sheaf A is fine, so is the sheaf C. Therefore, from the cohomology sequence,
we have the following result which was shown by Gray [ 4 ].
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> Sί(M) -> H ' ( M , Co) -»0,

It is easy to see that the i?-module & is a Lie-algebra by the product [X, Y]
for X, Y €&, and (£0 is a subalgebra of Sλ By the bijection ω, the R-module 81
becomes also a Lie-algebra whose product we denote by [f,g] for /, g £ Si.
Moreover, 31 is a commutative ring. By the bijection K, the i?-module &
becomes also a commutative ring, whose product we denote he XoY for
X,Y €&.

PROPOSITION 5. Leί X = K(/), Y = K(#) /or / , # £ SI &e infinitesimal
contact transformations.

1° L(f)g = dω(X,Y).

2° [/, 0] = «([X, Y]) = Uf)g + JΈg - gEf.

3° XoY = XC/g,) = /Kfo) + ^ ( y ) - /<,£

= ω(X)Y + ω{Y)X - ω(X)ω(Y)E.

PROOF. Since ω = K'1 on ©, we have / = ω(X), gr = ω(Y).

1° ί/ω(X, Y) = - i(X)i(Y)dω = - i(X)((Eg)ω - dg)

= -fEg + K(f)g = L{f)g.

2° By the formula at the end of §1, we have

ω dX, Y]) = i([X, Y])« = £(X)oi(Y)ω - iQΓ)o£(X)ω

= Xg- (Ef)ω(Y) = K(f)g - gEf = L(f)g + fEg - gEf.

3° By the Proposition 2, it holds that

K(Jg) =fK(g) + gK(f) - fgE.

4. The contact structure in the wide sense. In this section, we
concern ourselves with the contact structure in the wide sense introduced by
Spencer.

Let {Ui}ieI be an open covering of a (2n + l)-dimensional manifold M. If
a system of local contact forms

{ωt}UI, ωt e SITO, ωt Λ dω? Φ 0

is given and there exists a system of functions {galijzi such that

ωt = g^coj in Ut Π Uh gυ € 8l(C7t Π Us),

then we call M a contact manifold in the xvide sense. Of course, we suppose
that two systems of contact forms {Ui9Wi} and [U'k, ω'k]define the same contact
structure on M, if their union gives also a contact structure on M.

Let R*, R+ denote respectively the multiplicative group of all non-zero
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real numbers, and its subgroup of all positive numbers. Then, we have an exact

sequence of abelian groups

0 -> R+ -> R* ~—+ Z2 -> 0,

where Z2 = {0,1} denotes the cyclic group of order 2, which we represent as

an additive group. Taking the sheaves on M of germs of C°°-functions with

values in R+, R*9 Z2 respectively, we get an exact sequence of sheaves

0 -* R+ -> R* — Z2 -» 0.

Since, the map log: R+ —» A gives a bijection between the sheaves of abelian

groups R+ and A, the sheaf R+ is fine like the sheaf A of germs of C°°-functions.

Therefore, by the cohomology sequence, we have a bijection

0 -* H\M, R*) - ^ Hι(M, Z2) -* 0

where a cohomology class ξ € Hι (M, R*) gives a C°° i^(~-bundle structure, that

is, the associated principal bundle of a C°° line bundle on M, and the class

Wι{ξ) denotes the Stiefel-Whitney class of the jR^-bundle ξ.

Whenever a contact structure {tΛ, G>i}i6/, ωt — gi3<oh is defined on M, we

get uniquely a C°° i?*-bundle 77 = {gυ} z Hι(M,R*), since grf̂  Φ 0. On the other

hand, it holds that

ωt Λ dώΐ = gl+ιω5 A dωn

j9

which shows that the cohomology class η-(n+1) e Hι{M, R) gives the canonical

line bundle, that is, the line bundle on M consisting of the (2n + l)-forms.

Because, each non-zero (2n + l)-form ω^ Λ dώΊ on C7£ can be regarded as a

local cross-section of the principal bundle associated to the canonical line

bundle, and so the functions {gιf{n+ι)} give the transition functions of the

bundle structure. Hence, the class j*ηn+1 £ Hι(M,Z2) gives the 1-st Stiefel-

Whitney class wx(M) of the manifold M. Therefore, setting σ = j*(ή) — Wi(ί?),

we have the formula

(n + l)σ =

which implies the following results derived by Gray [ 4 ].

