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M. Obata and H. Wakakuwa studied the 4^-dimensional differentiable ma-
nifolds with the structure group (of the tangent bundle) Sp{n) ([ 1 ], [ 2 ], [ 3 ],
[ 4 ]), while S. Hashimoto and C. J. Hsu studied the (An + l)-dimensional cases
([ 5 ], [6 ]). The present paper is devoted to the study of some (An + 2)-dimen-
sional manifolds. We restricted to these manifolds to get closer connection with
complex contact manifolds ([ 7 ], [ 8 ], [ 9 ]). Hence this paper is an analogous
work to that of S. Sasaki ([10], [11]), on complex manifolds.

In §1 we review complex tensors, in §2 we study the naturally arised
Hermitian metric to the given complex (φ, ξ, ^-structure and define the analytic
(φ, ξ, ??)-structure or complex almost contact structure. In §3 we prove that
complex contact manifolds whose first Chern class vanishes are complex
manifolds with analytic (φ, ξ, ^-structure, this justifies the terminology "complex
almost contact structure". In §4 we first give a criterion for the reduction of
the structure group of fibre bundle which is an immediate consequence of a
known theorem, but due to its good applications it deserves an explicit for-
mulation. We reduced the group of the tangent bundle of complex manifolds
with complex (φ, ξ, ^-structure as an application of the lemma.

The author would like to acknowledge the fact that his interest in this
subject stems from a course given by Professor S. Sasaki at National Taiwan
University in the first term of the academic year 1960-1961, and the author
should like to express his sincere thanks to Professors S. Sasaki and C. J. Hsu
for their kind guidance and many valuable suggestions, and to professor S. Sasaki
for allowing me to read the manuscript of paper [12] before it was published.

1. Tensors on complex manifold. A complex manifold Mm of complex
dimension m is a Hausdorff space to each point p of which there is associated
a neighbourhood N(p) which is mapped topologically onto subdomain of the
Euclidean space of complex variables z1,* -,zm. If q € N(p), the coordinates of
q will be denoted by z\q), i = 1,2,- -,ra. Wherever two neighbourhoods in-
tersect, the coordinates are connected by a pseudo-conformal mapping.

Following [13] we introduce a conjugate manifold Mm which is a homeo-

morphic image of Mm in which the point p of Mm corresponds to the point p
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of Mm and the neighbourhood N(p) to N(p). Let Latin indices run from 1 to
2m, and let

(1.1) i — i Λ- m (mod 2m).

If q € N(p), we define

(1. 2) *Γ(g) = (z\q)y,

where (2;)" denote the complex conjugate of the quantity z. By means of (1. 2)

the neighbourhood N(p) is mapped onto a domain in the space of the variables

zι = z\i = 1,2,- ., m).

Now consider the product manifold M/ίl X Mm whose points are ordered

pair (p, g), and let

(1. 3) 2ι(£, α) = -— _

( z\q) = (zXq)), i=m + l,.. . , 2 m .

Then

(1. 4) zKp, g) - {z\q,~p)\i = 1, 2,. . ., 2m.
The product manifold M'^xM"1 is covered by the coordinates z\p,q) z'=l,2, ,2m.

Introduce coordinate x\p,q) by formulas

(1. 5) Y */^ΐ(zXp, q) ~ zip, q)\ i = m + 1,. . ., 2m,
I ^(Ag) + s/^ΐxXpΓq), i=l,...,m,

P ' q " 1 *7(p, g) - Λ / - Ί [ V ( A g), ί = m + 1,. . ., 2m,

Then

(I- 6) x%p,q) = (xXq,J)T, i = 1, , 2m.

On the diagonal manifold Dm of Mm x Mm where p = q, we have

(1. 7) 2* - z%p, p) = (z1)-, x' = x\p, p) = (x*)-.

Thus Dm is covered either by self-conjugate coordinate (z\ zι = zι) or by real

coordinate xι and we identify Mm with Dm.

A tensor on Mm (precisely speak on Dm) whose components are real when

they are expressed in the real coordinates xι will be called a real tensor. A

real tensor T when expressed in self-conjugate coordinates zi satisfies
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(l 8) 7V.7ε-δ = (7V/ε~-S)-,

where a, β, γ, λ, e, δ, . . . = 1,. . ., m, a, β, γ, λ, e, δ . . . = m + 1, , 2m.

