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M. Obata and H. Wakakuwa studied the 4n-dimensional differentiable ma-
nifolds with the structure group (of the tangent bundle) Sp(n) (11,[21,[3],
[4]), while S. Hashimoto and C. J. Hsu studied the (4n + 1)-dimensional cases
([5], [61). The present paper is devoted to the study of some (47 + 2)-dimen-
sional manifolds. We restricted to these manifolds to get closer connection with
complex contact manifolds ([71,{81,{9]). Hence this paper is an analogous
work to that of S. Sasaki ([10],[11]), on complex manifolds.

In §1 we review complex tensors, in §2 we study the naturally arised
Hermitian metric to the given complex (¢, &, n)-structure and define the analytic
(¢, & m)-structure or complex almost contact structure. In §3 we prove that
complex contact manifolds whose first Chern class vanishes are complex
manifolds with analytic (¢, &, #)-structure, this justifies the terminology “complex
almost contact structure”. In §4 we first give a criterion for the reduction of
the structure group of fibre bundle which is an immediate consequence of a
known theorem, but due to its good applications it deserves an explicit for-
mulation. We reduced the group of the tangent bundle of complex manifolds
with complex (¢, &, n)-structure as an application of the lemma.

The author would like to acknowledge the fact that his interest in this
subject stems from a course given by Professor S. Sasaki at National Taiwan
University in the first term of the academic year 1960-1961, and the author
should like to express his sincere thanks to Professors S. Sasaki and C.J. Hsu
for their kind guidance and many valuable suggestions, and to professor S. Sasaki
for allowing me to read the manuscript of paper [12] before it was published.

1. Tensors on complex manifold. A complex manifold M™ of complex
dimension m is a Hausdorff space to each point p of which there is associated
a neighbourhood N(p) which is mapped topologically onto subdomain of the
Euclidean space of complex variables 2,. .., 2™ If ¢ € N(p), the coordinates of
q will be denoted by 2i(q), i = 1,2,. . ., m. Wherever two neighbourhoods in-
tersect, the coordinates are connected by a pseudo-conformal mapping.

Following [13] we introduce a conjugate manifold M™ which is a homeo-
morphic image of M™ in which the point p of M™ corresponds to the point p
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of M™ and the neighbourhood N(p) to N(p). Let Latin indices run from 1 to

2m, and let

1.1 i=1i+m (mod 2m).
If ¢ € N(p), we define
(1. 2) 2(q) = (@)

where (2)” denote the complex conjugate of the quantity 2. By means of (1. 2)
the neighbourhood N(p) is mapped onto a domain in the space of the variables
2 =2 =120...,m).

Now consider the product manifold M™ x M™ whose points are ordered
pair (p,¢q), and let
(24(P), i = 12,00, m,

(1 3) zi(Ps Q) = l z{@) _ (zi(q)),_z S 1, .. .’an.
Then
(1. 4 2(pq) = (g, p), i=1,2,. .., 2m.

The product manifold M™x M™ is covered by the coordinates z'(p,q) i=1,2,.+,2m.
Introduce coordinate x(p,q) by formulas

-;—(zi(P’ EI—) + ‘gi(P! (D), i = 1,' e, m,

xl(P’g) = 1 B o
(1 5) _2_ ’\/— 1 (zi(P, Q) - zi(P> Q)), i=m+ 1,‘ i) Zm;

zi(P _) = le(P’?I) + '\/:TxT(P,—;]), l = 1" .., m,

4 l 2(p,q) — A/ — 12(p,q), i =m + 1,. . ., 2m.

Then
(1 6) xl(Pa a) = (xi(q’ ;))_’ Z = 1;' ) 2m
On the diagonal manifold D™ of M™ x M™ where p = g, we have
1.7 2 =2(pp) = (), &' =2(pp = ().

Thus D™ is covered either by self-conjugate coordinate (2%, 2' = z) or by real
coordinate x' and we identify M™ with D™

A tensor on M™ (precisely speak on D™) whose components are real when
they are expressed in the real coordinates x' will be called a real tensor. A
real tensor T' when expressed in self-conjugate coordinates 2 satisfies
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(1 8) Taﬁ...'yisma = (TEB.‘.“_/AE'HS_)—,
where o, 8,7, N, 6,8, «oe =1,0.cem, a,B,7, M 60 =m + 1,0..,2m.

