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Let X, be 4-dimensional differentiable manifold and let B(X,,Y,G) be
an arbitrary tensor bundle over X,, where Y is a linear space of dimension
47*% with coordinates (yj:::#)". It is well known ([1]) that the structural group
G of B(X,,Y,G) is reducible to the orthogonal group O(4). And if X, is
orientable, then it is easily seen that G is reducible to SO(4) or one of its
subgroups. If especially Y is a 4’-dimensional linear space with coordinates
(), then the matrix representation of SO(4) or its subgroup operates on Y
as matrix transformations.

The purpose of this note is first to show the existence of two intrinsic
(1-1)-type tensor bundles over X,, which are subbundles of B(X,,Y,G) and to
show the existence or non existence of cross sections of the two intrinsic
subbundles wholly depends on the group G (§2). These are owing to the
speciality of SO(4).

Secondly, we classify X, following the structural group G and study
further on each classes case by case (§3 ~ §7).

1. Preliminary. The local subgroups of SO(4) are treated by Otsuki [2]
in the standpoint of holonomy groups of 4-dimensional Riemannian mani-
folds. And the classification of structural equations of all connected sub-
groups of SO(4) is done by Ishihara [3] making use of the structural
equation of SO(4) indicated by Chern [4]. We will consider it in another point
of view and will do the classification of the connected subgroups of SO(4)
in a different way.

As is known, SO(4) is locally represented as SO(4)=SU(2)®SU(2). SU(2)
leaves invariant an anti-involution of the second kind and SU(2)®SU(2) leaves
invariant that of the first kind which is the Kronecker product of the anti-
involutions left invariant by the two SU(2) (Cartan [5] ; Berger [6]). SO(4)
is the real representation of the group SU(2)®SU(2) restricted on the double
element (real dimension 4) of the anti-involutions (see Appendix 1°). Let 3,
and 8, be the complexifications of the Lie algebras of the first and the second
SU(2). 8, and 8, are of complex dimension 3. Then 8 =8, + 8, (direct sum)

1) Throughout this paper, the indices #,, j;, 4,7,a,b,-- run from 1 to 4, unless otherwise
stated. This tensor is of type (p-¢).
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is the complexification of the Lie algebra of SO(4). Let 7,:8—38, and m,:3
— 8, be the natural projections, so that m(8) = 8,, m,(3) = 8,.

First, we consider a connected subgroup G of SO(4) irreducible in real
number field. If G is reducible in complex number field, we get G=U(2) or SU(2)
(real rep.) and any other cases can not occur. For, if G is a proper subgroup
of SU(2), its dimension is =2 and hence G is integrable. In this case G
leaves invariant a real direction or real 2-dimensional plane®, but this is
impossible. Consider the case G is still irreducible in complex number field
(absolutely irreducible). Let g be the Lie algebra of G and we denote the
complexification of § by g* As is well known (Cartan [7]), g* is semi-
simple or semi-simple mod t', where t' is the Lie algebra of the complex
homothetic group (complex dimension 1). We consider the case g* is semi-
simple. Then, =,(g*%) &3, and the kernel g, = 7i'(0) (%3%,) is an ideal in
g*. If the dimension of this kernel is equal to 1 or 2, then it is integrable.
Since we now consider the case where g¢* is semi-simple, we must have 4,
=0 or % (in the case where dim g, = 3, we have g, =3§,). It is analoguous
for the kernel g, = 77%(0):g, =0 or 8. If g, =8, and g, =8, we get g*
=8, +8,, hence G =S04). If g, =0, 4, =8, (resp. g, = 3, 8§, = 0), we get
g* =3, (resp. 8% = §,), hence G = SU(2) (real rep.), which is the case where
G is reducible in complex number field. Consider the case g, =g, =0. If
dim §* <3, then g% is integrable, which is impossible. If dim 4% = 3, we
can verify that G leaves invariant a real direction (see Appendix 2°), whose
case is omitted in the present consideration. If g¢* is not semi-simple, g%
contains the Lie algebra t'. In this case, it is possible only one case: G =
SU@2)RT" = U(2) (real rep.), where T" is the one dimensional torus group.
But, this is the case where G is reducible in complex number field, which
is already considered.