Throughout this paper, if we use a Latin letter as an index for a tensor

e. g., T\ we mean i — 1,. . .,2m. If we use a Greek letter as an index for a

tensor e.g., Ta, we mean a — 1,. . .,m. In this paper we shall be concerned

only with real tensor of class Cω (i.e., real analytic) and shall make the convention

that the conponents of a tensor with Greek indices are expressed by self-

conjugate coordinate and the components of a tensor with Latin indices are

expressed by real coordinate.

2. Complex (φ, ξ, ̂ -structure and associated Hermitian metric.
Definition: A complex manifold M2n+1 of complex dimension 2n + 1 is

said to have a complex (φ, £, ̂ -structure if there are a Cω-differentiable tensor

field φ% and O-differentiable vector fields ξa and ηβ over M2n+1 such that

(2. 1) ξ"ηa - 1,

(2. 2) rank (φ|) = 2n,

(2. 3) φ%fβ - 0,
(2. 4) φf^ = 0,
(2.5) f

THEOREM 1. L^ί M2 W + 1 be a complex manifold with (φ,ξ,η)-structure.

Then there exists a positive definite Hermitian metric g such that

(2. 6) ηa - ffa~βf,

(2. 7) gaJtf$ = ^ - 77 ,̂.

We first construct a lemma which is already known.

LEMMA 1. Suppose ξa and ηβ be Cω-differentiate or complex analytic

contravariant and covariant vector fields on a complex manifold M2n+1 such

that

(2. 8) ξ°ηa = 1.

Then M2n+ί admits a positive definite Hermitian metric h of class Cω such

that

(2. 9) ηa = Kϊf.

PROOF0 : Let/«^ be an arbitrary Hermitian metric on M2n+1, And if we put

kaβ = MSI - ξV)(4 - ξ%) + VaVβ.

1) This nice proof was given by Y. Hatakeyama,
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Then haβ also defines a positive definite Hermitian metric on M2n+1, for if

ht&X"Xw=0,

by virtue of the fact that fa% is a positive definite Hermitian metric, we get

($ί ~ ξΎVa)Xa = 0 and ηaX
a = 0

which show Xa = 0.
Moreover we have

Thus haβ defines the required Hermitian metric.

PROOF OF THEOREM 1. Let A be a Hermitian metric which has the
property stated in Lemma 1 and put

gΰβ — "77" (haβ "I" hf^φaφβ + TJaVβ)'

Then we can easily see that

Sfaβfβ = Va,

ffaβξψ = 1.

In the next place we see that

that is

Hence, the theorem is proved.

We shall say that the metric which has the property stated in Theorem 1
an associated Hermitian metric to the given complex (φ, ξ, ^-structure. And if
a complex manifold admits tensor fields φ,ξ,η,ff such that g is an associated
Hermitian metric of the complex (φ, ξ, η)-structure, then we say this ma.nifold
has (φ, ξ, η, ^-structure.

Put
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(2.10) φ a β = ga-Ύφi

Then, the tensor φaβ is skew symmetric with respect to a and β. In fact,

Putting (2. 7) and (2. 5) into the last equation, we get

or

Of course the rank (φα/3) is 2m We call φaβ the associated tensor and

φ = — φaβdz" Λ *fe* the associated form.
Δ

Definition : A complex (φ, ξ9 ^-structure is called analytic (φ, ξ, ^-structure
or complex almost contact structure if ξa and η$ are complex analytic and there
exists an associated tensor φaβ which is complex analytic.

3. Complex contact manifolds and complex almost contact manifolds.
DEFINITION: Let M2n+1 be a complex manifold of complex dimension

2n + 1. Let {C7t} be an open covering of M 2 n + 1 . We call M2n+1 a complex
contact manifold if the following conditions are satisfied

( 1) On each CΛ there exists a complex analytic 1-form such that ωt Λ {dω,)n

is different from zero at every point of C/4.
( 2 ) If Ui Π Uj is nonempty, then there exists a nonvanishing complex

analytic function fi5 on UΊ Π U5 such that ωL = fijωj on UΊ Π U5.
If fa — 1 f° r e a c n * a n d i> m other words, there exists on M2n+1 a globally

defined complex analytic 1-form η shuch that

V Λ idηf Φ 0,

at every point of the manifold, then M2n+1 is called a restricted complex
contact manifold.

