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Introduction. It seems to us that one of the characteristic properties of
the algebraic groups is that they admit Bruhat decompositions. In Seminaire
Chevalley [1], these properties of algraic groups have been studied in detail.
Meantime, postulating these properties for an abstract group, J.Tits [3] has
deduced some fundamental properties of Borel subgroups and parabolic
subgroups of the group. In this note, we shall prove that, if n ^ 2, the family
of finite simple groups PSLn+1(Fq) for any finite field FQ is characterized by
the postulation of J. Tits with the symmetric group of degree n + 1 as Weyl
groups. D.G.Higman and J.E.McLaughlin [2] has shown the same result for
the finite simple groups PSLz(Fq) as an application of their results on finite
projective planes. Our method is also same as that of them and much
indebted to the work of J.Tits on the geometric interpretation of algebraic
groups (for example cf. [4]) and theorems of A. Wagner [5] on the collineation
groups of the finite projective spaces.

1. Groups admitting Bruhat decompositions. In this section, we shall
introduce definition and properties of the groups admitting Bruhat decomposi-
tions due to J.Tits (cf. [3]) which are main object of this paper.

We shall say that a group G admits a Bruhat decomposition with Weyl
group SD3 if it possesses two subgroups B and W satisfying the following
conditions (1.1), , (1. 5).
(1.1) B and W generate the group G.
(1. 2) H = B Π W is a normal subgroup of W.
(1. 3) W/H ~ SB is a finite group generated by reflexions.

Let Π = {wii i <= 7} be a system of generators of 2B such that ir\ is the
identity and for each w € 2B, we chose a representative in W which we
denote by the same letter zv.
(1.4) For any i Ξ 7, ^Bw c BwB U B^wB.
(1. 5) For any i <= 7, TZVBTΓ, Φ B.

The group G has following properties. For any subset J of 7, let Wj be
the subgroup of W generated by H and πh j £ J. Then Gj = BWjB is a
subgroup of G and in particular G = BWB. Moreover, if BwB = Bw'B, then
u) — w'. The subgroups Gj (J c 7) are the only subgroups of G containing B. We
say Borel subgroups (resp. parabolic subgroups) the subgroups of G conjugate
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to B (resp. to Gj for a subset J of I). Any parabolic subgroup is its own
normalizer and two distinct parabolic subgroups containing a same Borel
subgroup are not conjugate each other. If J and K are two subsets of /, we have

(1. 6) GjGκ = BWjWκB

(1. 7) Gj n Gκ = BWJnκB

When SB is the symmetric group &n+1 of degree n + 1, we shall say that
the Bruhat decomposition is of type (An) for the reason that the Weyl group
of the simple algebraic group of type (An) is isomorphic to ©w + 1. For any
i £ I, we set

(1. 8) A, = BWjB where J = I - {i}.

Then the subgroups Ai9 i £ /, are the only proper maximal subgroups of G
containing B. As we show in the following sections, by means of the subgroups
Aly , Any we may define a geometry on which the group G acts as a
collineation group and if it is of type (An), the geometry is the projective
geometry of //-dimensions.

2. Definition of the geometry Γ(G; Au , An). Let G be a group and

A, B be two subgroups of G satisfying the following conditions (a), (b) and (c).

(a ) G = ABA = BAB

( b ) AB Π BA = A u B

( c ) G : A ^ 2 and A : A Π J3 ̂  3.
Then G is called a projective AβA-group. By means of the subgroups A and
B, an incidence system π(G; A, B) can be constructed by taking as points the
left cosets Ax of G modulo A and as lines the left cosets By of G modulo
B. The point Ax and the line By are to be taken as incident if the cosets
Ax and By have an element in common. D. G. Higman and J. E. McLaughlin
have proved that for a finite group G, the additional condition

( d ) G — A U Ax A for an element x e G

is necessary and sufficient for π(G; A, B) to be Desargusian projective plane
and G admits a representation on a collineation group of the plane which
contains the little projective group. We shall extend the concept of projective
ASA-group to the space of an arbitrary dimension.

