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1. Let {¢p(x)}n =1,2,---, be the system of Rademacher functions, i.e.

1(x €[0,1/2))

$o(z) =/ ol + = do()y bal@)= bo(2"2),
— 1(x < [1/2, 1)),

and let

Yu(x)=1 for n =0, and
",’n(x): ¢n(1)(x)¢n(2)(x)' : '¢‘n(r)(x) for n=2""42"® .. 420

where nl)>n2)>--->nr)=0.

The functions thus defined are called the Walsh functions, which form a
complete orthonormal system over the unit interval. We refer the reader
to Paley [5] and Fine [1], for detailed properties of this system.

It was proved by Paley [5], that the Walsh Fourier series (abbrev.WFS)
of a function f{x) belonging to L?(0,1) (> 1) converges in L? norm to f(x),
but the corresponding results for functions in L' or L'log*L' have not yet
been established, because the conjugate function, the most powerful tool in
the theory of the trigonometric Fourier series, cannot be used in the theory
of WFS,

The purpose of this note is to give a direct estimate for partial sums of
the WFS of functions in L', and deduce the mean convergence of WFS in
the so-called “critical” case. Let we write

fix)~ i), o = [ Famniorde

v=0

the integral being taken over the unit interval and
n—-1

(2= 5w = L enl@)= [ fle + ODuws,

v=0

where - represents the “dyadic addition and
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n-1
Dy(t) = - Pu(2)
v=0
is the Dirichlet kernel for the Walsh system.

2. THEOREM 1. There exists an absolute constant A >0 such that for
every f € L', for every positive integer n and for every positive number y,
we have

m({z;|sa(x 5 1 > y)= Allflli /.

As the proof indicates, we may take A = 6.

This theorem, combined with Bessel’'s inequality and the interpolation
theorem of Marcinkiewicz ([7], vol. II, p.112) and finally with a standard
conjugacy argument, gives readily the following

THEOREM 2. (i) If f € LP(1 < p < o), then
Isa(z 5 Pll, = ALl SNl
(ii) If f € L'log*L!, then

Isut; Al = A [ @) llog? (Al dz + 4,

where the constants A,, A depend neither on f nor on n.

By a standard argument due to Kolmogoroff [4], we can see that Theo-
rem 1 implies also

THEOREM 3. There exists a constant A,, depending only on u, such that

([Isasnl 2y <4001 ©<p<D.
3. PROOF OF THEOREM 1. The proof proceeds in several steps.

LEMMA 1. Let g € L' and let y> lgll, be a given number. Then we
can decompose g as follows:

(i) g=‘v+‘w, ur:Zwij;
(ii) lv] =2y for almost every x;

(iii) ol = ligllys
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Gv) 20 llwylly = 4liglls;

(v) there exists a countable system of disjoint “dyadic intervals” I;:
IL,=1=[a,a + 27", where a = a;; is of the form 1/2" with
01 <2

> m(l;) = lgh/y, and u = w,; vanishes outside I,
(iv) fudx = fudx =0  for every pair (i,j).
I

This Lemma is due to S. Igari and is a slight modification of the “cove-
ring lemma” of L. Hérmander. So we omit the proof, referring the reader to

[2] or [3].
LEMMA 2. Let g < L' and let its WFS be > b (x). Write
8u(x; 9) = bo, Biia(z; 9) = 20 {bah(x); 28 = v < 2841}
Let u = w,; be a “piece” of g in the previous lemma. Then

Slx;uw)=0 for x&I=1,

PROOF. It is known that (cf. [1] and [5])

Bensle i) = [uibu(e + ODu(x + ) de

and

Sulx+a;u)= f u(t + a)pu(x + )Dy(x + t) dt

where U =10,27%, by (v) of Lemma 1.

If k<i, we have ¢,()=1 for t €U and 0=v =k,
thus the Dirichlet kernel in the integrand is constant in the interval over
which «(t 4 @) has, by (vi) of Lemma 1, the mean value 0.

On the other hand, if 2=4¢, £ & I implies Dy(x +1¢) =0 for ¢t € U,
since (z +a € I being equivalent to z < U) xz &U, te€U imply x



186 C. WATARI

+t & U and Dy(x + £)= D,(x)= 0, for, as is well known,
D) = T @+,

As a corollary of Lemma 2, we have
LEMMA 3. Slrx;w)=0 for 2§E=\_JI

PROOF. For k =0, the result follows from (vi) of Lemma 1. For other
k’s, it is sufficient to see that, by Lemma 2,

S(x;w) =D 8(x;u)=0 for x ¢ CEZHCI.

We can now complete the proof of Theorem 1. Let f € L!, a positive
integer #n and y > || f|l, be given. Put

9(x) = flx)a(z).
Then, by an identity due to Paley ([5], p. 256)
$n(@ 5 Yn() = 8nix(x 5 @)+ Bniay(@; g)++ = o+ Suey( 5 9)

Decompose ¢ by Lemma 1, obtaining
(@3 ) Pn() = 20 Bncor(@30) + 22 Baclx; w) =V + W, say.

W vanishes outside £ by Lemma 3; thus
{x; [W| >y} C E

and

m({z; |[W| >y} = lgli/y = If1./y,

by Lemma 1, (v). On the other hand, Bessel’s inequality gives
[z = [ 101z =25 [ (o1de = 20191, = 21 A0

Consequently
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2
i@ VI > )=y [ 1VIde = 2151,

Thus we obtain, for y > [If],,

m({z; | su(z 3 ) > 293) = 311 f./y

m({x; |su(x; )| >y} =6l fll/y  for y > 2| fl].
But, for y =<2 || fl,, it is clear that
m({x; |su(x; )l > 1) =1 =211/,
the proof is complete with A = 6.

4. Lemma 3 also gives a proof of the following theorem due essentially
to S. Yano [6].

THEOREM 4. Put
(x; f) = D &dlx; f) & =0,10r — 1
k=0

Then
m({z; |8*(x; )l > »}) = AlflL/y
where A is an absolute constant.
PROOF. Decompose f itself by Lemma 1. It is clear that
|8%(x; )] = |8z v)| + [8%(x; w)l
and the second term on the right vanishes outside E (Lemma 3). Pérseval’s

equality will give the necessary estimate for |8%(x;v)|, and the rest of the
proof may be left to the reader; a possible value of A is 6.
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