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1. Introduction. We consider infinite matrices A = (ank) and corresponding
matrix transforms and summability methods (compare [5]). A sequence {sk} is
said to be A-summable to the value σ, if all sums

( 1) <Γn = Σ ankSk, n = 0,1,
Λ; = 0

exist and converge to σ for £-*oo. The sequence {sk} is strongly A-summable
(shortly: A-summable) to the value σ, if all sums

oo

( 2 ) σn = Σ ank \ SJC - <r I, n = 0 , 1 ,
fc = 0

exist and converge to zero. Strong summability is usually considered only for
positive A (i.e., for ank ^ 0). In this case the limit σ is uniquely determined
[ 3 ] if A is regular, i.e., sums each convergent sequence to its ordinary limit.
A row-finite matrix contains only a finite number of non-zero elements in each
row; a normal matrix has non-zero elements on the main diagonal and zeros
above it.

We compare here strong and ordinary summability methods. The basic
question is the following. Given a matrix A, does there exist a matrix B, such
that a sequence {sk} is jB-summable if and only if it is strongly A-summable?
(In this case B and A are called equivalent). For the Cesaro method of order
one, A = Cu the question has been answered positively in [4]. We generalize
this result to arbitrary row-finite regular matrices A (Theorem 1). There exist,
however, row-infinite regular matrices A for which no equivalent B exists
(Theorem 4). Even for row-finite regular A it is not always possible to find a
normal B equivalent to A. We give (Theorem 2) necessary and sufficient
conditions for the existence of a matrix B with these properties. As a simple
special case of Theorem 2 we have: the method A is not equivalent to any
normal ordinary method B if pk = maxwαwfc—»0 as &-^oo. A corollary (Theorem
3) of Theorems 1 and 2 concerns the question of equivalence of ordinary
row-finite and normal methods.

We avoid the use of Functional Analysis (although its application could
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shorten some proofs). For simplicity we assume that the matrix A of the strong
summability method is always regular and positive generalizations are possible.

2. Row-finite matrices. A strong summability method A, based on a
row-finite regular matrix A, can always be replaced by an ordinary matrix
method:

THEOREM 1. For each row-finite regular positive matrix A there is a
row-finite regular positive matrix B such that a sequence {sk} is A-summable
to the value σ if and only if it is B-summable to this value.

The proof is based on

LEMMA 1. Let K be a finite set of natural numbers, let xk be complex
and ak positive {ak ^ 0) values defined for k^K. Put

(3) Σ \xk\ = x, Σ ak = a.
k&K

Then there exists a subset K' of K such that

( 4 ) Σ 6 2^ ak = — a

PROOF. One of the sums Σ | Re xk | or Σ I Iw&k I is not less than ~^ x, hence

it is sufficient to derive (4) from (3) for the case of real xk but with -~- x replaced

1by -7Γ- x. For real xk9 we destinguish two cases. If
o Σ. ^ -7Γ- x, we can take

ό

K'= K. If this absolute value is less than ^- x, let K+, K~ denote the sets of k with
ό

xk^0 or xk< 0, respectively. Then we select K' equal to one of the sets K+,

K , so as to satisfy the second condition (4) we will also have
^ 1
^ oχ

PROOF OF THEOREM 1. It is obviously sufficient to find a regular matrix

B such that A-lim sn = 0 and S-lim sn = 0 are equivalent.
For each n = 0,1, *, let K — Kn be the finite set of integers k for which

ank>0> k € K, ank = 0, kζ£K. If 2-̂  an1c = an, we consider all subsets K' = K'nυ,
k

v = 1,2, , N(n) of Kn which have the property Σ ank ^ -^ an.Corresponding

to one row ank of A, let us define N(n) rows of a matrix B (each corresponding
to a set K'nv) which consist of the numbers
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( 5 ) bmk = ( Σ «nfc)"Ifln* if k € K'nv,bmk = 0 if & 5- X'™.

Since A is regular, for some M > 0, αw ^ M, and hence αnJt :g Mbmk. We
order the rows of B in the following way: first N(0) rows corresponding to the
row aok of A then N(l) rows corresponding to the row alk of A and so on.