1° If n is odd, then M is orientable.

2° If n is even, then σ = τv^M).

Moreover, taking into account that j* is a bijection, we have clearly the

following:

3° If n is even and M is orientable, then any contact structure in the
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wide sense is given by a global contact form ω £ Sί(M).
Similar results hold for the complex analytic contact structure. Let M be

a complex analytic manifold of complex dimension 2n + 1. In this case, we
consider an exact sequence of abelian groups

where Z, C, C* denote respectively the ring of integers, the complex number
field, and the multiplicative group of all non-zero complex numbers. Taking
the sheaves on M of germs of holomorphic functions with values in Z, C, C*
respectively, we get an exact sequence of sheaves

Then, by the cohomology sequence, we have the homomorphism

-* HKM, Cί) — H\M, Z) ->

where a cohomology class ξ € Hλ(M, C*) gives an analytic C^-bundle structure,
that is, the associated principal bundle of a complex analytic line bundle on
M, and the class cx(ξ) denotes the Chern class of C*-bundle ξ.

If a complex analytic contact structure {Uu a>i}iel9 ωt = gi5ω59 is given, then
we get an analytic C^-bundle η = {gu} € Hι(M,C%). Setting a — Cχ{η), we have
easily the following formula derived by Kobayashi [ 5 ]:

(n + l)a =

where the class cλ(M) £ H'2(M, Z) denotes the 1-st Chern class of the manifold
M.

5. The Poisson brackets of an almosts symplectic manifold. A C°°-manifold
M of even dimension 2n is said to be an almost symplectic manifold, if a
global 2-form ίl £ 2ί2(M) is given so that it satisfies the condition Ω™ Φ 0 at
every point of M, where the form Ω is called the almost symplectic form on
M.

If the almost symplectic form Ω is given on M, then there exist uniquely
maps

P: Si1 ^ 2 5 , φ-+f(φ),

P: Sl->33, f^P(f),

which satisfy respectively the following formulas.

( 4 ) tίφ)gΩn = nφ Adg Λ Ω""1, g e 9ί.

(5 ) Pif)ga" = ndf Adg A ί l - 1 , g € St.
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In fact, it is trivial by the condition Ωn Φ 0 and the definitions that the maps
p(φ), P(f) *• 31 —> 31 are determined uniquely and they satisfy the axioms of
vector field. Both the maps p, P are called the Poisson brackets of the almost
symplectic structure. Obviously, we get the following.

PROPOSITION 6. Let p, P be the Poisson brackets of the almost

symplectic structure.

1° P(f) = P(df), f « SI.

2° The map p: Ψ -* "$ is %-linear.

3° The map P: St-^2} is R-linear.

4° P(f)g=-P(g)f, f,gz%.

Let us notice that each 1-form θ e Si' can be written locally as

θ = Σ,hkdgki hk,gk e SI,
k

and then the inner product i(X)θ is given by

i(X)θ = Θ{X) = Σ hkXgk9 X € » .
k

Then, we can obtain clearly the formulas :

( 4) ' 0(p(φ))ίln = nφ Λ θ Λ Ωn~\ θ, φ € Si1,

( 5) ' θ(P(f))W = ndfAΘ Λ ίT-\ 6> € SI1, / € 81.

THEOREM 4. Le£ O &e ί/ι̂  almost symplectic form on a 2n-dimensional
manifold M. Then, the Poisson brackets p, P are characterized by the
following properties.

1° X = p(φ) for φ £ Si1, if and only if i(X)Ω = - φ.

2° X = P(f) for f 6 Si, if and only if z'(X)ί2 = - df

PROOF. Let us notice that any (2n + l)-form on a 2n- dimensional
manifold is identically zero.

1° Assume that X = p(φ). Putting θ = z"(F)Ω for Y € 25 into ( 4)', and
considering the (2n + l)-form φ Λ Ωw = 0, we have

ίl(Y, X)Ωn = nφ A i(Y)Ω Λ ίl""1,

Λ Ωn) - 0

lw - φ A ni(Y)Ω A Ωn~\

Therefore, we have Ω(Y, X)Ωn = φ(Y)Ωn. It follows that
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= - Ω(Y, X) = - φ(Y)

for any vector field Y. This proves z(X)Ω — — φ.
Conversely, assume that a vector field X has the property in 1°. Then,

considering the (2n + l)-form dg Λ Ωn = 0, we have

i(X)(dg ΛΩn) = 0

= (X#)ΩW - dg A m(X)Ω Λ Ω"-1

= (Xg)Ωn + mfy ΛφΛΩ"- 1 .