For completeness we restate a theorem in [ 8 ].

THEOREM 2. A complex contact manifold M2n+1 is a restricted complex
contact manifold if and only if its first Chern class Cλ(M2n+λ) vanishes.

PROOF : The characteristic class of the line bundle k which is defined by
transition functions {/,/"(n+1)} is Cλ(M2n+ι). If Cx{M2n+ι) = 0, then k is equivalent
to a product bundle k'. The form ω\, which is the image of ωt under the
mapping induced by the bundle equivalence map of k to k', satisfies
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ωl Λ (dωdn = ω'j Λ {dω])\

Thus M2n+1 is a restricted contact manifold.
Converse is easily seen to be true from [ 7 ].

The main result of this section is that a restricted complex contact manifold
naturally induces an analytic (φ, ξ, ̂ -structure. This justifies the definition given
at the end of §2.

To prove our main result we need a lemma which is an example of the
following theorem: If G is a connected Lie group and K is the maximal
compact subgroup of G, then G is real analytically homeomorphic with K X Rn.
But we shall prove it directly. The lemma is:

LEMMA 2. Let GL(n, C) be the complex general linear group of degree
n. Let U(n) be the unitary subgroup and H(n) be the set of all positive
definite Hermitian matrices. Then the mapping

c : GL(n, C) -> U(n) x H(n)

defined by the decomposition (i.e., any A € GL(n,C) can be written in one
and only one way as the product A = UH of a unitary matrix U and a
Hermitian matrix H) gives a real analytic homeomorphism of these two
manifolds with respect to the usual real analytic structure.

PROOF: Let RGL(n, C) be the real representation of GL(n, C). Then we see
that

RGL(n,C) = [A € GL(2n,R): A~ιJA = J]

is an isotropy group, and therefore it is a regular Lie subgroup of GL(2n, R)(i.e.,
the underlying submanifold is regular) where

0 -En

E» 0

and En is the identity matrix of degree n.
Let RH(n) be the real representation of H(n) and let S(2n) be the set of

all positive definite symmetric matrices of GL(2n,R). It is easily seen that

*H(n) = {A e S(2n): A~λJA = J}

is a regular submanifold of S(2n).
Let RU(n) be the real representation of U(n). Then we see that

RU(n) = [U e O(2n): *UJU = J}

is a regular submanifold of O(2n).
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Let us consider the following commutative diagram

J{GL(n,C) JU GL(2n,R)

RU(n) X *H(n) -1+ O(2n) x S(2n)

where d is a real analytic homeomorphism [12], c is a topological decomposition
[15] and i,j are injections which are real analytic mappings. It is easily seen
that doi and d~ι°j are real analytic mappings.

Since *U(ri) and RH(n) are regular submanifolds of O(2n) and S(2n)
respectively, hU(n) x κH(n) is a regular submanifold of O{2n) X S(2n). Moreover
the image of EGL(n,C) under the mapping c — dot is contained in EU(n)xEH(n).
Hence c is a real analytic mapping2\ Similarly, EGL(n, C) is a regular submanifold
of GL(2n,R) and the image of EU(n) x BH(w) under the mapping c~ι = d~λoj
is contained in EGL(n,C). Hence the mapping c~ι is a real analytic mapping.
Therefore GL(n,C) is real analytically homeomorphic onto U(n) x H(n).

THEOREM 3. Let M2n+1 be a complex manifold of complex dimension
2n + 1. Let η be a complex analytic lform over M2n+ι such that

(3. 1) η Λ (dη)n Φ 0, at each point.

Then the form η induces an analytic (φ, ξ, η)-structure.

PROOF : Let us express η by local coordinate, i. e.,

(3. 2) 7, - ηιxdza

Then,

(3. 3) dη = \ φ^dz" Λ dzf, where φaβ = | g - - | ^ .