Summing up, if a connected subgroup of SO(4) is irreducible in real
number field, then G is one of the followings:

SO), U), SU().

If G is reducible in real number field, then either it leaves invariant
mutually orthogonal 1- and 3-dimensional planes, or two 2-dimensional planes.
Hence we get the following lemma.

LEMMA 11. We can sum up all connected Lie subgroups of SO(4) as
follows:

(1) (irreducible in real number field); SO(4), U(2), SU(2);

2) When G leaves invariant a complex direction z, then G also leaves invariant the conju-
gate direction z. Hence the 2-dimensional real plane spanned by z and z is left invariant
by G.
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(I1) (reducible in real number field): 1 x SO(3), SO(2) x SO2), 1 x SO(2),
SO(2) x SO(2), SO(2)x.SO(2), 1.

The notations are as follows. The Lie algebras of SO(2) x SO(2), SO(2)
x §O(2), SO(2)x SO(2) are given by matrices of the form :

0 A
—» 0 0
SO2)x SO2): (M\,p : independent),
0 p
0
—u 0
0 A
—x 0 0
SO(2)x SO2): (k: const. =0, = 1),
0 0 28
— kn 0
0 A
—x 0 0
SO(2)%X.50(2): )
-2 0

If =—1 in the case of SO(2) x SO(2), we consider the frame with
opposite orientation, then we get the case of SO(2) X SO(2). SO2) x SO(2),
SO(2) X SO(2), 1 x SO(2) are subgroups of U(2), but not of SU(2). SO(2)x
SO(2) is a subgroup of SU(2) (see Appendix 3°). The relations among them
are summed up in the following table.

SU(2) > SO(2) X SO2)
1. 1) /
UE) —
TS S0@) x SO(2) — SO2) xS0@2) —1
SO(4) g ~__

1 x SO(3) > 1xS0@©)
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Now, we get the following lemma.

157

LEMMA 1.2. Let X, be an orientable 4-dimensional differentiable mani-
fold and denote an arbitrary tensor bundle over X, by B(X,,Y,G), where Y
is a linear space of dimension 4°*% with coordinates (yj::). Then the group
G is reducible to one of the groups indicated in Lemma 1. 1.

2. Two intrinsic (1-1)-tensor bundles associated X,. First, let I, J,, K,

and I,, J,, K, be the matrices such that
0 1 1 0
-1 0 0 0 0 1w
(2'1) IIZ aJl: >
0 0 ——1) k——l 0 0 )
1 0 0 -1
0 1
0 ~1 0
K, = 5
0 1 0
-1 0
0 1 1 0
-1 0 0 ) 0 0 —1j
(22) Iz= ,J2= ’
L 0 0 1 -1 0 0
-1 0 0 1
0o -1
0 -1 0
K2:
1 0

We remark that if we put
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1 0
1
2. 3) A= ,
1
0 -1
then we have
2. 4) L =AM\, J, = A0, Ky, = AK WL

These I, J,, K, and I, J,, K, satisfy the quaternic relations:

L=lh=Ki=—4I1J, =—JI1,=K, JK,=—KJ, =1,
K\, =—IK,=J;

L=Js=Ki=-1 I,lJ,=— J,I, = K,, J,K, =— K,J, = I,
K,I, =— LK, = J,.

@. 5)

And we also remark that each I,, J,, K, is commutative with each I,,J,, K,.
Now, any transformation of SO(4) decomposes into

x = ax — ay — au — a x =bx —by—bu— by
¥ =ax + ay — au + av v =bux + by + byu — byv
2. 6) W =ax+ay+awu—av , 2 6),u =bx— byy+ bu + by,

v = a,x— ay + au + aw v = b,x + byy — byu + byv

(@ +at+ai+ai=1) B+ b+ b+ bi=1)

where (z,y,u,v) is a real vector in the 4-dimensional Euclidean space E*
with respect to orthogonal bases. These equations are indicated in Chern [4]
(see Appendix 1°).