This proves

(X#)ΩW + ^ Λ ^ Λ Ω M " 1 = 0,

which is nothing but the formula (4 ). Hence X = X93).

2° This is a special case of 1° where φ — df.

COROLLARY. The %-linear map p: δί1 —» 53 z's ^ bijection, and its inverse
map p~ι : S3 -> SI1 zs given 63; ^"^X) = - i(X)Ω /or X € .S3.

6. Infinitesimal automorphisms of a symplectic manifold. A 2w-
dimensional manifold M is said to be a symplectic manifold, if a global 2-form
Ω is given so that it satisfies the conditions Ωn Φ 0 and dΩ — 0 at every point
of M. Of course, the form Ω gives an almost symplectic structure on M, and
so we have the Poisson brackets p, P defined in the preceding section.

PROPOSITION 7. Let Ω be the symplectic form on M, If X = £(<p) for

£(X)Ω - - <^.

PROOF. Since JΩ = 0 and z'(X)Ω — — φ, we have

£(X)Ω = i(X)dCl + Jz"(X)Ω = - dφ.

Let Ω be the symplectic form on M. A vector field X e 2} is called an
infinitesimal automorphism of the symplectic structure, if £,(X)Ω = 0. On a
symplectic manifold, a vector field X € S3(M) such that £(X)Ω = kίl, k £ δί(M),
is trivial, because we can see easily when n > 1 that k is a constant if M is
connected, and that k = 0 if M is compact [ 6 ].

THEOREM 5. L<?£ ©0 &<? ̂ <? R-module of all infinitesimal automorphisms
of the symplectic structure and let Q1 denote the R-module of all closed
1 forms. Then the R-linear map p gives a bijection between the R-modules
S1 and ©0.

PROOF. It is known that the map p: δί1 — > S3 is a bijection, and if
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X = P(<P)> then £ ( X ) ί l = - dφ. Therefore, X £ @0 if and only if dφ = 0.

7. Connections on principal bundles. Now, let us introduce some
terminologies being useful in the next section.

We dente by T(M), TX(M) respectively, the tangent vector bundle of a
differentiable manifold M, and the tangent vector space at a point x £ M.
Then, concerning the topological product M x N of two differentiable manifolds
M, N, we can see that there exist natural bijecticns

T{M x N) - T(M) x T(N), TM)(M x N) ~ TX{M) + Ty(N).

A differentiable map a: M->N induces a map of tangent bundles given by

a : T(M) -> T(N), {aX)f = X(foa), for / € SI on 2V,

which we designate by the same letter Λ. In particular, let us consider a
differentiable map from a topological product M x N to another manifold K,
expressed as a multiplication

M x N-+K, (χ,y)-> xy.

Taking a point a € M and a point b £ N, we have maps

α : N-+ K, y -^ ay, and r(&) :M-> K, x —> xb,

whose induced maps are expressed also as multiplications

a : T(N) -> T(X), Y -> αY, and r(δ) : T(M) -+ T(K\ X-> X6.

Then, the induced map of the multiplication is given by

T(M) x T(N) -> T(X), (X, Y) -> Xy + xY,

where X € TX(M), Y € Γ y (N) a n d i ^ M , ^ iV.

Let B(M, G) be a differentiable or complex analytic G-bundle over M, and
let us denote the projection and the right translation for an element g £ G by

p : B -* M, and r(#) : B -> B, b->bg,

respectively. A point b e B can be regarded as a map so called an admissible
map

b: G—> Gx, g ->&#,

where Gx is a fibre of B over a point x = p(b) z M. Moreover, let us denote
the Lie-algebra of G by 9 to be identified with the tangent vector space Te(G)
at the unit element e € G. A tangent vector X € T(23) is said to be vertical
if pX = 0. Then, any vertical vector X € Tb(B) at a point έ ^ δ is given by
uniquely in the form X = bA, where A £ 9. Hence, we have an injection

(b,A)->bA.
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Since it holds that bg(g~ιAg) = (bA)g for g e G, dividing the spaces B X 9
and T(B) by the group G, we have an exact sequence of vector bundles over
M so called the fundamental sequence of B

0 -> L{M)-^ Q(M)^> T(M) -> 0,

where L(M) — B X a,HG$ is the associated vector bundle of B determined by
the adjoint representation of G on S, and Q(M) = T(M)/r(G) is the quotient
space of T(B) by the equivalent relation X ~ X</ for g £ G.