Throughout this paper, if we use a Latin letter as an index for a tensor
e. g, T, we mean 7 = 1,. . .,2m. If we use a Greek letter as an index for a
tensor e.g., T, we mean o = 1,...,m. In this paper we shall be concerned
only with real tensor of class C® (i.e., real analytic) and shall make the convention
that the conponents of a tensor with Greek indices are expressed by self-
conjugate coordinate and the components of a tensor with Latin indices are
expressed by real coordinate.

2. Complex (¢, & n)-structure and associated Hermitian metric.

Definition: A complex manifold M?*"*! of complex dimension 27 + 1 is
said to have a complex (¢, &, n)-structure if there are a C“-differentiable tensor
field ¢% and C»-differentiable vector fields & and #s over M?>"*! such that

2 1 En. =1,

2. 2) rank (¢%) = 2n,

23 $5E° = 0,

(2. 4) $m. = 0,

@ 5 P3P = — & + En,.

THEOREM 1. Let M**' be a complex manifold with (¢,E,n)-structure.
Then there exists a positive definite Hermitian metric § such that

(2. 6) No = Jusl®
@ 7 Japhr P = g — N
We first construct a lemma which is already known.

LEMMA 1. Suppose & and ng be C°-differentiable or complex analytic
contravariant and covariant vector fields on a complex manifold M*"*' such
that

(2. 8) &n, = 1.

Then M2"*' admits a positive definite Hermitian metric h of class C® such
that

(2. 9) Na = haﬁ«fﬁ-
PROOFYV : Let fuz be an arbitrary Hermitian metric on M*"**!, And if we put
hot = f5®L — Ema)(® — Ens) + nama

1) This nice proof was given by Y.Hatakeyama,
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Then h.z also defines a positive definite Hermitian metric on M?***!, for if
hsX*XP =0,
by virtue of the fact that f.z is a positive definite Hermitian metric, we get
@ —En)X*=0 and 7. X*=0

which show X* = 0.
Moreover we have

haat® = f5(®% — Ema)(8} — Emp)E" + namp’® = 7.
Thus h.z defines the required Hermitian metric.

PROOF OF THEOREM 1. Let 2 be a Hermitian metric which has the
property stated in Lemma 1 and put

1 547
9ar = 5 (hap + hiapedh + 1a78)-

Then we can easily see that

gal?&? = Tas
9a5§afﬁ =1

In the next place we see that
1 - _
5 (has + huspebh + 7.mp)plds

(hasdlds + has( — & + Emp)( — 8 + E'n))

(ha + hapbfds — neon)

Il

S

that is
9aabsd? = g5 — 1.
Hence, the theorem is proved.

We shall say that the metric which has the property stated in Theorem 1
an associated Hermitian metric to the given complex (¢, &, n)-structure. And if
a complex manifold admits tensor fields ¢, &, 7, g such that ¢ is an associated
Hermitian metric of the complex (¢, &, 9)-structure, then we say this manifold
has (¢, &, 3, g)-structure.

Put
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(2.10) bas = Jarhh-

Then, the tensor ¢.z is skew symmetric with respect to a and 8. In fact,
(97b1?) $i= gaPHPEPD).

Putting (2. 7) and (2. 5) into the last equation, we get
(9 — nam)pl = gurbl — 8¢ + £

or

¢Be = = Q.
Of course the rank (¢.s) is 27 We call ¢,z the associated tensor and
¢ = —;—tﬁaﬁdz"‘ N dz®? the associated form.

Definition : A complex (¢, £, n)-structure is called analytic (¢, &, )-structure
or complex almost contact structure if £* and 7, are complex analytic and there
exists an associated tensor ¢,z which is complex analytic.

3. Complex contact manifolds and complex almost contact manifolds.

DEFINITION : Let M?"*! be a complex manifold of complex dimension
2n + 1. Let {U,} be an open covering of M®**'. We call M*"*' a complex
contact manifold if the following conditions are satisfied

(1) On each U, there exists a complex analytic 1-form such that o; A (dw;)"
is different from zero at every point of U.,.

(2) If U, nU; is nonempty, then there exists a nonvanishing complex
analytic function f;; on U; N U, such that o, = fi0; on U, N U,

If fi; = 1for each 7 and j, in other words, there exists on M?*"*! a globally
defined complex analytic 1-form 5 shuch that

n N\ (dn)" # 0,

at every point of the manifold, then M?®**' is called a restricted complex
contact manifold.
For completeness we restate a theorem in [81].