Let G be a group and Au , An be n subgroups of G. We construct an
incidence system Γ(G; A1? , An) by taking as O-dimensional linear spaces
(points), 1-dimensional linear spaces (lines), 2-dimensional linear spaces
(planes), , (Vz—l)-dimensional linear spaces (hyperplanes) the cosets Aλx>
A2x, , Anx of G modulo A1? , An respectively. Hereafter, we shall say
briefly a z-space for a /-dimensional linear space. The (i — l)-space A%x and the
(j — 1)-space A$ are to be taken as incident if the cosets Atx and A}y have
an element in common. We postulate the following conditions on the subgroups
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Al9 -A..
(2.1) G = AiAt+1Aί for each 1 ̂  £ ̂  w - 1

(2. 2) G = ΛΛ-iAw for each 2 ^ ί ^ *i

(2. 3) AtAj Π Ai+1A! gΞ AtA, u Ai+1A, for each l ^ i < j ^ n

(2. 4) A, c AtAk for each 1 ̂  i <j < k ^ n

(2. 5) A, C A^Aj^ for each 3^j^n

(2.6) G ^ A A n

(2. 7) A 2 : 4 n A 2 g 3

For any element g £ G, we denote by 0(#) the transformation of Γ =

Γ(G; Ax, , An) defined by

θ(g) : A 4 J : —> Atxg for each z € I and x £ G.
ϋ(g) transforms any z'-space to an z-space and preserves incidence relations.
Therefore G has a representatian onto a group of collineations Θ(G) of the
geometry Γ. The following condition is equivalent to the fact that the group
Θ(G) is doubly transitive on the points of Γ.

(2. 8) G = Aλ u AxxAλ for some x z G.

3. Incidence relations in the geometry Γ(G; Al9 , An). We shall
prove some properties on the incidence system Γ defined in the preceding
section. The followings are trivial by definition.

(3.1) Any two distinct linear spaces of the same dimensions are not incident
each other.
(3. 2) For any linear space, there exists a point which is incident to it.

From (2. 4) and (2. 6), we have G Φ AxAi for each l ^ i ^ n . Therefore
we have

(3.3) For any p-space Sp, there exists at least one point which is not
incident to Sp.

We see easily that (2. 7) is equivalent to the following.
(3. 4) Every line is incident to at least three distinct points.

LEMMA 1. (2.1) is equivalent to the following.
(3. 5) For any p-space Sp (p < n) and a point So which is not incident to

Sp, there is at least one (p + l)-space Sv+1 which is incident to both Sp and So.

PROOF OF (2.1) =>(3. 5) : Set Sp = Ap+1x and So = Aλy. Then, by (2.1),
xy-1 = ap+ιap+2a1 for ap+1 € Ap+l9 ap+2 € Ap+2 and aλ € Ax. If we set Sp+1

= Ap+2aλy, then it is incident to both So and Sp.

Proof of (3. 5) =£> (2.1): For any x € G, if A{x and Aλ are incident to
Aι+1y for some y € G, then xy'1 £ AtAi+1 and y € Aί+1A1. Therefore, we
have x € A^^A^ Thus G = A^^A^

Similarly, we have the following.
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LEMMA 2. (2. 2) is equivalent to the following.
(3. 6) For any p-space Sp (p > 0) and a hyper plane Sn~x which is not
incident to Sp, there is at least one (p — 1)-space Sp-X which is incident to
both Sp and Sn-\>

LEMMA 3. (2. 3) is equivalent to the following.
(3. 7) Let Sp-! be a (p — l)-space and So be a point which is not incident
to Sp-U If Sp and SQ are two linear spaces which are incident to both Sp-X

and SQ, then Sp is incident to SQ.

PROOF OF (2.3) =» (3.7): We may suppose that Sp-X = Apx where
x e AP+XAX (cf. (2.1) and Lemma 1 ) and So = Ax. Let Sp = Ap+1y and
Sq — Aq+1z be incident to both Sp-X and So. Then u = xz~~ι € ApAq+1 and
we may assume that y and z are elements of Ax. Since x € AP+1A1 and
z £ Al9 we have also u €AP+1A1. Therefore u € ApAq+x Π AP+XAX. If u € APAX,
then :r € A^A^ This contradicts to the fact that 5p_χ and 5 0 are not incident.
Thus we have u £ Ap+ιAQ+1. This shows that Sp and £ g are incident each other.