A connection of a principal bundle 5(M, G) is defined by a global δ-valued
1-form ω e SPf̂ B, g) on B satisfying the following conditions.

( i ) ω°r(g) = ad(g~ι)ω, g £ G.

(ii) ω{bA) = A, b e B, A z $.

Then, the curvature form of the connection ω is a S-valued 2-form Ω € S12(B, g)
on 5 , given by

Ω(X, Y) = (dω + \ [ω, ω])(X, Y) = Jω(X, Y) + [ω(X), «(Y)]

for X, Y € Tb(B), and it satisfies the conditions :

( i ) nor(g) = adig-^n, g £ G,

(ii) Ω(X, 7) - 0, if X is vertical.

In the case of G being abelian, it is notable that

ad{g)A = A, [A,B] = 0, for all g z G, AyB £ g.

The conditions ( i ) , (ii) of the connection form ω show that to give a
connection on B means to give a splitting of the fundamental sequence of B,
namely, a homomorphism of vector bundles ω : Q(M) —> L(M) such that ωo\
= 1, where we denote by 1 the identical automorphism of the vector bundle
L(M). Applying a functor Hom(#, L) to the fundamental sequence, we have
an exact sequence of vector bundles over M

0 -> Horn (Γ, L) -^ Horn (Q, L) Λ End(L) -> 0.

Taking the sheaves of germs of local cross-sections of these vector bundles,
we obtain the cohomology sequence :

C H\M, Hom(Q, L)) ̂  H°(M, End(L)) ^ H W , Hom(T, L)) ^

Then, a connection can be regarded as a global section ω € H°(M, Hom(Q, L))
such that λ*ω = 1. Therefore, there exists a connecticn of B if and only if
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δ* 1 = 0? by the exactness of the cohomology sequence. Thus, we can
suppose that the cohomology class δ"x"l € Hι(M, Hom(T, L)) expresses the
obstruction of the existence of connection on B. With the consideration of the
class δ*l, we can get the following well-known results [ 1 ].

On a C°° principal bundle there exists always a C°° connection, and on a
complex analytic principal bundle there exists a O (1,0)- connection, that is, a
connection form ω of type (1, 0). Let ω be a (1, 0)-connection form of a
complex analytic G-bundle B(M, G), and let Ω be its curvature form. Then,
the (1, l)-component Ω11 of the 2form Ω represents a cohomology class

Ω11 € Hι(M, Hom(T, L\) ^ H\Ψ*(M, L))

in the sense of the theorem of Dolbeault,and the class—Ω11 coincides with the
obstruction class δ^l of the existence of analytic connection.

8. The dynamic contact structures. Now, let us consider a C°° circle
bundle B(M, Sι) over M, where 5 1 is the circle regarded as a 1-dimensional
abelian group. The Lie-algebra δ1 of the group Sι can be identified with the
additive group R of all real numbers, if we take a base e £ S1 to correspond
to 1 € R. Then we have a global vector field E ζ 33(5) called the unit
fundamental field defined by

E: B-+T(B), b->bl.

It is clear that the vector field E is vertical and is invariant under the right
translations. Therefore, a connection of the circle bundle B(M, Sι) is given by
a global real valued 1-form ω € 3F(S) satisfying the following conditions.

( i ) ω°r(s) — ω, s € Sι,

(ii) ω(E) = l.

Moreover, the curvature form of the connection ω is given by Ω = dω £ Sl2(β)
and has properties :

( i ) Ωor(s) = Ω, s € Sι,

(ii) i(E)ίl = 0,

which show that the 2-form Ω on B may be regarded as a 2-form on M,

namely, there exists a unique 2-form Ω' <Ξ Sί2(M) such that Ω = ΩΌp, and we

can suppose Ω to be identified with Ω\ Since <iΩ = 0, the 2-form Ω € SI2(M)
represents a cohomology class Ω e H2($l*(M))> which does not depend on the
choice of connection on B.