We can see that under the transformation (2.6),, I,, J;, K, are left
invariant and under the transformation (2.6),, each of them is transformed
into a linear combination of I, J,, K,. Similarly, I,,J,, K, are left invariant
by (2.6), and each of them is transformed into a linear combination of I,
J,, K, by (2.6),. That is, by SO(4), the matrices I,, J,, K, (resp. I, J,, K,)
are transformed into the matrices I, J;, K (resp. L, J;, K;), such that
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I =al +8J, +7K, L, = a1, + B, + 7,K,
2. 7, J. =ail, + BJ, +v K, @ N Jy =arl, + B, + V.K,
Ki=ajl, + B/J, + V/K, K =a/I, + BT, +v/K,
o, B v a, B, A
The matrices | a; f; v, and a;, B Y, are
al’ B v a, By

orthogonal matrices, which are easily verified from (2.5) and from the same
relations among I, Ji, K; (resp. I, J;, K3).

A transformation of SO(4) in a neighborhood of the identity is given
by exp«, where

0 a b
—a 0 d e
—-b —d 0
—c —e f 0

is a matrix in a neighborhood of the 0-matrix. For this a, we can verify
that

S al, — La =(c — d)J, —(b + oK,

alJ, — Jia =(a - /K, —(c — d)I,
| aK, — Kia =0 + oI, —(a — f)J,,

(2. 8)

2.9 1 aJ, — Jya =(a + /K, +(c + d),
akK, — Ky =(b — &)I, —(a + f)J, .

LEMMA 2.1. The necessary and sufficient condition that a (4 X 4)-matriz
A satisfy A’ = —11ids that A= al, + BJ, +"K, (@*+ 8 +7V =1 orA =
al, + BJ, + VK, (@®+ B*+v?=1), where I, J,, K, or I,, J,, K, are given
by (2.1), (2.2).

3) This matrix decomposes into the form (6) in the Appendix 1°.
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PROOF. The sufficiency easily follows from (2.5). Conversely, suppose
that A satisfy A? =— 1. By an orthogonal transformation M, we can trans-
form A into A’ = MAM™ which is just the same as I; in (2.1). First, sup-
pose that det|M| = 1. Under the present transformation by M, I,, J,, K,
are transformed into I, Ji, Kj such that (see (2.7),)

A(=IL)=a,L, + aiJ; + &'K]
Jy =81 + BJ: + BK]
K, =71+ vJ; + K]

If we consider the first equation with respect to the original coordinate

system, we see that A =al, + a;J, + @K, and a? + a> + a;? = 1.

If det|M| =—1, we can put M =N M, where A is given by (2.3) and
det|M,| = 1. From MAM™ = I,, we have M,AM;*' = A ')A = I,. In this case,
we get A =a,I, + ayJ, + &K, (& +a’ +ay?=1). QED.

Now, let Y be a linear space of dimension 4* with coordinates (y}) (7,7
=1,2,3,4). We denote the subspace of Y which is the set of all matrices
al, + BJ, + YK, (a®* + 82 + v* = 1) by Y,. Similarly, we denote the subspace
of Y which is the set of all matrices &'I, + 8'J, + YK, (@?+8?*+v?=1) by
Y,. Any matrix A of Y, or Y, satisfies A2 =— 1 by Lemma 2.1 and we can
write symbolically AY,A™! =Y, taking account of (2. 4).

By virtue of (2.7), these subspaces Y, and Y, are invariant under SO(4).