Proof of (3. 7)=>(2. 3): Let .r € AtAj Π A^^ and we shall show that, if .r
^ AiAj, then Λ: € A^A^. We have ĉ = a^ = ai+ιaλ where ai £ At, ^ ζ A}9

ai+1 ^ A i + 1 and ax € A^ So A^x and Ax are not incident each other and incident
to both Aί+1x and A3 respectively. Therefore Aί+1x and A5 are incident each
other. Thus we have x e Ai+1Aj.

COROLLARY. (2. 3) for j — i + 1 is equivalent to the following.
(3. 7') For any p-space Sp and a point So which is not incident to Sp9 there
is at most one (p + 1)-space which is incident to both Sp and So.

LEMMA 4. (2.4) is equivalent to the following.
(3. 8) Let Sp, Sq and Sr be three linear spaces of dimensions p, q and r
respectively and p< q <r. If Sp and Sq, SQ and Sr are incident each other
respectively, then Sp and Sr are incident each other.

PROOF OF (2 .4)^(3 .8) : Let Sp = Ap+1x, SQ = AQ+1y and Sr = Ar+1z.
Then by definition, xy~ι e AP+1AQ+1 and yz~ι z Aa+1Ar+1. Therefore by (2.4),
xz~1 z Ap+1Ar+1. Thus we have Sp and Sr are incident.

Proof of (3. 8)=>(2. 4): Let i<j < k. For any x € Aj9 Atx and Ah A5 and Ak

are incident respectively. Therefore Atx and Ak are incident. Thus we have
x € A%Ak and As c AtAk.

LEMMA 5. (2. 5) is equivalent to the following.
(3. 9) For any (p — 1)-space Sp-i and a line Sx which are incident to a
p-space Sp, there is at least one point which is incident to both Sp-ι and Sx.

PROOF OF (2. 5) =* (3. 9): We may suppose Sp = Ap+X. Let Si = A2x and
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Sp-i — Apy where we may assume that x and y are elements of Av+1. Then
xy~ι = a2a1ap for a2 <Ξ A2, α2 £ Aj and αp € A^. If we set So — Axavy, then
it is incident to both Sι and ό^-i.

Proof of (3. 9) «=> (2. 5) : For any x € Aj9 A2x and A^_α are both incident
to Aj. Therefore, there is a point Aλy which is incident to both A2x and
Aj_x. We have xy~ι £ A2Aλ and y <Ξ AxA^λ. Thus we have x <Ξ A2AλA3_λ.

The properties (3. 1), , (3. 9) characterize the w-dimensional projective
geometry (cf. Appendix). Therefore we have the following.

PROPOSITION 1. Let G be a group -which has n subgroups Al9 , An (ή^2)
satisfying (2.1), , (2. 7). Then the geometry T(G; Al9 , An) is an n-dίmen-
sional projective geometry and G has a representation on a collineation group
of the space

If G is finite, Γ is a finite projective geometry. We shall say that the
order of Γ is m when A2:AιΓ)A2 = m + 1. By Theorem 4 of A.Wagner [5],
for a doubly transitive collineation group of a finite projective space of n-
dimension and of order m with /z^4, except when n = 3 and m = 2, the
group contains the little projective group (i.e. the group of collineations
generated by all elations of Γ, where an elation is a collineation of Γ fixing
all points incident to a hyperplane Sn-ι and all hyperplanes incident to some
point which is incident to AS^.J) and when n = 3 and m = 2, the group is
isomorphic to the alternating group on 7 letters or the group of all collinea-
tions. Therefore we have the following.

THEOREM 1. Let G be a finite group which has n, 2 ^ n rg 4, subgroups
Al9 , An satisfying (2.1), , (2. 8). Then, unless n — 3 and m = 2, G has a
representation on a collineation group of an n-dimensional (Desarguesian)
projective space which contains the little projective group. When n = 3 and
m = 2, G has a representation on the group of all collineations or on the
alternating group on 7 letters.