By virtue of the condition (3. 1), it follows that dη is a 2-form of rank 2n
everywhere over M2n+ί and φaβ is a matrix whose rank is everywhere 2n over
M2n+1. We can easily verify that (3. 1) is equivalent to

2Π+1] 0

where [ ] means a determinant divided by the factorial of the number of
indices.

Now we define distributions in the following way: we set

2) Let F be a real analytic mapping of Mn into Mm and let N be a regular submanifold of
Mm and F(Mn) cz N, then F: Mn -> N is a real analytic mapping.
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Dv = {Xa: φaβX
β = 0}, at every point p € M2n+\

then the mapping p —> Z)p defines a distribution Z) of complex dimension 1
(D is analytic, because it is spanned by the analytic vector field

2n 2n+lh

τ-

ξ« = — φrα+lΛ+sφ...2n+ii...φ«-2α-i], α: is a residue modulo 2n + l9

where λ = (2n + I)% 2̂3045...<i>2n2n+i]). We also set

Dp = {Xα: Xα?7α = 0}, at every point p z M2n+1,

then the mapping p—>Dp defines a complex analytic distribution D of complex

dimension 2n (η is analytic). By virtue of Lemma 1 we can take a Hermitian

metric h such that haβξ^ = ηa. This means that D is orthogonally complementary

to D with respect to the metric h.

Now let us consider the real coordinate systems. In the real coordinate

systems, iφaβφai) becomes φi} and D becomes a distribution of real dimension

2 and D becomes a distribution of real dimension An. We denote them by the

same letters D and D respectively. Let J) be the induced almost complex structure.

It is easily seen that ξι which is the real components of (ξa,ξa) and J\ξk which

is the real components of (iξa, — iξa) constitute a local base of D. By virtue

of hij being Hermitian with respect to J), we see that ξι is orthogonal to Jlξk.

Let {U} be a sufficiently fine open covering of M2n+1 by coordinate neigh-

borhoods. In every U we take e\ — ξ\ e^* — Jlξk and take unit vector field e[

such that e\ is orthogonal to e1*, e\*. It is easily seen that e\ £ D on U and

hence e\* = J\e\ £ D. In such a way we construct an orthonormal frame e\,

el,- -,eln> e\*, el*,- - -, e\n*, e\, e\* on U, where e\, e\* € D and e\, el,- - ., e\n,
e\*, el*,- - -, e\n* € D. We call such a frame adapted frame.

Then if U Π V is nonempty, the matrix of the transformation of components
of the same vector relative to adapted frames on U and V is of the following
form

JUln 0\
U •

EJ
-Γ

\0
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where Uin € sU(2n) and E2 is the identity matr ix of degree 2.
N o w , let φu be a matr ix whose elements are the components of φi} relative

to adapted frame over U. T h e n φu is of the following form

Φu 0\

\0 0/

where φ'u €
 RGL(2n,C) and is skew symmetric. Then, by virtue of Lemma 2

we can write

where Au € RU(2n\ Bu £ *H(2ή). If we set

/A; 0\ } An
A u = [

\0 0/ } 2,
/ β ; 0\ } An

Ώ -
\0 £,/ } 2,

then AM and 5M define real analytic tensor fields on U. Since φu is skew
symmetric, we have

t($u = — φu

or

that is,

Multiplying Ai to the right of both sides of the last equation we get

As is easily seen, - (A^)2 € RU(2n), *Ai Bu Au z RH(2n). So, by virtue of the
uniqueness of decomposition we get

— \r\u) — ^4w> J5u — ^u'J^u'^u,

Hence we have

Au = \o o j ,
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φu = Bu-Au.

Next if we consider the relation between φu and φv on U Π V, we get

Φί = lUAn.fiu-Uin

and so

βu Ay = lU in Bu Au TJ in

= (£ί74n β;.Z74n)C?74)i.A;.C/4,!).

By virtue of the uniqueness of the decomposition, we have

B'v — ιU m B'u U in,

A'v = 'Um Au Uin.

Hence we get

Bυ = tU-Bu-U,

Aυ = tU-Au-U.

By virtue of the last two relations, we see that the sets {Au} and {Bu} define
global tensor fields A and B of class Cω on manifold.