DEFINITION. Let Y, Y,, Y, be as in the above and let B(X,,Y,G) be
the (1-1)-type tensor bundle over X,, where G is SO(4) or one of its con-
nected subgroups which are indicated in §1. As is well known, with the same
base space X, and group G, there exist two subbundles of B(X,,Y,G) with
fibre Y, and Y,. We denote these subbundles by B,(X,,Y,,G) and By(X,,Y,,
G) respectively.

THEOREM 2.1. Let X, be an orientable A-dimensional differentiable
manifold. Then we can associate to X, intrinsically two (1-1)-type tensor
bundles By(X,, Y,,G) and By(X,, Y, G), where G is SO(4) or one of its
connected subgroups.

And with respect to the cross sections we can state as follows.®

1° Any of the two bundles does not admit cross sections if and only if
G = S0®4), 1 x SO@3).

2° One of the two bundles and only one admits at least a cross section

4) Hereafter, if we denote G=U(2) for instance, then we mean that the G of Xj is
reducible to U (2), but not to any connected proper subgroup of U (2).
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if and only if G = U(2), SU(2).
3° Both of them admit cross sections if and only if G = SO(2)%x SO(2),
SO(2)x SO(2), SO2)%X.S0(2), 1 x SO(2), 1.

In the cases 2° and 3°, X, admits at least an almost complex structure.

PROOF. a) In order that the bundle B,(X,,Y,,G) or By(X,, Y, G) admits
a cross section, it is necessary and sufficient that G S U(2) (i. e. X, admits
an almost complex structure), which follows at once from Lemma 2.1. This
proves 1° and a part of 2°.

b) It is remained for us only to prove that if the bundles B, and B,
admit cross sections simultaneously, then G = U(2), SU(2). If B, and B,
together admit cross sections, then X, admits two almost complex structures
a(x) and b(x) (x € X,), where a® =b?> =— 1. And we see that a #=x b by
virtue of (2.1) and (2.2). Hence the tensor field c(x)= a(x)-b(x) over X,
gives a non-trivial almost product structure: ¢* = 1. This means that G can
be reducible to a group reducible in real number field, so that G is one of
the groups indicated in 3°. This proves 2° and 3°. Q.E.D.

In the general tensor bundle B(X,,Y,G), G is one of the subgroups
indicated in (1.1). In the following, we will consider such X,’s, the coordi-
nate neighborhood being given by (z') (= 1,2, 3, 4).

3. X, with G =1 x SO®3). If G =1 x SO(3), G leaves invariant a matrix
of the form

-1 0

Y*

with respect to a suitable orthogonal coordinate system. And B(X,,Y*,G) is
a subbundle of B(X,,Y,G). This subbundle admits a cross section, which is
an almost product structure: a(x) = (aj(x)) over X, so that a*=1. If we

put p=-—;—(1 — a), qz%(l + a), that is,

1 1
P = 3 @} —ah), qf = 5 @F + a}),

then p =(p}), ¢ =(q}') are projection tensors sothat p* =p,¢* =¢q, p+qg=1
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(Walker, [9], [10]). They define two complementary distributions D, D’ over
X, respectively. The rank of (p) and hence the dimension of D is 1. D is
always integrable. The rank of (¢;) and hence the dimension of D" is 3. On
the other hand in order that the distribution D’ defined by pidx’ = 0 be
completely integrable, it is necessary and sufficient that J,p,'q g’ = 0 or

3.1 Ny' + Nyja,* =0,

where N;' is the Nijenhuis tensor of a/:
N - 1 a i a i
w =5~ [a"Owan" — ay*onad’l.

The condition (3.1) is equivalent to Nj' = 0, since the relation N'—
N,ta,* =0 corresponding to the integrability condition for gfdz’ =0 is
always satisfied.

Summing up, the X, under consideration is as follows:

(i) There exists an almost product structure.
(ii) There exist two complementary distributions D, D" of dimension 1
and 3 respectively. The distribution D is always integrable.

(iii) Nt =0; N;' = 0;
the distribution D’ is also the distribution D’ is not
integrable. integrable.