THEOREM 2. A complex contact manifold M*"*' is a restricted complex
contact manifold if and only if its first Chern class C,(M*"*') vanishes.

PROOF : The characteristic class of the line bundle 2 which is defined by
transition functions {fi;,~®"} is C,(M?*"+"). If C,(M?*"+') = 0, then % is equivalent
to a product bundle 2. The form ;, which is the image of ®; under the
mapping induced by the bundle equivalence map of % to %', satisfies
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o; N\ (do)" = o) N\ (do))".

Thus M?**! is a restricted contact manifold.
Converse is easily seen to be true from [7].

The main result of this section is that a restricted complex contact manifold
naturally induces an analytic (¢, & n)-structure. This justifies the definition given
at the end of §2. , ~

To prove our main result we need a lemma which is an example of the
following theorem: If G is a connected Lie group and K is the maximal
compact subgroup of G, then G is real analytically homeomorphic with K x R™.
But we shall prove it directly. The lemma is:

LEMMA 2. Let GL(n,C) be the complex general linear group of degree
n. Let U(n) be the unitary subgroup and H(n) be the set of all positive
definite Hermitian matrices. Then the mapping

¢: GL(n,C)—> U(n) x H(n)

defined by the decomposition (i.e., any A € GL(n,C) can be written in one
and only one way as the product A = UH of a unitary matrix U and a
Hermitian matriz H) gives a real analytic homeomorphism of these two
manifolds with respect to the usual real analytic structure.

PROOF : Let *GL(n,C) be the real representation of GL(n,C). Then we see
that

*GL(n,C) = {A €« GL(2n,R): A-JA = J}

is an isotropy group, and therefore it is a regular Lie subgroup of GL(2n, R)(i.e.,
the underlying submanifold is regular) where

0 — E,
J =
E, 0
and E, is the identity matrix of degree n.

Let *H(n) be the real representation of H(n) and let S(27) be the set of
all positive definite symmetric matrices of GL(2#n, R). It is easily seen that

RH(n) = {A € S(2n): AVJA = J}

is a regular submanifold of S(2n).
Let #U(n) be the real representation of U(n). Then we see that

R(n) = {U € O@2n): 'UJU = J}
is a regular submanifold of O(2x).
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Let us consider the following commutative diagram

"GL(n,C)  _'.  GL@ZnR)

I |

RU(n) x *H(n) I, O@n) x S2n)

where d is a real analytic homeomorphism [12], ¢ is a topological decomposition
[15] and 7,5 are injections which are real analytic mappings. It is easily seen
that d o7 and d~'oj are real analytic mappings.

Since *U(n) and *H(n) are regular submanifolds of O(2n) and S(2n)
respectively, “U(n) x *H(n) is a regular submanifold of O(2n) x S(2n). Moreover
the image of *GL(n,C) under the mapping ¢ = do7 is contained in *U(n) X *H(n).
Hence ¢ is a real analytic mapping?. Similarly, *GL(n, C) is a regular submanifold
of GL(2n,R) and the image of *U(n) X ®H(n) under the mapping ¢! = d'oj
is contained in *GL(n,C). Hence the mapping ¢! is a real analytic mapping.
Therefore GL(n,C) is real analytically homeomorphic onto U(n) X H(n).

THEOREM 3. Let M*™*' be a complex manifold of complex dimension
2n + 1. Let n be a complex analytic 1-form over M*"*' such that

3.1 n A\ (dn)" # 0, at each point.
Then the form n induces an analytic (¢, €, n)-structure.

PROOF : Let us express 7 by local coordinate, i.e.,

3.2 7 = Nudz”
Then,

1 o ONa
3.3 dn = D} Papdz® N\ d2f, where ¢.5 = a—Zf — 8—;7‘? )

By virtue of the condition (3. 1), it follows that dn is a 2-form of rank 2n
everywhere over M***! and ¢,s is a matrix whose rank is everywhere 2n over
M1, We can easily verify that (3. 1) is equivalent to

NuPasbus.. Pon ons1) 7 0

where [ ] means a determinant divided by the factorial of the number of
indices.
Now we define distributions in the following way: we set

2) Let F be a real analytic mapping of M»into M™ and let N be a regular submanifold of
Mmand F(M™) < N, then F: M — N is a real analytic mapping.
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D, = {X*: ¢.sX? = 0}, at every point p € M+,

then the mapping p— D, defines a distribution D of complex dimension 1
(D is analytic, because it is spanned by the analytic vector field

