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Introduction. It seems to us that one of the characteristic properties of
the algebraic groups is that they admit Bruhat decompositions. In Séminaire
Chevalley [1], these properties of algraic groups have been studied in detail.
Meantime, postulating these properties for an abstract group, J.Tits [3] has
deduced some fundamental properties of Borel subgroups and parabolic
subgroups of the group. In this note, we shall prove that, if n = 2, the family
of finite simple groups PSL,.(F,) for any finite field F, is characterized by
the postulation of J. Tits with the symmetric group of degree n + 1 as Weyl
groups. D.G.Higman and J.E.McLaughlin [2] has shown the same result for
the finite simple groups PSL;(Fy) as an application of their results on finite
projective planes. Our method is also same as that of them and much
indebted to the work of J.Tits on the geometric interpretation of algebraic
groups (for example cf. [4]) and theorems of A. Wagner [5] on the collineation
groups of the finite projective spaces.

1. Groups admitting Bruhat decompositions. In this section, we shall
introduce definition and properties of the groups admitting Bruhat decomposi-
tions due to J.Tits (cf. [3]) which are main object of this paper.

We shall say that a group G admits a Bruhat decomposition with Weyl
group B if it possesses two subgroups B and W satisfying the following
conditions (1.1),- -+, (1.5).

(1.1) B and W generate the group G.
(1.2) H= BN W is a normal subgroup of W.
(1.3) W/H = is a finite group generated by reflexions.

LetIIl = {m; i € I} be a system of generators of W such that =} is the
identity and for each w ¢ B, we chose a representative in W which we
denote by the same letter w.

(1.4) For any ¢ € I, mBw C BwB U Bm,wB.
(1.5) For any 7 ¢ I, mBmr, # B.

The group G has following properties. For any subset J of I, let W, be
the subgroup of W generated by H and =, j € J. Then G,=BW.,B is a
subgroup of G and in particular G = BWB. Moreover, if BwB = Bw'B, then
w=w’. The subgroups G; (J C I) are the only subgroups of G containing B. We
say Borel subgroups (resp. parabolic subgroups) the subgroups of G conjugate
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to B (resp. to G, for a subset J of I). Any parabolic subgroup is its own
normalizer and two distinct parabolic subgroups containing a same Borel
subgroup are not conjugate each other. If J and K are two subsets of I, we have
(1. 6) GJGK = BWJWKB
(1 7) GJ N GK = BWJ("KB

When B is the symmetric group &,,, of degree n + 1, we shall say that
the Bruhat decomposition is of type (A,) for the reason that the Weyl group
of the simple algebraic group of type (A,) is isomorphic to &,,,. For any
i € I, we set
(1.8) A, = BW,B where J =1 — {{}.
Then the subgroups A4,, i € I, are the only proper maximal subgroups of G
containing B. As we show in the following sections, by means of the subgroups
A--- A, we may define a geometry on which the group G acts as a

collineation group and if it is of type (A,), the geometry is the projective
geometry of n-dimensions.

2. Definition of the geometry I'(G; A,,---,A,). Let G be a group and
A, B be two subgroups of G satisfying the following conditions (a), (b) and (c).

(a) G = ABA = BAB
(b) ABNBA=AUB
(c) G:A=2and A:ANB=3.

Then G is called a projective ABA-group. By means of the subgroups A and
B, an incidence system m(G; A, B) can be constructed by taking as points the
left cosets Ax of G modulo A and as lines the left cosets By of G modulo
B. The point Ax and the line By are to be taken as incident if the cosets
Ax and By have an element in common. D.G. Higman and J. E. McLaughlin
have proved that for a finite group G, the additional condition

(d) G=AUuAzxzA for an element x ¢ G

is necessary and sufficient for m(G; A, B) to be Desargusian projective plane
and G admits a representation on a collineation group of the plane which
contains the little projective group. We shall extend the concept of projective
ABA-group to the space of an arbitrary dimension.

Let G be a group and A,, -+, A, be n subgroups of G. We construct an
incidence system I(G;A,,---,4,) by taking as 0-dimensional linear spaces
(points), 1l-dimensional linear spaces (lines), 2-dimensional linear spaces
(planes), « « -, (n—1)-dimensional linear spaces (hyperplanes) the cosets Az,
A,xz, -+, Ayx of G modulo A, -, A, respectively. Hereafter, we shall say
briefly a i-space for a i-dimensional linear space. The (: — 1)-space A,x and the
(j — 1)-space A,y are to be taken as incident if the cosets A,x and A;y have
an element in common. We postulate the following conditions on the subgroups
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A, .- A,

(2.1 G = AALA, for each 1=i=n-1

(2. 2) G=A44A_A, for each 2 =i=n

(2~ 3) AzAj N Ai+1AI gA@Al U Ai+1Aj for each 1 =1 <] =n
(2.4) A;C A4 for each 1=i<j<k=n
(2.5) A;c A,A4,;, for each 3=j=n

2.6) G+#AA,
2.7 A,:A, NnA,=3

For any element g € G, we denote by 6(g) the transformation of T' =
I'G; Ay, - -, A,) defined by

6(g): Aix — Axg for each 7z € I and z € G.