Furthermore, in this manifold, there exist a non singular symmetric
tensor field a;; with signature (++ + —) and two symmetric tensor fields of
rank 1 and 3.

An example is R!' X S%. In this case, N;!=0.

4. X, with G =U(2) or SU(2). A transformation T of U(2) decomposes
into (4) and (7) in the Appendix 1°. In this case, we can easily verify that

TILT =1,
TJT = 1J, + mK, @ + m? = 1).
TKT'= —md, +IK,

Hence I, is invariant by U(2) and this gives rise a cross section in B(X,,
Y,,G) which is an almost complex structure ¢(x) = (p/(x)) in X,. On the
other hand, if we put

A = aJ, + BK, (@ + 8 = 1),
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then A? =— 1, and we denote the set of all such A’s by Y'. There exists a
subbundle Bi(X,, Y;, G) of By(X,,Y,,G). H this subbundle admits a cross
section, then it gives rise another almost complex structure Y(xr) = (¥;(x))
in X, and we can easily see that 7(x) = ¢(x)¥(x) = — Y¥(x)-p(x) gives the
third almost complex structure. In this case, G is reducible to SU(2).

Consequently, if the structural group G is U(2) or one of its subgroups,
then we can associate a (1-1)-type tensor bundle B(X,,Y:, G), which is a sub-
bundle of B\(X,,Y,,G). If this subbundle admits a cross section, then G is
reducible to SU(2) or one of its subgroups and vice versa.

1) G = U(2). According to the vanishing or non vanishing of the Nijen-
huis tensor N;} of ¢ we can classify X, into two classes, which is well
known.

Furthermore, since there exist Riemannian metrics such that g.¢:%¢;
= g5 We put ¢; = giud® and ¢ = Oy, With respect to such a metric gy,
X, is classified according to the vanishing or non vanishing of ¢,;.

An example is the two dimensional complex projective space (in its real
representation). In this case, Ny’ = ¢y = 0, the Riemannian metric g;; being
kihlerian to the complex structure ¢;.

2) G = SU(2). In this case, as has been shown, there are three almost
complex structures ¢ = ('), ¥ = (Y}), 7 = (7/) such that ¢pyr = — Y =7, Y7
=—7¢ =¢, 7¢ =— ¢7 = Y. The set of ¢ y,v is the so-called almost quater-
nion structure. Let N (¢), N;‘(y), N;'(r) be the Nijenhuis tensor of ¢r,r
respectively, then the following theorem is known ([11], Cor. 2 to Thm. 10. 4):

THEOREM. N;(¢), Ni'(¥), Ny'(r) vanish identically if any two of them
vanish identically.

Hence, X, is classified into one of the followings:

1) Any one of Ny(P), Ni'(¥), Nu'(7) does not vanish.
2) One and only one of the above three Nijenhuis tensors vanish.
3) All of them vanish.

Now, since it is known that there exist Riemannian metrics hermitian
with respect to all ¢, ¥,r ([11]), we put V,; = 9ia¥i®s Tis = giaTi% and Y =
OuVru, Tie = OuTine Lhe following theorem is known.

THEOREM. N (¢), Y, i vanish identically if any two of them vanish
identically ([12], Thm. 5. 3).
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Hence, with respect to such a Riemannian metric g;; X, is classified into
one of the following types.

(i) Any one of Ny (), Vi, i does not vanish.
(ii) Omne and only one of the above three tensors vanish.
(iii) Al of them vanish.

An example is the manifold of the tangent bundle of a 2-dimensional diffe-
rentiable manifold (cf. the last part of §3).