It is easy to see that B is regular, and that ^bnksk converges to zero

whenever the sequence sn has the property ΣkζKnank\sk\ —> 0. Conversely, if sk is

B-summable to zero, then taking xk — anksk, ak = <znA; in Lemma 1, we see that
for at least one m with the corresponding set K'nυ,

(6) Σ «n* 1̂ 1 ^ 6 Σ *»ΛI ^

Thus, 5n is A-summable to zero, and the result follows.

3. Normal matrices. In contrast to Theorem 1, it is not always possible
to replace a row-finite strong summability method by a normal matrix method.
We prove more. We consider also row-infinite matrices, and give necessary
and sufficient conditions when this replacement is possible.

For a regular positive matrix A we write

( 7 ) ρk = max ank, k = 0,1, \
n

THEOREM 2. Let A be a regular positive matrix. There exists a

normal method B which is equivalent to A if and only if for some M and k0,

( 8 ) PkΦ0, k^k0,

oo

(9) Σ a n Λ - ^ M , * =0,l, .
fc=*o

If the conditions are satisfied, B may be taken to be regular and

consistent with A.

The following two lemmas will be needed:

LEMMA 2. Let pk ^ 0, k = 0,1, be an arbitrary sequence and B be an
arbitrary matrix method. Then (i) B sums all sequences [sk] with pksk —> 0 if
and only if

(10) lim bnk exists for each k = 0,1, ,
n—*°°

and there are M and kQ such that
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(11)

(12)
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Pk = 0, k s ko implies bnk = 0, n = 0 , 1 ,

Σ i&^

(ii) B sums all sequences {sk} with Y^ Pk\sk\ < + °° if and only if B

satisfies (10) and there are M and k0 such that

(13) \bnk\ S

PROOF. In both cases (i), (ii), it is easy to prove the necessity of the
existence of a k0 for which (11) is satisfied. If this holds, we can omit from B
all columns bn1c for which pk = 0. Thus it is sufficient to prove our lemma for
the case when ρk > 0, k = 0,1, . But then the lemma follows from the well-
known theorems about matrices which sum all null sequences, or all absolutely
convergent series (compare for example [l,p. 63] for (i), and [2,p.29] for (ii)).

LEMMA 3. Let A be a positive regular matrix, with the pk defined by

(7). Then A-lim sn = 0 implies ρksk-+0.

PROOF. Assume that {sn} is A-summable to zero, we have to prove that

pksk—*§. Let e > 0 be arbitrary. We take first N so large that z2 a-nk \sA < e

k

for n^ΞiN and then K so large that ank\sk\ < € for k g: K, n < N. Then
a>nk\sk\ < e for k^K and all n, hence pk\sk\ < e, k^K.

P R O O F OF THE SUFFICENCY OF THE CONDITIONS. Assume that the
conditions of Theorem 2 are satisfied. We may suppose that k0 = 0. Since A
is regular, the sequence pk is bounded. We cannot have pk—>0, since then (9)
would imply that the sequence {1,1, " •} is A-summable to zero, in contradiction
to the regularity. Hence we can find a sequence kj strictly increasing to infinity
for which ρki—*p Φ 0. We define B as follows:

\
L-ft Pi

(14) B =
ftά-1

Pkχ +



STRONG AND ORDINARY SUMMABILITY 319

The matrix B is regular, and one easily sees that JB-lim sn = 0 is equivalent to

PnSn —* 0. By Lemma 2 (i) applied to the matrix A, we have A-lim sn = 0, and

hence even A-lim sn — 0 for all sequences sn with ρnsn->0. By Lemma 3,

A-lim sn = 0 is equivalent to ρnsn —> 0. This, together with the regularity and

the linearity of the methods B and A, implies that B-lim sn = σ is equivalent

to A-lim sn = σ.

P R O O F O F T H E NECESSITY. We begin with the following

LEMMA A. If a normal matrix B and a sequence ek > 0 are given, there
exists a sequence {sk} with the properties

(15) \bkk\ \sk\ ^€k9 | σ n | = e n ,

where σn is the B-transform of {sk}.

Making €k —>>0 slowly, we obtain a sequence sk which is B-summable to
zero, and whose terms in absolute value are close to l ^ l " 1 .

PROOF. We construct sk by induction. Put s0 = eoboo~
ι. If s0, , sk^ are

already determined, let τk = bkoso + +bk.k-i Sk-i We choose sk so that the

modulus of bkksk is \τk\ + ek9 and the sign is opposite to that of τk the

sequence sk satisfies (15).