By Theorem 3 of A.Wagner [5], for a collineation group of a finite
projective space of ^-dimension, n ^ 3, of order m with the following
properties
( i ) The group is transitive on the space,
(ii) For any hyperplane Sn-\ of the space, the subgroup of all collineations
such that Sn-i transforms onto Sn-l9 as a collineation group of Sn-l9 contains
the little projective group of Sn_Λ,
unless n — 3 and m = 2, the group contains the little projective group of the
space. Therefore, if we replace (2. 8) by the following
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(2. 8') G = Aι u A1 x Aλ for some x e A2 Π A3 Π Π An,

we have the following theorem by induction with respect to n.

THEOREM 2. Let G be a finite group -which has n subgroups A1? , An,
n = 5, satisfying (2.1), , (2. 7) and (2. 8). Then G has a representation on
a collineation group of a n-dimensional projective space which contains
the little projective group.

4. Groups admitting Bruhat decompositions of type (An). Let G be a
group admits a Bruhat decomposition with the symmetric group of degree n + 1
as Weyl group, i.e., a group possesses two subgroups B and W satisfying (1.1),
• , (1. 5) where 2B is the symmetric group of degree n + 1. Let Π = {τrl9' ,
τrn} be the system of generators of 2B such that

(4. 1) 7r? = 1 for each 1 ig i ^ n and (rrrί7rί+1)
3 = 1 for each 1 ^ z" ίg n — 1.

Let A1? •• ,An be the subgroups of G defined as (1.8) for the generators
(4. 1). To prove that the groups satisfy (2. 1), , (2. 7) and (2. 8'), we need
some lemmas on the Weyl group 2B of type (An).

We shall identify SB with the Weyl group operating on a root system Δ
of the type (An). Then the element irt of the system of generators is a reflexion
with respect to the root at of a fundamental root system [au , an} of Δ.
We define a linear order in Δ with respect to the fundamental root system.
Denote by Σ the set of all postive roots.
Then

2 = {au — a% + aί+ι + -\-af, 1 ^ i rg j t^n, aiΛ means at]

aitS < ak>ι if and only if j < I or j = I and k < i

Δ = 2 + ( - S)

For any root r £ Δ, we denote by (r) € 2£ the reflexion with respect to r,
then (r) = (— r). Therefore we use only positive root for the notation (r).
For any two roots r and 5, (r) and (s) are commutative if and only if r + s is
not a root. For any z, 1 ̂  z: ̂  ?/, 2 may be partitioned to two subsets 2* and
Σί such that

2, = {aj)k; j ^ k < ί or z <j rg }̂

2 ; = { α Λ Λ ; i ^ ί ^ * } .

Now denote by &** the subgroup of SB generated by ΊΓJ for all 7 distinct from
z. Any element of SB̂  can be expressed by a product of some elements (r) for
r ^ Σj. We have the following

LEMMA 6. For any w <c 2B αnJ i e I, if w ^z S©i, w

w = τe '(ri) (r^) (re5/>. tf = (rλ) (rN) w')

where w € Sΰ?̂  Γj ^ 2 t /or each l^j^N, (rό) and (rk) are commutative
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to each other for l^j, k^N.

PROOF. For r € Σί and 5 € Σ i ? if (r) and (s) are not commutative, we
have (r)(s) = (s')(r) for some s e Σ4. Therefore w = ww" where w is a
product of (r)'s for r £ Σi,i.e., an element of SB4 and w" is a product of (r)'s
for r ζ Σί. Let w = w(rι) (/>) be an expression of τv such that N is a least
possible number of such expression. Then (r,) and (rk) are commutative to
each other for l^j, kf=^N. For, if there is a pair j,k such that (rό) and (rΛ)
are not commutative, we can express w as a product of an element xυ of SB*
and (5X) (sje) where Sj £ Σί and M < N. The second assertion is also proved
similary.

COROLLARY. For any w z SB, (f w^SBi, tc;̂  Ziατ;̂  w = w'(r) (resp.
w = (r) te;') where w e 2δj αwJ r e Σί

For any two roots where r, r' in Σί, (r) and (/) are commutative.
Therefore we have immediately our assertion from Lemma 6.

LEMMA 7. soδ = SBj u S

PROOF. Let te; ^ SΏ. If w ^ Sffij, then w = w(r) where w' e %£i and

r € Σί. If r = alik, then (r) = (a2,fc)(̂ i)(̂ 2,A:)- Thus we have w z SP/αJSBi.