Let us consider an exact sequence of abelian groups
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Taking the sheaves on M of germs of C°°-functions with values in Z,R,Sι

respectively, we get an exact sequence of sheaves of abelian groups

Since the sheaf R is fine, by the cohomology sequence, we have the bijection

0 -> HKM, S1) ^H%M, Z)-*0

ξ
where a cohomology class ξ € Hι(M, S1) expresses an S1 -bundle structure and
the class δ*£ = %(f) is the Euler-Poincare class of the S1 -bundle ξ. On the other
hand, by the cohomology sequence for the constant coefficients, we get
homomorphisms

-> HKM, Sι) -> H%M, Z) -* H\M, R) ->

x(S)—-a,
where Ω is the curvature form of a connection on an S1 -bundle B of bundle
structure ξ, and it represents a cohomology class

in the sense of the theorem of de Rham.
A contact form ω € Ψ(B), ω Λ dωn Φ 0, on a C°° S1 -bundle B(M, Sι) over

a 2?z-dimensional manifold Λί is said to be dynamic, if the 1-form ω defines
also a connection on B. Then, the canonical field E of the contact structure
coincides with the unit fundamental field of the S1 -bundle B, since i(E)ω = 1
and i(E)dω = 0. In this case, the curvature form Ω = dω e 312(M) regarded
as a 2-form on M becomes a symplectic form on M, since it satisfies the
conditions Ωn Φ 0 and dVί — 0. Moreover, the closed 2-form O expresses an
integral cocycle which represents the Euler-Poincare class of the S1 -bundle B,
in the sense of the theorem of de Rham.

Through the bijection 8* : H\M, S1) -• H\M, Z), we get easily the following
result derived by Boothby and Wang [ 2 ].

Let Ω be a symplectic form on a 2n-dimensional C°° manifold M. Then,
there exist a C°° circle bundle B{M, S1) over M and a C°° dynamic contact
form ω on B such that dω = ί2, if any only if the closed 2-form ί l represents
an integral cohomology class of M.

Next, we make researches on the complex analytic C^-bundle. Let M be a
complex analytic manifold, and let us consider an exact sequence of abelian
groups

Taking the sheaves on M of germs of holomorphic functions with values in
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Z,C,C* respetively, we get an exact sequence of sheaves of abelian groups

Then, we have the cohomology sequence

• H\M, Z) ~> HKM, CΛ) ->

where the class h*ξ = cλ(ξ) z H2(M, Z) expresses the Chern class of an analytic
C^-bundle structure ξ e Hλ(M, C£). Moreover, if we denote an integral 2-cocycle
of M by a complex valued C°° closed 2-form (y) £ S12(M, C) in the sense of the
theorem of de Rham, then a cohomology class λ* Θ € H\M, CΛ) is represented
by the (0, 2)-component Θ02 e SI02(M, C) of the 2-form θ in the sense of the
theorem of Dolbeault, that is,

<H) € H*(M,Z) — H\M,C) ^
002 € H 2( M ? C Λ ) _ H2(Ψ*(M, C)).

Let H be a curvature form of any C°° connection on an analytic C^-bundle
β(M, Cχ-). Then, the closed 2-form (l/2τrί)ίl e= S12(M, C) represents an integral
cohomology class of M which expresses the Chern class of B, being independent
on the choice of connection on B.

A complex valued C°° 1-form ω € SP(M, C) on a complex (2n + l)-dimensional
analytic manifold M is called a C°° contact form on M, if it satisfies the
condition

(ω Λ dωn) Λ (ω Λ dωn) Φ 0

on M. It is clear that, if the 1-form ω is holomorphic, the condition of contact
form is reduced to ω Λ dωn φ 0. In this case, the contact form ω is said to be
analytic.

A complex valued C°° 2-form ίl e SP(M, C) on a complex 2w-dimensional
analytic manifold M is called a C°° symplectic form on M, if it satisfies the

conditions Ωn /\Ω,n Φ 0 and dΩ, = 0 on M. It is clear that, if the 2-form O is
holomorphic, the conditions of symplectic form are reduced to IT Φ 0 and
dΩ = 0. In this case, the symplectic form Ω is said to be analytic.