Now we assume that there is a normal method B equivalent to A. From

Lemma 2 (ii) we derive that each sequence sk with ^ ρk \ sk \ < + oo is A-sum-

mable to 0. This applies also to|s f c | , hence sk is A-summable to zero, and thus
5-summable. Again from Lemma 2 (ii) we derive that

(16) |6 Λ J t | ^MPk9 k^k0.

Since bklc Φ 0, we must have pkφ09 k^ ko, so that (8) is satisfied.

Applying Lemma 4 and (16), we find, for each null sequence €k > 0, a

sequence sk9 β-summable to zero, for which Mpk | sk \ ^ ^ek. Hence 5̂  is A-

summable and the sequence ekpk~
ι = o(\sk\) is A-summable to zero. Applying

Lemma 2 (i) to the matrix with the coefficients ankpk~
ι, we see that also the

condition (9) is satisfied. This completes the proof of Theorem 2.

Theorems 1 and 2 contain the following corollary:

THEOREM 3. There exists a row-finite regular matrix B which provides

a 1-1 mapping and which is not equivalent to any normal matrix.

PROOF. We take the matrix B which corresponds to the strong Cγ-
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summability according to the proof of Theorem 1. Since B contains all rows

of Cl9 it provides a 1 -1 mapping as the latter matrix.

If the restriction to a 1-1 mapping is omitted, the construction of B

becomes trivial. In this case one can take for B any row-finite regular matrix

for which bnki — — bn>ki+ί, n, i = 0,1, for some sequence kt —» °o.

4. Row-infinite matrices. Another counterpart of Theorem 1 is the fact

that a row-infinite strong summability method is in general not equivalent to an

ordinary matrix method:

THEOREM 4. There exists a row-infinite regular positive matrix A such

that no ordinary matrix method B sums exactly the strongly A-summable

sequences.

PROOF.

A=

We put

/ 2-°

0

0

0

0

1

0

0

2" 1

0

0

0

0

0

1

0

2"2

0

0

0

0

0 •••

0

1 . . .

\

/

The strongly A-summable sequences [sk] are exactly the sequences for which

(17) lim s2jc-i exists.

If B sums every such sequence, then the matrix C:

(18) cnk = 2kbn>2k

sums every sequence {wk} w i t h ^ \wk\ < + <χ>. The statement of the theorem

is therefore a consequence of the following lemma:

LEMMA 5. If a matrix C sums every sequence {zvk} satisfying^Z \wk\ <C

4- °°, then it sums also a sequence {xk} withΣ \xk\ = + oo.

PROOF. If is easy to see (and is also the special case of Lemma 2(ii)

when all pk = 1) that the assumption about C of the lemma is equivalent to

the following. There exists a n M ^ O and a (bounded) sequence {ck} such that

(19) \cnk\ ^ M , * , * = 0,l, ,

(20) l im cnk = ck9 £ =
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By means of these conditions we construct the required sequence xk. We

define recursively integers k0 < l0 < kλ < lλ < and n0 < nx < " such that:

(21) \ctj-ch\ ^ 2 ^ , j = 0,1, •••;

(22) \cnk,-cnlj\ ^2-', n^n,;

(23) | c . -ck.\^ 2~j, \cnl. -cι.\^ 2~\ n > nj+1.

If kj-u lj-ι, Πj are already determined, we extract a convergent subsequence

from the bounded vector sequence {ck, cok, clk, cnjk}k-o.£.o and hence are able

to satisfy (21) and (22) with proper kjy ly, an integer nj+1, suitable for (23), exists

because of (20). From (23) and (21) we derive

(24) | c n * , - cnlj I ̂  3 2"J, n>nJ+1.

Now we put

(25) Xk. = - Xι = T ^ , y = 0,1, ^ Λ = 0 for other k.

The C-transform of xk

(26) Σcn**k

exists because of (22). Also,

j = 0

because of (22), (24) and (19). By a variant of Toeplitz' theorem ([1, p. 63];

this is the special case of Lemma 2(i) when all pk = 1), the matrix D = (dnk),

dn.=cnk. — cnι. sums all null sequences. Hence {xk} is C-summable, while
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