LEMMA 8. SB, c sâ SF* for i^j^k.

PROOF. Let w s SB̂ . If w φ SB̂  we have ze; = ze/fa) (r^) where

' € SBi andr, z % Π Σ, for all 1 ^ Z ̂  AT. Since i^j^k, (rL) z SBfc for

^l^N. Therefore, we have w € ©tSB*.

L E M M A 9. SB = SΠ>tίQJ1+iaDB1 /or rac/ι l ^ t ^ n - 1.

PROOF. For any w € SB, if w ^ SB1? we have w = (r)w' where w 6 SBj
and r € Σί We shall show that (r) € S B ^ + J S B J . Let r = αliifc. If ^ ^ i, then
(r) € SBi+1. If k'^i+ 1, then we have (r) = (αlffc) = («t+lijfc)(alt<)(at+1|ifc) where
(aί+ι)k) is contained in both SB̂  and SBX and also (aiΛ) e SBi+1. Thus
we have w € $Ωt$ΰi+19ΰlm

Similarly we have the following.

LEMMA 10. SB = SB.SB^SB,, for each 2^i^n.

COROLLARY. SB, C S^SB^SB^ for each 2^ί<j^n.

LEMMA 11. S B ^ Π SB ĵSBi c SBiSBx u SBί+ιSB^ for each l ^ i < j ^ n .
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PROOF. Let zv € SB,©, Π ©,+!©!. We shall show that if wφ$&$bu then
te; € 2Bί+1SGδ̂ . By Lemma 1 and its corollary, since w £ SBBt+1SDδ1, we have
w = (s)w" where w" € SBi and s € Σί Π Σ i + 1 and also, since zv € 2Bt2B ,̂ we
have zv = Tx/frj) (τ>) where u/ € 2βέ and r^ € Σί Π Σj. Moreover, since
te; ^ 2BtS3\, ^ € Σί and there is at least one root rk9 say rl9 contained in Σί
and yet, since the roots of Σί are commutative each other, rλ is the only one
root contained in Σί. Therefore, we have (rN)(rN-X)' «(r2) = w" z SB^ Thus we
have (s)zv\rι) = w"w" € S&i where w £ 2Bt, 5 = alti and rx = a1)k (i ^ ^ ^ΞJ)
We shall show that w e 2Bi+i2Bj which proves TX; ζ SBt+î δj Assume that
w ^ S3}i+1SB .̂ Then we have w = w[(u) where vu\ € 2δ i + 1 and w € Σί+i Π Σ t,
for the roots of Σί+i Π Σ* are commutative each other. Since w K %&ί+i$ftj,
we have u € % Π Σί+i Π Σ t. Let w = α i + l ι Z , / ̂  j . Therefore

(s)w'(rι) = ^wifwXrO where (5)wί € SG5t+1.

We shall show that (s)w\rί) = w'z{r) where w'3 € SBx and (r) Ξ̂ SBi. This
contradicts to the fact that (s)w'(iι) ^ 2Bχ. Thus we shall have τv' € SKi+î Bj.
First, if (s)w[ z SS ,̂ then (s)w;ί(w) € ft&1 and (rx) ^ SBlβ Next, if (s)w[ $ Sΰί9

we have (s)w\ = w'2{v) where w'2 € 2Bi and v e Σί Π Σ ί + i . Let t; = α1>wι,
1 ^ m ^ i. Since m^i <k <j 5g Z, when m = ί,

= (ai+1>ι) (altl) (ahlc) = (ai+ltl)(ak+hl)(ahl)

and when m < ί,

where (aί+hl)(ak+hl), (ai+l9l)(am+1,ι) are elements of 2Bj and (αi,ι), ( î,m) are
not contained in 2Bj.

Now, from (1. 6), (1. 7) and Lemmas 7, , 11, we see easily that the
subgroups Al9 , An satisfy (2.1), , (2. 5) and (2. 8). (2. 6) follows from the
fact that (ahn)^A1An and (2.7) follows from the fact (ax) <= A2 and ^ Ax

and from (1. 5). Thus we have

PROPOSITION 2. Let G be a group admitting a Bruhat decomposition
of type (An), and Al9 , An be the maximal subgroups of G defined as (1. 8)
for a system of generators (4.1). Then the subgroups satisfy the conditions
(2.1), , (2. 7) and (2. 8').