From BUJ = JBU we get BUJ — — ιJBu. Or if we express it in components
(with respect to natural frames) we have

in words, Bi5 is hybrid with respect to i and j. Moreover Bu is positive definite,
hence it defines a Hermitian metric gi5.

Now let us go back to the complex coordinates and take frames

_ 1 ( _ . — .

Then, we have

(cBu 0
(3. 4) B=l

\0 1

and

' - E2n 0\ } 2n
(3. 5) A2 -

\0 0/ } 1

with respect to the frames ej9 where CB'U € H(2ri) (i.e., Bu is real representation
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of CB'U).
Since A is hybrid (φu = BU AU. Or expressed in components relative to

real coordinates φa = gikAj. φu is pure and gi3 is hybrid, hence A is hybrid).
If we express A with respect to natural complex frames we have

AJ"
 Φί)
\Φ% 0/ ,

and

Φaβ — SfcήΦh

Write (3. 5) in components with respect to natural complex frame, we have

(3. 6) φ?φ? = - δ ? + ξ*ηr, φϊφl = - δf + ?m.

From (3. 4) we see that the metric g defined by the tensor B coincides

with h on D, i.e.,

ffalsX* = haJSX\ if Xa € D.

Therefore we have

(3. 7) ga~βξψ = ha-βξψ = V«ξa = 1.

Hence

o - Φ*βξ
β = ψaβh^m = Φ*βg

β\7 = Φϊvy,

that is,

(3. 8) φ%Va = 0.

Moreover

Φίί" = 9alφiβfβ = 0

i.e.,

(3. 9) φir = 0.

Thus we have constructed (φ, | , ^-structure ((3. 6), (3. 7), (3. 8), (3. 9)).
Moreover g satisfies

or

(3.10)

Hence g is an associated Hermitian metric.
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Thus we have proved more than that stated in the theorem. We express the

result in the following theorem.

THEOREM 4. Let M2n+1 be a complex manifold and there are an analytic

tensor field φaβ and analytic vector fields ξa and ηβ over M2n+1 such that

rank (φaβ) = 2n,

Φaβξ" = 0,

ξav* = i.

Then, there exists a complex (φ9ξ9η9g)-structure such that

Φaβ = ffayΦl

and ξa and ηβ are the vector fields in (φ, ξ, η, g)-structure.

In fact, if we notice the following result, then clearly the proof of

Theorem 3 is applicable to Theorem 4.

Suppose φaβy ξa, ηβ be the tensor field and vector fields stated in Theorem

4 and put

φ = \φaβdz« t\dz\

then

η Λ φn Φ 0, at every point of M2n+\

and

-vζa ~~ -v Φϊa + l w+aφα + 3 « + 4...φ2n + l 1...ψα-2 ff-1]

where λ = (2n + 1) ηwφvφte. ..φvnan+\-\9 and <x is a residue modulo 2w + l.

REMARK : η f\φn Φ0 implies λ Φ 0.

In fact, ?7 defines an analytic distribution. Hence there exist 2n locally

defined analytic vector fields such that at every point they form a local base

of this distribution. Let them be eu e2, , e2n and we take e2n+i = ζ- It is

clear that eu e2, ',e2n, e2n+1 form a frame at a neighborhood of a point.

Let / i ,/ 2 , ,/2rc> /2W+1 = V be the dual base. Consider the scalar product

(Oi Λ Λ e2n+1)l_φn η) of fe Λ Λ e2n+ι)V_φn and 77 where " L " denotes

interior product (e. g., see [14]). From [14] pp. 43, we see that

(0?i Λ Λ e2n+ι V_φn η)

= ( Σ ( " l) 1" 1^! Λ Λ e^ Λ ei+1 Λ . Λ ̂ ΪΛ+i φn>* v )
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= Σ ( " i)*" 1 ^! Λ . . . Λ *,_! Λ ei+1 Λ Λ e2n+1 φnW+ι

= (e, Λ Λ e2n φn)

= det I A a b I ^ 0

where δ?n+1 is Kronecker delta and Aab are components of φ with respect to
vectors el9 ,eln. Hence

(fo Λ Λ έ?ίn+i)Lφw 17) = (^ Λ Λ <Wi φw Λ v) Φ 0

and we get

7? Λ Φ" Φ 0.