1
fl = —x¢[23¢45...¢2n 2m+11»

1
1‘:‘2 = _7:¢134¢5&..¢2n+11],

D A I R R AR

Il

1 . .
X%"“ artP.r.onrt 1. Pazz a1 a is a residue modulo 2n+1,

g“

1
E2n+l — -)L— ¢[12¢34...¢2n-—1 2nls

where A = (21 + 1)9ydudus...Pon 2neny). We also set

D, = {X*: X°p, = 0}, at every point p € M?"*1,
then the mapping p— D, defines a complex analytic distribution D of complex
dimension 27 (7 is analytic). By virtue of Lemma 1 we can take a Hermitian
metric A& such that h,z£® = 7,. This means that D is orthogonally complementary

to D with respect to the metric A.
Now let us consider the real coordinate systems. In the real coordinate
systems, (¢.s,Pzz) becomes ¢;; and D becomes a distribution of real dimension

2 and D becomes a distribution of real dimension 47. We denote them by the
same letters D and D respectively. Let J! be the induced almost complex structure.
It is easily seen that & which is the real components of (£%£%) and Jig* which

is the real components of (i%, — i) constitute a local base of D. By virtue
of h;; being Hermitian with respect to Jj, we see that & is orthogonal to Jif:.

Let {U} be a sufficiently fine open covering of M>"*! by coordinate neigh-
borhoods. In every U we take ¢k = &', ¢\« = JiE* and take unit vector field et
such that el is orthogonal to ek, ei.. It is easily seen that ¢! € D on U and
hence el = Jief € D. In such a way we construct an orthonormal frame e,
Ehye o oy Chyy ey Eheye o o) i, €4, v on U, where €, é» € D and é, él,..., é,,
e, ebye o+, ebn € D. We call such a frame adapted frame.

Then if U N V is nonempty, the matrix of the transformation of components
of the same vector relative to adapted frames on U and V is of the following

form
U, 0
U= )
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where U,, € *U(2n) and E, is the identity matrix of degree 2.
Now, let ¢, be a matrix whose elements are the components of ¢;; relative
to adapted frame over U. Then ¢, is of the following form

by 0\ } 4n
0 0/ 12

where ¢, ¢ *GL(2n,C) and is skew symmetric. Then, by virtue of Lemma 2
we can write

$.= ALB,
where A, € *U(2n), B, € "H(2n). If we set
A, O\ }4n
A= )

o 0/}2
/B; 0\ }4n
B, =

o E/3e2

then A, and B, define real analytic tensor fields on U. Since ¢, is skew
symmetric, we have

‘bu= — ¢u
or
‘BytA, = — AwB,
that is,
B,'A, = — AuB.
Multiplying A, to the right of both sides of the last equation we get
B, = — (A)*'AwBrA.

As is easily seen, — (A.)? € *U(2n), *A,-B,+A, € *H(2n). So, by virtue of the
uniqueness of decomposition we get

— (A’ = Ep, B, ="ArBrA,
ie, (AL} = — Eyu, ABy = BiA..

w0
o o/,

Hence we have
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¢, = B+ A,

Next if we consider the relation between ¢, and ¢, on U NV, we get
¢ = UsprdurUin

and so

B':)'A; = ZU47L.B’;L.A1’L.U471
= (tU47z'B‘L/t°U4n)(tU47L'A;4'U4n)-

By virtue of the uniqueness of the decomposition, we have
B’;J = lU47l.B7.IL.U4n’
A; = LUA?I'A;L'U472-
Hence we get
B, ='U-B,U,
A, ='U-A,U.

By virtue of the last two relations, we see that the sets {A,} and {B,} define
global tensor fields A and B of class. C* on manifold.

From B,J = JB, we get B,J = — 'JB,. Or if we express it in components
(with respect to natural frames) we have

Bu']jr - - :]{Bjk,

in words, B;; is hybrid with respect to 7 and j. Moreover B, is positive definite,
hence it defines a Hermitian metric 9;;.

Now let us go back to the complex coordinates and take frames

o= (e =V Tep)

Then, we have

°B, 0
(3. 4) B = ( )
0 1
and
(3. 5) A? = ( )
0 0/ 11

with respect to the frames ¢;, where °B, € H(2n) (i.e., B, is real representation
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of °B,).