THEOREM 3. Let G be a finite group admitting a Bruhat decomposition
of type (An), n^2. Then G has a representation on a collineation group of
n-dimensional projective space which contains the little protective group.
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PROOF. From propositions 1 and 2, unless n — 3 and m — 2, we have the
assertion. We shall show that the exceptional case does not happen. Let n — 3
and m = 2. If G has a representation on the alternating group Sl7 on 7 letters,
then δϊ7 must have a Bruhat decomposition. Here Sί7 is a collineation group
of a finite projective space of 3 dimensions and of order 2. Let *SΊ, S2, S3 be
a point, a line and a plane of the space which are incident each other.
We denote by Ai9 1 ^ i :g 3, the subgroups of Sί7 consisting of the collineations
which transform St onto itself. We have known that B = Ax Π A2 Π A3 is a
2-Sylow subgroup of Sί7 and of order 23. Since the homomorphism θ of Sl7 on
to a collineation group of the projective space defined by the decomposition
is an isomorphism, the Borel subgroup of §l7 must be the 2-Sylow subgroups.
Therefore the order of δί7 must be < 23 4 3 2 23 = 1536. This is impossible,
for the order of Sί7 is 7 5 32 22 = 2520. Thus we have that Sί7 has not any
Bruhat decomposition with @4 as Weyl group.

COROLLARY. A finite simple group admitting a Bruhat decomposition
with the symmetric group of degree n + 1, n ^ 2, as Weyl group is isomor-
phic to a special projective group PSLn+ι(Fq) for some finite field FQ with
q elements.

REMARKS. Each known simple group of Lie type admits a Bruhat
decomposition, but it is not necessary that the Weyl group can be identified
with that of a simple algebraic group. Further, in general, the property for
simple groups that they admit Bruhat decompositions with a given Weyl
group does'nt characterize the family of simple groups. For example, Ree's
simple groups associated with the simple Lie algebra of type (F4) admit Bruhat
decomposions with the dihedral group of order 16 as Weyl group which is not
isomorphic to any one of a simple algebraic group. Chevalley's simple groups
of types (Bn) and (Cn) admit Bruhat decompositions with the same Weyl group
and also there are two distinct families of simple groups admitting Bruhat
decompositions of type (F4) (resp. of type (G2)). However, it may be conjectured
that the family of (finite or infinite) Chevalley's simple groups of type (An),
n^2 (resp. type (Dn), n^4, or type (En), n — 6, 7, 8) is characterized by the
property that they admit Bruhat decompositions with the Weyl group of
that type.

Appendix. We shall show that an incidence system Γ satisfying (3. 1),
(3. 9) is a //-dimensional projective geometry. We denote by Sn the set of all
points in Γ and we identify the /-space with the set of the points which are
incident to the space. Then we have the following:

(*) For any two linear spaces Sp and SQ, Sp £ SQ if and only if Sp is
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incident to SQ and p^q.

Proof of Sufficiency : If a point So is incident to Sp and Sp is
incident to SQ9 pί^q, then by (3. 8) we have So is incident to SQ. Proof of
necessity: Let Sp gΞ SQ. We proceed by induction on p. If p = 0, then
the assertion is trivial. We assume that the assertion is true for any pair p'
and q where p' < p. For Sp, there is a point So which is incident to Sp(3. 2)
and for Sθ9 there is a hyperplane Sn-1 which is not incident to So (3.3).
Then, since Sp and Sn^1 are not incident, there is a (/>— l)-space S ^ which
is incident to both *SP and ASW_! (3.6). Therefore, 5 r l Q Sj, and we have
Sp-ι^Sq (3. 8). By induction hypothesis, Sp^ is incident to SQ and p — I ^ q.
lί p — I = q, then by (3. 1) *SP_! = Sq. This is a contradiction, for the point
So is incident to SQ and not to Sp^. Therefore we have ptίq and, by (3.7),
Sp is incident to SQ.

If Po, , P p are any p + 1 points, we say that they are linearly
dependent if there is a g-space SQ such that Pt gΞ *Sg for all 0 fg z fg /> where
q < />. Otherwise the points are said to be linearly independent.