Moreover we shall easily get by calculation that

/ ΦaβΦίβ+1 β+2...φ2n + l l...φβ-2 β-1] — 0,

27H-1 -.

X . V(X~Z~ Φ[a + l a + 2.,.φ 2n + l l...φa-2 a-\] = 1 .
. Λ;

This proves

C ~~ Λ Φίa + l a + 2...Y>2rz + l l...φa-2 α-l]

Now let us consider the distributions defined by ξ and η as in Theorem

3, we denote them by D and D respectively. Then clearly the proof of
Theorem 3 could apply to this theorem.

4. Reduction of the structure group of tangent bundle. Let G be a
topological group, G' be its closed subgroup and p\ G —» G/G be the natural
projection. We assume in this section that G —> G/G has a local cross section.
If G is a real or complex Lie group, then the assumption is satisfied [15].

LEMMA 3. Let B be a principal bundle. The structure group G of B
can be reduced to G if and only if there exist an open covering {Ui} and
local cross sections Ct of B over each Ui such that if Ui Π Uό is nonempty,
then Ct{x) = Rg{x)Cό(x) on Ut Π Uj9 zυhere g(x) € G and Rg{x) is a right
translatioji associated to g{x).

PROOF : This follows from the following fact [16]: The structure group of
B can be reduced to G if and only if B/G admits a cross section.

REMARK : This lemma is valid for "difΐerentiable" and "complex analytic"
fibre bundle by a trivial modification (i. e., replace each continuous function by
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differentiable or complex analytic function and topological group by real or
complex Lie group) [17].

THEOREM 5. Let M2n+1 be a complex manifold with analytic (φ,ξ,η)-
structure, then the structure group of its complex analytic tangent bundle is
reducible to Sp(n,C) x 1. Conversely, if a complex manifold -whose structure
group of its complex analytic tangent bundle is reducible to Sp(n, C) X 1,
then we can endow to M2n+1 an analytic (φ,ξ,η)-structure.

PROOF : Let {U} be a sufficiently fine open covering of M2n+1 by coordinate
neighborhoods. Then, the analytic associated form

φ φaSdz Adz13

of analytic (φ, ξ, ^-structure can be written as

over U, where fu are complex analytic 1-form over £/([18] p. 28). If we take a
suitable order of /M

α>s, then the components of φ with respect to fu and η is

, 0 - En 0

Φu = l En 0 0

\ o o o

over U. It is easily seen that the coframe (fu, η) defines a frame over U9 hence
a local cross section Cu of the associated principal bundle of the tangent
bundle.

If U Π V is nonempty, we see that Cu = RgCυ where g e GL(2n + 1, C) is
a matrix. Then φu is transformed by

and η is transformed by

V9 = V>

Since the matrix φu = φυ, η = η, g is of the following form

A 0

where A is a complex sympletic matrix, i. e., A £ Sp(n,C). Thus g is a matrix
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of Sp(n, C) X 1. By virtue of Lemma 3 the structure group of the associated
principal bundle of tangent bundle is reducible to Sp{n,C) X 1. Hence the
structure group of the complex analytic tangent bundle is reducible to
Sp(n, C) x 1.

Conversely, suppose the structure group of the complex analytic tangent
bundle is reducible to Spin, C) x 1. Then, by virtue of Lemma 3 on every
coordinate neighborhood of a certain covering we can get a local cross section
Cu of the associated principal bundle of the tangent bundle such that if U Π V
is nonempty, then Cu = Rg Cv where g £ Sρ(n,C) x 1. Since Cu is a frame
over U, it defines a coframe (fu,ηu) over U. It is clear that the local tensors
φu, ηu in U, whose components (relative to coframe (fu, ηu)) are

0 - En 0

Φu = I En 0

\ o o
*7« = (0,0,...,0,l)

constitute globally defined tensors (for ιg φug = φυ and ηug = ηυ). Thus we get
a 2-form φ, whose rank is clearly 2n, and 1-form η (they are complex analytic,
because the frames are complex analytic), namely,

71

Φ — Σ ef" /\fu+oί, 6 = 1 or — 1,

V = Vu-

It is easily seen that

φn = eηfi Λ ΛΛ2n, where e = 1 or - 1.