Let B(M, C*) be a complex analytic C*-bundle over a complex 2rc-dimensional
manifold M. A C°° contact form ω € SΓ(β, C) on B is said to be dynamic if
ω defines also a C°° connection on .B. Then the curvature form Ω = dω € Sί2(M, C)
regarded as a 2-form on M becomes a C°° symplectic form on M. In particular,
if ω is an analytic dynamic contact form on B, then the curvature form ί l = dω
becomes an analytic symplectic form on M.

THEOREM 6. Let M be a complex 2n-dimensional analytic manifold,
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and let ί l be a C°° symplectic form on M.
1° There exist a complex analytic C*-bundle B(M,C*) over M and a

C° dynamic contact form ω on B such that dω = ίl, if and only if theclosed
2-form (l/2τri)Ω determines an integral cocycle on M and the (0, ^-component
ίl0 2 of the 2-form ί l is coboundary τυith respect to the d'-cohomology.

2° There exists locally a (1,0) dynamic contact form ω of B(M,C*)
such that dω = ίl, if and only if the closed 2-form (l/27rz)ίl determines an
integral cocycle on M and ίl0 2 = 0. Moreover, if H\M, CΛ) = 0, then the (1, 0)
dynamic contact form ω can be defined globally on B.

PROOF. Let us consider the cohomology sequence

-> ff(M, CA) — H\M, CS) ̂  H2(M, Z) ̂  H W , CΛ) ->.

A class ξ e H\M, CJ) determines an analytic C*-bundle B(M, C*). Let ω be a
C°° dynamic contact form on B, and let ίl = dω be its curvature form. Then
the closed 2-form (l/2τrz)ίl represents the Chern class B*ξ = cx(ξ) of B, which
is an integral cohomology class of M. The (0, 2)-component ίl0 2 of the 2-form
ίl represents the class (2τrz')λ*oδ*£ e H%M, CΛ), which is null by the exactness
of the cohomology sequence. Therefore, ίl0 2 is coboundary.

Conversely, if ίl 0 2 is coboundary, by the exactness of the sequence, there
exists an analytic C*-bundle structure ξ e Hι(M, C*) such that

δ*f = (l/2τrz)ίl € H*(M,Z).

Taking a C^-bundle B(M,C*) of the structure ξ and a C°° connection form θ
on β, we can find a global 1-form φ e SI J(M,C) on M such that dφ — ί l — J61,
since both the closed 2-forms ί l and dθ represent the same cohomology class
2τric1(ξ) e H\M, C). Then, the 1-form ω = θ + φ £ %\B, C) becomes a C°°
dynamic contact form on B such that dω = ίl.

In particular, when ίl0 2 = 0, if we take the connection form θ to be of
type (1, 0), then the 1-form φ = φ10 + φoί satisfies the condition d"φ01 = 0.
Hence, there exists a local C°°-function / denned on a neighborhood of any
point x € M such that d"f=φoί. Setting ψ = φ10 — d'f, we have

dψ = dφ10 - d"d'f= dφ1" + d'φ01 - dφ = ί l - dθ.

Then, the (1, 0)-form ω = θ + ψ becomes a local dynamic contact form such
that dω = ίl.

Moreover, if H\M, CΛ) = 0, we can take the C°°-function / globally on M,
through the Dolbeault isomorphism Hι(M, CΛ) ^ H\Ψ*(M, C)). Then, the
(1, 0)-form ω is also defined globally on B. For instance, if M is a Stein
manifold, it holds that H\M, Ch) = 0.

Here, if the 2-form ίl is holomorphic, that is, ί l 1 1 = ίl0"2 = 0 and d'Ώ = 0,
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then the (1, 0)-form ω is also holomorphic, since d"ω = Ω11 = 0 Thus we get
the following

COROLLARY. Let ίl be an analytic symplectic form on M. Then, there
exists locally an analytic dynamic contact form ω of B(M, C*) such that
dω = ίl, if and only if the closed 2form (l/2τrz")f2 determines an integral
cocycle on M. Moreover, if H\M, CΛ) = 0, then the analytic dynamic contact
form ω can be defined globally on B.

