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1. Introduction. Let f(x) be an integrable and periodic function with
period 1. Let {4r,(x)} (n=0,1,2,-++) be the orthogonal system of Walsh (We
refer to [4] for definition of the system), and

oo

(1) > av@),  an= [ )b dz.

n=0
be the Walsh Fourier series of f(x). We denote the partial sum of (1) by

n—1

sa(x) = 2 a,¥(x)

v=0
and the strong Cesaro mean of (1) by

1
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" =0
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where
s _ (n+d — n*
2= (") = Tarp -
Paley [4] stated the following theorem without proof.

THEOREM A. If f(x) belongs to the class L*(p>1) and 8>1/p, then®

[ @ax IR@Iydr=a, [ 1Az,

And he conjectured that Theorem A would be valid for any 3>0.
In the present note, the author will prove this conjecture in stronger
form. In fact, if we set

*) Ajp is a constant depending on p only and is not necessarily the same in different
occurences.
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then we can prove the following theorem.

THEOREM B. If f(x) belongs to the class L*(p>1) and 8>0, then

[ (max| Ry de = Byo [ \f@))” der

On the course of the proof, we will also show the following theorem.

THEOREM C. If f(x) belongs to the class L*? (p > 1) and r=2, then

1,00

fo (= I—s(x)_n—”(x)l‘)2 dxécpfol f@D)|? dx,

n=1

where a,(x) is the arithmetic mean of s,(x).

The trigonometric analogue of this theorem has already given by the
author [7]. In the last paragraph, we shall give a remark about the trigono-
metric Fourier series.

2. A Lemma on the decomposition of a vector-valued function. Mr.
Igari [3] gave a decomposition theorem of Hormander type [2]. We may
extend this to a vector-valued function.

Let u(x)={u,(x), uy(x), +++, us(x),+++} be an ["-valued (»=1) function
of £€[0,1] and measurable in the Bochner sense. If |u(x)| € L?, then we
write fe L*(I").

LEMMA 1. We set
1
yo=2f lu(@)l dz ,
0

then, for any y>vy,, we can decompose u(x) such as

1°) u(x) = v(x) + w(z), wlx)= i wi(x),
2° lv(@] = 2y, almost every zx,

3°) f lo(@)| dx < f lu@)| dz,
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4°) )y f lwe(@)] dz =< 2 f Ju@)l dz,
k=1 0 0

(6°) There is a sequence of disjoint intervals {I.} such as

S L=t f lu(@)l dz,  support (w)C Iy
k=1 y 0

and the end points of 1, are dyadic-rational,

(6°) f wi@)de =6, (=12-+"),

where 6 is the zero element of I".

PROOF. The proof is almost the same to the case of a real valued
function. Since vy > y,,

% = %f ()| dxz%fo ()] d

We divide the interval [0,1] in two congruent intervals and denote it
by Jo; ¢ =1,2), then

T’finJﬂu(x)ll dx = Zj;llu(x)ll dxr = 2]0 lu@)] de=<1y.

08

Then we divide J,,; into two equal intervals J§), J, and if there are
such intervals that

1
[J9)] ()] dx = 3y,
0,% Jé])i

then we term them I,; (¥=1,2,---.). The remaining intervals are termed
by Jix (k=1,2,-++), and we divide each of them into two congruent intervals
such as J¢), (j=1,2,--:). If there are such interval that

1 f -
) Jeende=y,

then, we call them I, (k=1,2,---) and the remaining intervals are termed
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by Jyr (k=1,2,---). We repeat this procedure. Since the number of inter-
vals of I, for fixed j is finite, we order these I;; to a sequence {I;} (k=1,
2,+++). Then I, is evidently disjoint. Since every I, is one of the type I;,
and is contained in one of J;_,, which belongs to the preceding division,

(2) Y= L1 [ju@) de

= 1l ol 1 al ™ [ Jut@l de

=2y.
Let us set
(3) v(x)={11kl_1£fl(t)dt, if xel,
u(x), if rsul,=E,
u(x) - 'Z/'(x), JCGI;C
wi(x =i
v, x &I,
and w(x) = Zwk(x) .

Then (1°) and (6°) are evident.
If x<l;, by Minkowski’s inequality

Juoa]

= 1107 (S| [y e

i=1 I

lv@]1 =117

) (r=1)

<151 [ (Z ol de

I Ci=1

gukl-lf,nu(nudt.

Hence we have

j: | v(z) | dx =<L+ éL)“v(x) | dz

éfEcllu(x)llderiij Ilu(x)udx:fo | (x) || dz,

k

which is (3°). Since, by (3)
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éZflllu(x)de

and this is nothing but (4°). If x < I, by (2),
lv@) =2y

and if x& U, then there is an interval I containing x and with length
smaller than arbitrary given positive number such as

T flaota=;.

Hence by the theorem of differentiation, we have
lu@l =y  (a.e).
However u(x)=v(x), by (3), and we get

@l =2y (a.e),

this is (2°).
By the construction of I, we have

1] ggl,‘f lu(@) | dx
and

. 1
L|Ik|§§follu(x)lldx.

Other properties of (5°) are evident. Thus we have proved Lemma
completely.

3. Strong summability of Walsh Fourier series. Let f,(x)< L(0,1), and
its Walsh Fourier series be

Salx) ~ :.Z e ()
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and its partial sums be

m(n)—1
Sm(n) (x:fn) = Z e ‘I’V(x) .
v=0

THEOREM 1. If fu(®)eL™ (r>1), and p>1, then

fol (i | $maw (2, fn>|’)% dr = A,, 01 (5: \f,.(x)v)% dx .