5. X, with G = SO(2) x SO(2). As mentioned in §1, the Lie algebra of
G is given by the matrices of the form

(A, p independent)
0

— 0

with respect to a suitable orthogonal coordinate system. And G leaves inva-
riant the matrices I, and I, in (2.1) and (2.2). I, and I, are commutative:
I,I,=1,1, and these I,,I, give rise cross sections in By(X,,Y,G), B{(X,,Y,,G),
which are almost complex structures ¢ =(¢;), ¢ =(¢;) in X,. And we see
that ¢’ =¢'¢d. If we put m=—¢¢’, that is, =} =— ¢,"p./, then we see that
7 is an almost product structure in X,. The normal form of = is such that

There are relations as follows:
6.1 P=¢"=—1, =15 ¢p =¢pp=—m, ¢ =¢, mp=¢.

This system (¢, ¢’, ) is the so-called almost complex product structure (of

the second kind) ([13], p. 394).
We can sum up the general properties of X, as in the followings, where

b), ¢) are easily verified as in the case G =1 x SO(3).
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a) There exists a so-called almost complex product structure of the
(5.2) 2nd kind.

b) There exist two complementary distributions D, D" of dimension 2.

In this manifold there exist a non singular symmetric tensor field with
signature (+ + ——) and two symmetric tensor fields of rank 2.

Next, we will classify the X,. Let N;'(¢), Nu'(¢"), Ni'(rr) be the Nijen-
huis tensor of ¢,¢’,m respectively. Then we know that the vanishing of any
two of Nu(¢$), Nu'(¢), Ny'(w) implies the vanishing of the remaining one
((14)).

The integrability conditions of the distributions D and D’ are given by
the followings respectively:

nu' (D)= N;'(m) — Nj!(m) m® = 0, nu' (D)= Ny'(m)+ No'(m)m® = 0.
The X, is one of the following types.

(i) Any of the tensors N, (¢), Ny (¢), Nyu'(mw), ni(D), nk(D") does not
vanish.

(ii) nu (D)= 0; the others do not vanish. In this case, the distribution
D is integrable.

(iii) Nyk(m)= 0, n, (D)= 0, ni'(D")= 0; the others do not vanish.
In this case, the distributions D and D’ are both integrable.

@iv) Ny'(p)= 0; the others do not vanish. The almost complex
structure ¢ is integrable.

(v) Nii(p)= 0, ny (D)= 0; the others do not vanish.

(vi) All tensors in (i) vanish.

. 3)

An example is S? X S2. This is the case (vi).

6. X, with G =1 x SO(2). The Lie algebra of G is given by the matr-
ices of the form:
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Since this is a subgroup of SO(2)x SO(2), there exists in X, the almost
complex product structure of the 2nd kind (5.1). Although the properties
(5.2) for G = SO2)x SO(2) hold good, we can futhermore decompose the
almost product structure = =(r}) as follows.

Evidently, G leaves invariant the matrices

1 0 0 0 0 0

6. 1) 0
0 0 0 0 0 1

and B(X,,Y,G) admits cross sections corresponding to (6.1), which are tensor
fields p =(p)), ¢ =(¢;), r =(r}) over X,. We see that

6. 2) P=pg=qgr=rp=g=rp=0ptrqg+r=1

and furthermore p + g — » = 7. The tensor fields p, g, 7 define complementary
distributions D, D', D" of dimension 1,1, 2 respectively. These distributions
are defined by (¢} + r)dx’ =0, (p} + r}) dx’ =0, (p} + qf) dx’ = 0 respect-
ively. The 1-dimensional distributions D, D" are always integrable. The
integrability condition of the distribution D" is 7;'(D)=Owps' + 2wqsn’)
rir = 0, which is equivalent to N'(m)= 0.

The general properties of X, are summed up as follows. They are special
cases of (5.2).

a) All properties of (5.2) hold good.

b) Especially the last property c) of (5.2) is stated more precisely as
Sollows: There exist three complementary distributions D,D’, D" defined
by projection tensors p,q,r in (6.2), where p+ q — r = . The
1-dimensional distributions D and D' are always integrable.

And X, is classified into one of the following types:

(i) Any of N;(p), Nul(p), Ni'i(m) do not vanish.