Since A is hybrid (¢, = B,*A,. Or expressed in components relative to
real coordinates ¢;; = gAY ¢; is pure and g;; is hybrid, hence A is hybrid).
If we express A with respect to natural complex frames we have

P
A= _
5 0/,

and

bas = Jarph
Write (3. 5) in components with respect to natural complex frame, we have
(3. 6) G5y = — & + £, Gid = — & + Es

From (3. 4) we see that the metric ¢ defined by the tensor B coincides
with A on D, ie,

9.3X°% = hgX?, if X* e D.
Therefore we have
GA)) 9t E" = hagt’E* = mof* = 1.
Hence

0= ¢aﬁ§'g = ‘l’aﬁhMﬂ? = ¢aag’3 7?7?/ = Z’?&,

that is,
(3' 8) ﬁna = 0.
Moreover

45 = g7 = 0
ie.,
3.9 $5E" = 0.

Thus we have constructed (¢, &, n)-structure ((3. 6), (3. 7), (3. 8), (3. 9)).
Moreover g satisfies

9C¢T?¢§ = - 97?#’5( = ar)
or
(3.10) gﬂ#’%’g = - gvﬁ¢§¢‘-§ = Gve — M=
Hence ¢ is an associated Hermitian metric.
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Thus we have proved more than that stated in the theorem. We express the
result in the following theorem.

THEOREM 4. Let M be a complex manifold and there are an analytic
tensor field ¢.s and analytic vector fields & and ng over M such that

rank (¢p.z) = 2n,
¢¢¥B A= O’
Ena = 1.

Then, there exists a complex (¢, E,n, g)-structure such that
b = ¢ a?¢/:§
and & and ng are the vector fields in ($, &, n, g)-structure.

In fact, if we notice the following result, then clearly the proof of
Theorem 3 is applicable to Theorem 4.

Suppose .z, £, g be the tensor field and vector fields stated in Theorem
4 and put

¢ = %(ﬁaﬁdz"‘ N d2P,

then
n A\ ¢ # 0, at every point of M?***1

and
w1
é = R‘ ¢{a+l a+2¢a+3 a+4.~.¢2n+1 1...¢a—2 a—11

where M = (21 + 1) 51Pusbss. .. Pansnrn, and & is a residue modulo 2n+1.

REMARK: 5 A ¢" % 0 implies N #= 0.

In fact, » defines an analytic distribution. Hence there exist 2z locally
defined analytic vector fields such that at every point they form a local base
of this distribution. Let them be e,, e,,---, €;, and we take e,,,; = & It is
clear that e,, e, -, €, €m:; form a frame at a neighborhood of a point.
Let fi, /o« «»fons fans1 =7 be the dual base. Consider the scalar product
(e A\ oo Newm)l @™ 1) of (ey A v++ A e€snri)l_¢" and 5 where “|_” denotes
interior product (e. g., see [14]). From [14] pp. 43, we see that

((el N eee Nespsr LP" "7)
= (Z (_ 1)1_1(61 Neee ANeor Ny N oo N €aner ¢n)ez "7)
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= Z( - 1)i_1(31 Neve Aoy N ey N eee A eansy 4)")8%”“

:(el/\.oo/\e2n¢n)
=det [Aab # 0

where 8"*! is Kronecker delta and A,, are components of ¢ with respect to
vectors ey,. - -, €,,. Hence

((el ANEREIAN ezn+1)L.¢n "7) = (31 VANV AN 7S an A "7) #0
and we get
n A\ ¢" #0.

Moreover we shall easily get by calculation that

2n+1

Z ¢aﬁ¢[ﬁ+1 /3+2...¢2n+1 1...¢/3—2 B-11 — 0:
B=1

n+1
1

Z Ne X ¢[a+1 a+2...¢2n+1 1...¢o<—2 a-1] — 1.
a=1
This proves

1
& = X‘t’laﬂ a+2...¢2"+1 1~-~¢“‘2 a-1l

Now let us consider the distributions defined by & and » as in Theorem

3, we denote them by D and D respectively. Then clearly the proof of
Theorem 3 could apply to this theorem.

4. Reduction of the structure group of tangent bundle. Let G be a
topological group, G be its closed subgroup and p: G — G/G’ be the natural
projection. We assume in this section that G — G/G’ has a local cross section.
If G is a real or complex Lie group, then the assumption is satisfied [15].

LEMMA 3. Let B be a principal bundle. The structure group G of B
can be reduced to G’ if and only if there exist an open covering {U,} and
local cross sections C, of B over each U, such that if U, N\ U; is nonempty,
then Ci(x) = Ry»Cy(x) on U; N U;, where g(x) € G and Ryu.) is a right
translation associated to g(x).