In this case, it is assured that there exists an analytic connection on B by
the condition ίl 1 1 = 0 , because the form Ώ1 1 represents the obstruction class of
the existence of analytic connection.

9. Infinitesimal cosymplectic transformations of a cosymplectic manifold
A real C°°-manifold M of odd dimension 2n + 1 is said to be a cosymplectic
manifold, if a global 1-form ω £ W(M) and a global 2-form π e SI2(M) are
given so that they satisfy the conditions :

ω Λ πn Φ 0, dω = 0, dir = 0

on M, where the forms ω,π are called the cosymplectic forms on M. Then, the
forms ω, ir give an almost contact structure on M, and so we have the canonical
field E and the Lagrange brackets I, L defined in §2. By the Proposition 3,
there exists a natural bijection a between the St-modules 35 and SI1 given by

a: S3->2lι, X-»<p,

CL(X) = i(X)ir + ω(X)ω, a-ι(φ) = - l(φ) + φ(E)E.

Since the cosymplectic forms ω, π are closed, it holds that

£ ( X > - di(X)ω, £(X)τr = di(X)τr, X z 35.

Let ω, ir be the cosymplectic forms on M. A vector field X € 35 is called
an infinitesimal cosymplectic transformation, if there exists a function k £ Si
such that

£(X)α> = dk, £(X)τr = ω Λ dk.

Moreover, a vector field X € 35 is called an infinitesimal automorphism of
the cosymplectic structure, if £,(X)ω = 0 and £,(X)7r = 0. Let &, &0 denote
respectively, the JR-module of all infinitesimal cosymplectic transformations, and
the i?-module of all infinitesimal automorphisms of the cosymplectic structure.
Obviously, &0 is an i?-submodule of &.

PROPOSITION 8. For an infinitesimal cosymplectic transformationX € &,
the differential dk £ SI1 such that £XX)ω = dk, is given by dk — dω (X).

PROOF, If X e &, then £(X)ω - cft(X)ω - dk.
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A p-ίorm φ £ 21p is said to be E-invariant, if $i(E)φ — 0. For instance,
the 1-form ω is ^-invariant, since £CE)ω = dω(E) — 0.

THEOREM 7. Let ω,π be the cosymplectic forms on M. Let 3 1 denote
the R-module of all closed 1-forms, and let ©* be the R-modules of all closed
E-invariant 1-forms. Then, the R-linear map oί: 35 —> Sί1 gives a bijection
between the R-modules Q£ and 31- In particular, the map a gives a bijection
between the R-modules (£0 and ®\

Accordingly, we get an exact and commutative diagram of i?-modules

d^ω

0 , ©1 , B
where JSl is an i?-submodule of 511 consisting of all differentials of functions
in Sί.

PROOF. It is known that the map a: 35 —> SI1 is a bijection.

Assume that X € (£. Setting φ = a(X), we have φ = i(X)τr + ω(X)ω, and

J ^ = Jz(X)τr + dω(X) Aω = £(X)τr + £(X)ω Λ ω

= ω Λ dk + ^ Λ ω = 0.

It follows that φ is closed.
Conversely, assume that φ € Q1. Setting X — a~1(φ), we have

X = - % ) + ^(E)E,

£(X)α> = Λ"(X)ω = d{φ{E)i(E)ω] = rf(^(£)),

£(X)τr - ώ ( X > = d{ - ί(Z(^)>r}

= d{ - φ(E)ω + ^} = ω Λ d(φ(E)).

It follows that X e &. Moreover, we can see that

dk = d(φ(E)) = £ ( £ > , ^ = Λ>(X).

Therefore, X = α " 1 ^ ) ^ © 0 ? if and only if £(E)φ = 0.

COROLLARY. 7ϊ = α~J(ω) ^ g;0.

Let X, Y ^ (g be two infinitesimal cosymplectic transformations. Setting
dk = dω(X), dh — dω(Y), we have easily

£([X, Y])ω = diXh - Yk),

£([X, Y]K - Ίdk /\dh + ωΛ d(Xh - Yk).

This shows that [X, Y] £ © if and only if dk Λ dh — 0. Hence, the i? module
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(£ does not constitute in general a Lie-algebra with respect to the prouct
[X, Y]. However, the i?-module β£0 becomes a Lie-algebra.