(ii) Nyu'(w)= 0; the others do not vanish. The distribution D" is integrable.

(iii) N(p)= 0; the others do not vanish. The almost complex structure ¢
is integrable.

(iv) Nu'($)= N;'(¢)= Ny'(m)= 0.
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An example of such an X, is R? x S2. This is the case (iv).

REMARK. In the present X,, if we put m, =p—q+r,m=p—q—r,
then we can easily see that

m=m =i =1, T, =TT = Ty, Wy = Wy, = T, W = T, = .

7. X, with G=S0(2) x SO(2). This is the case p = A\ (%0, £1) in §5.
Hence, for the X, the general properties and the classification in §5 are
valid in the present case.

The X, can not be a global product manifold X, x X; where X, and
X; are 2-dimensional differentiable manifolds. For, if X, = X, x X; (in the
global sense), then the minimal connected subgroup containing the structural
group is SO(2)x SO(2), 1 x SO(2) or 1. But these are impossible (cf. footnote
4)).

8. X, with G = SO(2)x SO(2). The Lie algebra of G is given by the

matrices of the form

0 0 A
-2 0

This is a special case of G = SU(2) and G = SO(2) x SO(2), hence we
can find in X, an almost quaternion structure (¢,yr,7) (see §4) and an almost
complex product structure (¢, ¢, ) (see §5). Furthermore, since ¢  is commu-
tative with all ¢, vy, (see §5 and §2), we put

Yo =Y =—m, ¢ =T =—m,.

Then (Y, ¢, ), (7,¢’,m,) are also almost complex product structures. The
normal forms of o, m,, 7, are as follows:
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Ty =

An example of such an X, is the manifold of the tangent bundle of a
2-dimensional differentiable manifold (the details will be appear in another

paper).

APPENDIX

1° (see 81). In SO4)= SU2)®SU(2), the transformations of the first
and the second SU(2) in a complex 2-dimensional linear space C* are given

by

21 = az; + bz, w; = adw; + Bw,
1), 2; =— bz, + az, (1), wy = — Bw, + dw,
(aa + bb = 1), (ax + BB)=1) ,

where (z;,2,) € C* and (w,, w,) € C%. (1), and (1), leave invariant anti-invol-
utions of the second kind: Z, = z,, Z, = — 2, and W, = w;, W, =— w, res
pectively. If we put

Rig = zi®z1 (l’] = 1’ 2)’

then a transformation of SU@2)®RSU(2) is given by

2u = adzg;, + aBz,, + baz,, + bBz,,

) 2, = — aBz,, + adz,, — bBz,, + baz,,
@ _ _
z;l = — bdzu - szlZ + aazy, + a/8222
2;2 = Béz“ - —b—C(_Zlg ad 6_137221 + 5&—222

This transformation leaves invariant an anti-involution of the first kind:
Zu = X9, Zm == Zs, ZZI = = Zj9, Zzz = Zi1

which is the Kronecker product of the preceding two anti-involutions. The
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double element of this anti-involution (real dimension 4) is defined by z,

= 2y, %13 = — 231 SO(4) is the restriction of (2) on this double element. If
(1), is the identity, then (2) reduces to

z;l = azxy + b221

2;2 = azyy + bzgg
®3) , _ _

Ry — — bzu + azy

2;2: _Zzlg + :lzn .
If we put

2u=2p =+ =1y, zp=—z2u=u+s"—1v, a=a, +s/ -1 a,
b=a,+a/—1 a; then (3) becomes
x = aux —ay — au — ayv
¥y =a,x + ay — au + ay,v
@

U = a,x + a;y + au — a,v (@ + al+al+ ai=1).

v = axr — ayy + au + aw

If (1), is the identity and if we put @ = b, +4/—1 b,, B =— b, +4/—1
then we get similarly
x' = byx — by — byu — byv
) vy =bux + by + bu — b
W = bz — by + by + by (B + B + B+ By = 1),