233

PROOF. When p=r, we get this inequality by only addition of known

formula.
Next we shall prove that

L
T

Q w2l {Slsnn @t} =5)= % [ (S 1407 @,

n=1
for any y>0.
We set

9k+1_1

ao(x,fn) = Cé"), 8Ic+l (x’fn) = z Cl(cn) ‘l’k(x)

v=2k

and
gn(x) = fn(x) Vo (nd (x> .
Then, by the known formula (see Paley [4] or Sunouchi [8])

Sm(n)(x:fn) \Pm(n)(x) - Sk,(n)(x; gn> + 8I(,(n)(:'t’ gn) e+ Skl(")(x, gn),
where

m(n) = 2000 4 280 4 oo 2R
0=Fki(n) <kyn) <e--.
We suppose the vector-valued function
o) = 9.2, gala) > gule)e o)
is #(x) in Lemma 1 and decompose it into

v(.:c) = {vl(x)’ 'vz(x), cy ‘Z)-,,,(x), M) }

and
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w(x) = {wP(x), wP(x), -, wP(x), --}.
Then
sm(n)(x»fn) ‘l"m(n)(x) = Z Sk(n)(x,'vn) + Z 8k(n)(x, w™)

= Va(x) + W,(x), say.
As Watari [9] showed

E=12--,
Seen(@, W) = 0 (n _ 1,2,.-.,> for z¢E= Ul,.
Hence
21 (S W1 >} c £
and
plel (T 1W.@1Y > s} = oy = 1513,
by Lemma 1.

On the other hand, concerning V,(x), it is evident to see,

f:(Z 'V"")dxéf:(z |0l") dz.

Thus, from (2°) and (3°) of Lemma, we get

A 1
el V> =4 [ jorda

A

<

1
27—1 r—lf d
Sy [ vlde
27A

=
-y

[ru@naz=E 51,

Thus we have proved (¥). Hence, applying generalized interpolation theorem
of Marcinkiewicz (See, J. Schwartz [5] or. A. Benedek, A.P. Calder6n and R.
Panzone [1]), we can prove the theorem for 1< p <7, and the complete
theorem may be gotten by familiar conjugacy argument.

THEOREM 2. If flx)eL?(0,1) (1< p < o), and r = 2, then

[(E 1@l gz, [ 7@ e,

n=l
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where s,(x) and o.(x) are the partial sum and the arithmetic mean of
Walsh-Fourier series of f(x).

PROOF. Applying Theorem 1, we have

[(5 s@=a@l)f 4y [(5 5 s =a@lf 4,

n=1 k=1 n=2k1

=2 ‘f; 1 (i | sp(x) — zrzk(ac)\’);)T dx

k=0

=2 [ (T 12 —outo)?f dz,

k=0

by Jensen’s inequality. From the known reduction (See Sunouchi [8]), we get

f l (i |s() — o(2)| ) dx

0 \kmo

=A, j; 1 (,% | 52:() — Spr-t41] 2>22 dx
=4, [ 1)) dz.

Thus the theorem is proved. From Theorem 2, G. Sunouchi and S. Yano [6]
deduced the following theorem.

THEOREM 3. If f(x)eL*(0,1) A< p< o), and 8, k>0, then

[{mas (s S aniis@ ) de=a,. [ 1 f@0r de,

7 op=1

where s,(x) is the partial sum of Walsh Fourier seeies of f(x).
For the sake of completness, we reproduce the proof.
PrROOF. For a given 8>0, we take s such as

1

1
r N

+

3>1-— % (s>1) and set, = 1. Then by Hélder’s inequality

Lo A s - el

v=1
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v v=1

v=1

- Bs (i | 5,(x) :W(»’C)Vk)lr‘(n’; n(@—nnl)}

B (z ste)=ao"

- |5v(x)_°'v(x)l Tk)lF .

Hence

1 1 n 1)?
j(; {E;},iif (znT ; AL | s(x) — o(x)] k)k } dzx

=[5 s@=a@l") 4.

V=]l
If for a given k, we take s sufficiently near 1, then 7% is greater than 2,
because 7 '+s5'=1. So by Theorem 2, we get,

fo 1 { max (—Aj‘—E S A2 | (@) — 0@ kﬂp dzx

1=n<eo p=1
1
=4, [ 1 Al dz.
0

On the other hand we know a maximal theorem concerning o,(x),
that is

fol{max Ian(x)l}”dngp[)l | Alx)|? dzx .

0=n<oo
Thus we get the theorem.

4. Trigonometric Fourier series. On the above argument, we couldn’t

get good theorems for the critical case p=1.

If we should follow the above method, the unnecessary logarithmic factors
would be added to the right hand side of inequalties. However we can get
satisfactory theorems in the trigonometric Fourier series. These are proved

by so called complex method. For example, we get

THEOREM 4. Let s,(¢¥) and a.(¢¥) be the partial sums and the arith-
metic means of Fourier power series of @(€¥), respectively. Then for r=2
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f{i % | 5a(e") — an(e"’)v}lF d9<B {f| ()] log*| p(e)|db}+ C,

n=l 0

N

f{i % | 5a(e®) —o,.(e“')v}% d&_S_An{f”hp(e“’)l sl 0<p<D).

n=1

J. Schwartz [5] proved the integral analogue of the following Lemma,
which is proved by the same method.

LEMMA 2. Let f,(6) n=1,2,- ) be a sequence of integrable functions
and let f,(6) denote the conjugate function of fa(6). Then, for r>1,

_/;2’:(% lﬂ(ﬂ)l’)leﬂéBfo%(g lfn(ﬂ)l’)¥log+(g lfn(ﬁ)l’f de +C,

n=1

B

[[(Eir0rfassn, [ (S inorf el o<w<n.

n=1 n=1

From this lemma, the reduction is similar to the case p>1. (See Sunouchi

[7D).
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