10. Infinitesimal conformal transformations of a cosymplectic manifold.
Now, we make some remarks en the infinitesimal conformal transformations
of the cosymplectic structure.

Let ω, 7r be the cosymplectic forms on a (2n + l)-dimensional C^-manifold
M. A vector field X € 35 is called an infinitesimal conformal transformation
of 7Γ, if there exists a function h € 2ί such that £(X)7r = hir. Then, we get the
following result same as the case of symplectic structure in §6.

PROPOSITION 9. Assume that n>l. Let X € 35(M) be a vector field
such that £(X)τr = hrr.

1° If M is connected, then h is a constant.

2° If M is compact, then h = 0.

PROOF. The manifold M is orientable, since there exists a global non-zero
(2n + l)-form ω A τrn € ψn+1 (M). By assumption, £(X)τr = di(X)τr = hm .
Applying the exterior derivation d, we have dh Λ TΓ = 0, and hence dh Λ τr2 = 0.
Therefore, applying an inner prcduct i(Y) for a vector field Y £ 35, we get

i(Y)(JΛ Λ 7r2) = 0

= (Y/l)7Γ2 - dh Λ 2Z'(Y)7T Λ 7Γ = (Yh)7Γ2.

Since 7r2 ^ 0, we have Yh = 0 for any vector field Y € 35. This proves that h
is constant on a connected component of M. Moreover, if hφO, then it holds
that

Λ TΓ"-1 j = y ω Λ ΛTΓ Λ TΓ71-1 =ω Aτrn.

This shows that the form ω A πn becomes a coboundary with respect to the
J-cohomology, On the other hand, the non-zero (2n + l)-form ω Λ πn represents
abase of the real cohomology group H2n+1 (M, R) ~ R of the orientable
manifold M, provided M to be connected and compact. This is impossible.
Hence h = 0.

Let ω, 7r be the cosymplectic forms on M. A vector field X £ 35 is called
an infinitesimal conformal transformation of ω, if there exists a function
k € Si such that £,(X)ω= £ω. Then we can see clearly k = Eω(X). We denote
by S, So respectively, the i^-mcdule of all infinitesimal conformal transformations
of ω, and an i?-submcdule of S consisting of all vector fields X € 35 such that
£(X> = 0.

THEOREM 8. Let ω, -π be the cosymplectic forms on M, and let 5)\ ΦJ
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denote respectively the R-module of all 1-forms φ e W such that dφ(E) Λ ω
= 0, and an R-submodule of ®ι consisting of all 1-forms φ € 211 such that
dφ(E) — 0. Then, the R-linear map a : 35 —> SI1, defined by

Cί(X) = i(X)τr + ω(X)ω, X £ S3,

gives a bijection between the R-modules % and S)1. In particular, the map ci
gives a bijection between the R-modules Xo and 3)J.

Accordingly, we get an exact and commutative diagram of R-modules

o —

0

PROOF. It is known that the map a: 95 —> SI1 is a bijection whose inverse
map is given by

X = a r 1 ^ ) = - /(<?) + φ{E)E

for ?̂ € SI1. This implies ω{X) = φ(E), and hence

Therefore, it holds that dφ{E) = £(X)ω = £ω if and only if dφ{E) Λ ω = 0.
Moreover, we have £ = Eω(X) = Eφ{E).

lί φ e Dl, then clearly Eφ(E) = i{E)dφ{E) = 0. Conversely, if <p € S1 and
JS^(£) = 0, then

dφ{E) = - Eφ(E)ω + ώp(E) = - i(E)(dφ(E) Λ©) = 0.

This shows that <p € ΦJ.

PROPOSITION 10. If X Ξ S, ί/ι̂ n £(X)τr = Jφ, where φ = «(X).

PROOF. Setting 9? = oc(X) ^ S)1 for X € S, we have

X = - ZO) + φ(£)£, z'(X)τr = - φ(E)ω+ φ.

Since φ e S)1, we can see that

£(X)τr = ώ'(X)τr = - dφ(E) A ω + dφ = dφ.

By this proposition, if X € Zo and the 1-form ?̂ = cί(X) is closed, then X
becomes an infinitesimal automorphism of the cosymplectic structure.

Moreover, it is obvious that the .R-module S constructs a Lie-algebra with
respect to the product [X, Y], and XQ becomes a subalgebra of 5£,
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