Now, we shall deduce, for example, the axioms for projective space of
^-dimension in Hodge and Peodoe's Method of Algebraic Geometry, Chap VI.
I. If Sh £= Sk and Sk S== Sh then SA = «SΛ.
II. If Sp ^ 5 q and Sq S 5 r then 5 P £ 5 r .
III. Every line contains at least three distinct points.

These are trivial by definition and (*). (cf. (3. 1), (3.8) and (3.4)).
IV. Given any p + 1 linearly independent points, there is at least one £-space
which contains them.

By (3. 5), we may construct the space step by step.
V. If JPOJ " > PP are p + 1 linearly independent points which lie in an Sq,
any Sp containing them is contained in SQ.

If p z=z 0, the assertion is trivial. We proceed by induction on p. We
assume that the assertion is true for p' < p. Let Sp-λ be a (p — l)-space such
that Po, ,Pp-ι are incident to it. Then by induction hypothesis 5P_! is
incident to Sa. By (3. 7) we have Sp is incident to SQ.
VI. Any ^-space contains at least one set of p + 1 linearly independent
points.

For a ^-space Sp, we have shown in the proof of (*), there is a (p — 1)-
space Sp-i such that it is incident to Sp and there is a point So incident to
Sp and not to 5^,-!. Therefore we have a series of linear spaces So C *Sj C
• C Sp-ι C Sp and a set of points Po, , P p such that P4 is incident to 5 ^ !
for 1 ^ i ^ />. We shall show by induction on p that the points are linearly
independent. Po and Px are linearly independent. If Po, ,Pp-i are linearly
independent, by IV, there is a (p — l)-space Sp^ which contains them. By V,
the space Sp^ι is unique, therefore we have Sp-ι = Sp-.χ. Assume that Po, , Pp



140 E. ABE

are linearly dependent. Then it holds that Pv is contained in Sv-X. This is a
contradiction.
VII. If Po, , Pp are p + 1 linearly independent points of an Sp, and Qo,
* * #> QQ a r e Q + 1 linearly indepedent points of an 5 g, and if the p + g 4- 2
points Po> * % Pp, Qo, ' %QQ are linearly dependent, there exists at least one
point which lies in Sp and SQ.

Suppose that Po, , Pp, Qo?

 m,Qr are linearly independent and Q i ? for
r + 1 :=g z rg q, is dependent to them. Let Sp+r+1-i, 0 fg z ^ r, be a linear space
which contains P,, O^j^p, and Qfc, 0 ^ & ^ r - z. If £ί0) is a line which
is incident to Qr and Qr+i, then S[o) is incident to Sp+r+1 (3. 7). 5 p + r is also
incident to Sp+r+ί (3.7). Therefore, there is a point 5Ό(0) which is incident to
both 5ί0) and Sp+r (3. 9). Now let 5^be a line which is incident to Sj>0) and
Qr-i. Then ASΊ(1) and Sp+r-i are both incident to Sp+r and there is a point iSί'5

which is incident to both S{1) and Sp+r-ι (3.9). Thus we have point *So

α),
0 ^ i ^ r, which is incident to Sp+r-i and to a line *SΊ(0 which is incident to
SQ. For z* = r, the point <S<Sr) is incident to both Sp and SQ.
VIII. There exists a set of n + 1 linearly independent points but any set of ?n
points, where m > n + 1, is linearly dependent.

This follows from (3. 3) and definitions.

ADDED IN PROOF: After completion of this paper, Prof. J. Tits has
kindly informed the author that he has obtained that each finite simple
group admitting a Bruhat decomposition whose Weyl group is neither a
cyclic group of order two nor a dihedral group of order 8, 12 or 16, is
derived from a simple algebraic group, i.e., is isomorphic to the subgroup
generated by the />-Sylow subgroups of the group of ^-rational points of a
simple algebraic group defined over a finite field k of characteristic p (cf.
[6]). Therefore, in particular, for a finite group, the conjecture stated in
Remarks has been solved affirmatively. At the same time, I have known
that Prof. C.W.Curtis has also obtained some results in the same direction
(cf. [7]).

Mr. T.Tsuzuku has also informed the author that he has obtained the
nearly same result as ours (cf. [8]).
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