'v' = bax + bgy - blu + bov

Any transformation of SO(4) decomposes into (4) and (5) with respeci
to a fixed oriented orthogonal frame. (cf. [4]). The Lie algebra of SO®4) is
given by the matrices of the form:

0 _(7\-1 + 7‘-1) _(l‘l + I";) _("1 + V;)
(7\'1 + 7\'1) 0 _(”1 - Vi) ( 1 ;)
®) , l » I‘,
(l"l + I-‘l) (Vl ) 0 —(7\1 - 7"2)

o +v) = — ) = M) 0
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If we put aow =1, 8=0 in (1),, then we obtain a transformation of
U(2). In this case, (5) turns into

x' = byx — by
y =bx + by
@ ,
u = bou + bv &+ b= 1).
v = — bu + by

That is, a transformation of U(2) decomposes into (4) and (7) with respect
to a fixed oriented orthogonal frame.

2° (see §1). If 4, =9, =0 and dim 9% = 3, then =,(8*%)=8, and m,(@¥)
= 8,. In this case, we can consider that the bases of the real Lie algebra g
are given by

X, —(Y, + mY, + nY5), X, =Y, + mY, + 'Yy,
X _(ZI’YI_'_ m'Y, + n”Ys),

where X,, X,, X;and Y,, Y,, Y, are bases of the Lie algebras of (4) and

(5) respectively. Furthermore, we can consider that the X’s and Y’s are so
chosen that

[X1X2] = X, [X2X3] = X, [X3X1] = Xz; [Y1Y2]: - Ys:
[Y2Y3] = Y1> [Y3Y1] = Y2~

Hence we know that the matrix

) m n
(8) U m n
1" m”’ n"’

is an orthogonal matrix and the determinant is equal to + 1. In this case,
among the constants of (6) there are relations such that

=M=+ a1y
- /1; = mhl + m,/ll -+ m”Vl

—vi=nn + Au, + 0y,
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Since one of the characteristic roots of (8) is equal to + 1, there exists
a real vector (x,, Yo, 2,) such that

(@ — Lz + my, + n2, =0
Uzy +(m' — )y, + n'2, =0
Uzy +m’y, +(n” — 1)z, =0.

Consequently, in the 4-dimensional Euclidean space E!, the real vector
(0, xy, ¥o, 2o) is invariant under G, taking account of (6).

3° a) 1 x SO(3) is not a subgroup of U(2). With respect to a suitable
orthogonal coordinate system, a transformation of G=1xSO(3) in a neighbor-
hood of the identity is given by exp o, where o is of the form

0 0 0 0

0 0 d e
o':

0 —d 0 f

0 —e —f 0

If G is a subgroup of U(2), then it leaves invariant a matrix A such
that A? = — 1. According to Lemma 2.1, we have A =«al, + 8J, + YK, or
A=al,+ 8J, + 7K, for example, A = al, + BJ, + YK, (a® + B + 7* = 1).
From oA — As = 0 and making use of (2.8), we see that G is of dimension
1 or 0, which is impossible.

b) U(2)> SO2)x SO2), but SU(2) 7 SO2)x SO2). We remark that if
G&ESU(2), then G leaves invariant all I,, J,, K, or all I,, J,, K,. Then, with
respect to a suitable orthogonal coordinate system, a transformation of G
=S0(2) x SO(2) in a neighborhood of the identity is given by exp o, where
o is given in § 5. We know that oI, — [,c =0 and ol, — L,c = 0, hence
G c U(2). However since

0 (—p)
0 —(A—v) O
oJ, — Jio =
0 @=m 0
—-A—w310 )
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0 —Q+p

-A+p O
o, — Jyo =

0 (A+w 0
A+p) O

we know that G ¢ SU(2). Moreover, if we consider the case u = N, p = kA
(k#=1), u = 0, respectively, then we see that SU(2) D SO(2)X SO(2), SU(2)
2SO2) x SO2), and SU2)21 x SO(2).
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