PROOF : This follows from the following fact [16]: The structure group of
B can be reduced to G if and only if B/G" admits a cross section.

REMARK : This lemma is valid for “differentiable” and “complex analytic”
fibre bundle by a trivial modification (i. e., replace each continuous function by
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differentiable or complex analytic function and topological group by real or
complex Lie group) [17].

THEOREM 5. Let M*™*! be a complex manifold with analytic (¢, &, n)-
structure, then the structure group of its complex analytic tangent bundle is
reducible to Sp(n,C) x 1. Conversely, if a complex manifold whose structure
group of its complex analytic tangent bundle is reducible to Sp(n,C) x 1,
then we can endow to M™™*' an analytic (¢, E,n)-structure.

PROOF : Let {U} be a sufficiently fine open covering of M?***! by coordinate
neighborhoods. Then, the analytic associated form

b= %(ﬁaﬁdz“ A d=°
of analytic (¢, £, n)-structure can be written as
=2 faNfim

over U, where f, are complex analytic 1-form over U([18] p. 28). If we take a
suitable order of f,*’s, then the components of ¢ with respect to f;* and 7 is

0 —E, O
o=\ E, 0 O
0 0 0

over U. It is easily seen that the coframe (f,,7) defines a frame over U, hence
a local cross section C, of the associated principal bundle of the tangent

bundle.
If U NV is nonempty, we see that C, = R,C, where g € GL(2n + 1,C) is
a matrix. Then ¢, is transformed by

‘9b.9 = ¢y
and 7 is transformed by

ng = 1.
Since the matrix ¢, = ¢,, 7 =7, ¢ is of the following form

(5 )

where A is a complex sympletic matrix, i.e., A € Sp(n,C). Thus ¢ is a matrix
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of Sp(n,C) X 1. By virtue of Lemma 3 the structure group of the associated
principal bundle of tangent bundle is reducible to Sp(n,C) x 1. Hence the
structure group of the complex analytic tangent bundle is reducible to
Spn,C) x 1.

Conversely, suppose the structure group of the complex analytic tangent
bundle is reducible to Sp(n,C) X 1. Then, by virtue of Lemma 3 on every
coordinate neighborhood of a certain covering we can get a local cross section
C, of the associated principal bundle of the tangent bundle such that if U N V
is nonempty, then C, = R, C, where ¢ € Sp(n,C) x 1. Since C, is a frame
over U, it defines a coframe (f,,7,) over U. It is clear that the local tensors
¢, 7, in U, whose components (relative to coframe (f,,7,)) are

0 —E, O
.= E, O 0
0 0 07,

Nu = (O:Of ¢ "09 1)

constitute globally defined tensors (for ‘g ¢,9 = ¢, and 7,9 = 7,). Thus we get
a 2-form ¢, whose rank is clearly 27, and 1-form % (they are complex analytic,
because the frames are complex analytic), namely,

¢ = i‘sfu“ Afare, e=1 or — 1,
a=1

N = Nu.
It is easily seen that

" =enfii N\ +-- N\f", where e=1 or — 1.
Hence we have

N ANSEN o ANfF =9 A\ d"#0, at every point.

Thus we could get an analytic vector field

1
Ea = X‘han a+2...¢2n+1 1...¢‘a—2 a-1]

where M = (27 + 1)yus.. Pom anie Then by virtue of Theorem 4, we get an
analytic (¢, &, n)-structure or complex almost contact structure.

By virtue of this theorem we could give another definition of complex
almost contact manifold in analogous way to real contact manifold.

DEFINITION : A complex manifold of complex dimension 2n + 1 is called
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a complex almost contact manifold or is said to have a complex almost contact
structure if and only if the structure group of its complex analytic tangent
bundle is reducible to Sp(n,C) x 1.

If we notice that Theorem 4 still holds good even if we take off
analyticity of ¢,s, &%, 7, then we get the following theorem.

THEOREM 6. Let M*"*' be a complex manifold with complex (¢,,7, g)-
structure, then the structure group is reducible to Sp(n) X 1. Conversely if
the group is reducible to Sp(n) X 1, then we can endow to M?*"*!'a complex

(¢’ &7 7, 9)'Structure.

Proof of this theorem can be easily gotten from modification of the proof
of Theorem 5 (e.g., we need not take complex analytic frames but take
orthonormal frames).
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