Hence we have

«7 ΛΛ1 Λ Afin = η A Φn Φ 0, at every point.

Thus we could get an analytic vector field

ζ — ~Z~ Φ[a + 1 a + 2...φ2n + l l...Φα-2α-l]
λ/

where λ = (2n + I)̂ [iφ23...φ2n2n+i> Then by virtue of Theorem 4, we get an
analytic (φ, ξ, ?;)-structure or complex almost contact structure.

By virtue of this theorem we could give another definition of complex
almost contact manifold in analogous way to real contact manifold.

DEFINITION : A complex manifold of complex dimension 2n + 1 is called
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a complex almost contact manifold or is said to have a complex almost contact

structure if and only if the structure group of its complex analytic tangent

bundle is reducible to Sp(n, C) x 1.

If we notice that Theorem 4 still holds good even if we take off

analyticity of φaβ, ξa,ηβ, then we get the following theorem.

THEOREM 6. Let M2n+1 be a complex manifold with complex (φ,ξ,η,g)-

structure, then the structure group is reducible to Sp(n) x 1. Conversely if

the group is reducible to Sp(n) x 1, then we can endow to M2n+1 a complex

(Φ> ξ> V> #)-structure.

Proof of this theorem can be easily gotten from modification of the proof

of Theorem 5 (e. g., we need not take complex analytic frames but take

orthonormal frames).

REFERENCES

[ 1 ] M. OBATA, Affine connections on manifolds with almost complex, quaternion or
Hermitian structure, Japanese Journ. of Math., 26(1956),43-77.

[ 2 ] M. OBATA, Affine connections in a quaternion manifold and transformations preserving
the structure, Journ. of Math. Soc. Japan, 9(1957),406-416.

[ 3 ] H. WAKAKUWA, On Riemannian manifolds with homogeneous holonomy groups Sp(n),
Tδhoku Math. Journ., 10(1958), 273-303.

[ 4 ] H. WAKAKUWA, On almost complex sympletic manifolds and affine connections with
restricted homogeneous holonomy group Spin, C), Tohoku Math. Journ., 12(1960),
175-202.

[ 5 ] S.HASHIMOTO, On differentiable manifolds with almost quaternion contact structure,
Report at Sugakukai, 1961.

[ 6 ] C. J. HSU, Note on (φ,ξ,^-structure, Tohoku Math. Journ., 13(1961), 434-442.
[ 7 ] S. KOBAYASHI, Remarks on complex contact manifolds, Proc. Amer. Math. Soc,

10(1959), 164-167.
[ 8 ] W. BOOTHBY, Homogeneous complex contact manifolds, Proc. of Symposia in Pure

Mathematics, Vol.3. Differential Geometry, Amer. Math. Soc, 1961,144-154.
[ 9 ] W. BOOTHBY, A note on homogeneous complex contact manifolds, Proc. Amer. Math.

Soc, (1962) 276-280.
[10] S. SASAKI, On differentiable manifolds with certain structures which are closely related

to almost contact structure I. Tohoku Math, Journ., 12(1960),456-476.
[11] S. SASAKI AND Y. HATAKEYAMA, On differentiable manifolds with certain structures

which are closely related to almost contact structure II. Tohoku Math. Jour.,
13(1961), 281-294.

[12] Y. HATAKEYAMA, On the existence of Riemann metrics associated with a 2-form of
rank 2r, Tohoku Math. Journ., 14(1962), 162-166.

[13] P. GARABEDIAN AND D. SPENCER, A complex tensor calculus for Kahlerian manifold,
Acta Math.,89(1953), 273-331.

[14] H. WHITNEY, Geometric integration theory, Princeton Univ. Press.
[15] C. CHEVALLEY, Theory of Lie Groups, Princeton Univ. Press.
[16] N. STEENROD, The topology of fibre bundles, Princeton Univ. Press.
[17] F. HlRZEBRUCH, Neue topologische Methoden in der algebraischen Geometrie, Berlin.
[18] A. LlCHNEROWICZ, Theorie globale des connexions et des Groupes d'holonomie, Ed.

Cremonese Roma.

NATIONAL TAIWAN UNIVERSITY.