6(g) transforms any i-space to an i-space and preserves incidence relations.
Therefore G has a representatian onto a group of collineations (G) of the
geometry I'. The following condition is equivalent to the fact that the group
6(G) is doubly transitive on the points of I

(2.8) G=A4, U AxA, for some x € G.

3. Incidence relations in the geometry I'(G;A, --:,A,). We shall
prove some properties on the incidence system I' defined in the preceding
section. The followings are trivial by definition.

(8.1) Any two distinct linear spaces of the same dimensions are not incident
each other.
(8.2) For any linear space, there exists a point which is incident to it.

From (2.4) and (2.6), we have G # A,A, for each 1=1i=n. Therefore
we have
(3.3) For amy p-space S,, there exists at least one point which is not
incident to S,.

We see easily that (2.7) is equivalent to the following.

(3. 4) Every line is incident to at least three distinct points.

LEMMA 1. (2.1) is equivalent to the following.
(8. 5) For any p-space S, (p <n) and a point S, which is not incident to
S,, there is at least one (p + 1)-space S,,, which is incident to both S, and S,.

PROOF OF (2.1)=(3.5): Set S, = A,,;x and S, = A,y. Then, by (2.1),
Yy = a,,,a,40a, for a,. € Ay, apis € A, and a, € A, If we set S,
= A,.,a,y, then it is incident to both S, and S,.

Proof of (3.5)=(2.1): For any x € G, if A.x and A,; are incident to
A,y for some y € G, then xy ! ¢ A,A;,; and y € A,,,A,. Therefore, we
have x ¢ AA,.,A,. Thus G = AA,,A,.

Similarly, we have the following.
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LEMMA 2. (2.2) is equivalent to the following.
(8. 6) For any p-space S, (p>0) and a hyperplane S,_, which is not
incident to S,, there is ai least one (p — 1)-space S,., which is incident to

both S, and S,_,.

LEMMA 3. (2.3) is equivalent to the following.
(3.7) Let S,-; be a (p — 1)-space and S, be a point which is not incident

to S,.. If S, and S, are two linear spaces which are incident to both S,_,
and S,, then S, is incident to S,.

PROOF OF (2.3)=(3.7): We may suppose that S,., = A,x where
x e A, A, (cf. (2.1) and Lemma 1) and S, =A,. Let S,=A4,,,y and
S = A4,z be incident to both S,_, and S,. Then u = xz~' ¢ A,4,,, and
we may assume that y and = are elements of A,. Since x € A,,,4, and
z € A, wehavealsou<cA,,;,A,. Thereforeu ¢ A A, N A, A, Ifu ¢ AA,
then = € A,A,. This contradicts to the fact that S,_, and S, are not incident.
Thus we have w<€ A, A.,;. This shows that S, and S, are incident each other.

Proof of (3.7)=(2.3): Let x € A4, N A,,,A, and we shall show that, if x
& AA, then x € A,,,4;, We have z = a;,a; = a;,,a, where a, € 4,, a; € A;,
a,., € Ao, and a, € A,. So A,x and A, are not incident each other and incident
to both A,,,x and A; respectively. Therefore A,,,x and A, are incident each
other. Thus we have x ¢ A,.,A,.

COROLLARY. (2.3) for j =i+ 1 is equivalent to the following.
(3.7) For any p-space S, and a point S, which is not incident to S,, there
is at most one (p + 1)-space which is incident to both S, and S,.

LEMMA 4. (24) is equivalent to the following.
(3.8 Let S,, Sq and S, be three linear spaces of dimensions p, q and r
respectively and p<<q <r. If S, and Sy, Sq and S, are incident each other
respectively, then S, and S, are incident each other.

PROOF OF (2.4)=(3.8): Let S, =A4,,,x, Sy = A4y and S, = A4,,,z.
Then by definition, zy~! € A,,,Aq:, and yz™' € Ay, 4A,,;. Therefore by (2.4),
xz™' € Apr1Arir. Thus we have S, and S, are incident.

Proof of (3.8)=(2.4):Let 1 <j <k. Forany x € A,, Aix and 4,, A;and A,
are incident respectively. Therefore A,x and A, are incident. Thus we have
x ¢ AA; and A4; C AA,.

LEMMA 5. (2.5) is equivalent to the following.

(8.9) For any (p— l)-space S,-, and a line S, which are incident to a
p-space S,, there is at least one point which is incident to both S,-, and S,.

PROOF OF (2.5)=(3.9): We may suppose S, = 4,,,. Let S, = A,x and



134 E.ABE

Sp-1 = A,y where we may assume that x and y are elements of 4,,,. Then
xy~' = aya,a, for a, € A,, a, € A, and a, € A,. If we set S, = A,a,y, then
it is incident to both S, and §,_,.

Proof of (3.9)= (2.5): For any x ¢ A,, A,x and A,_;, are both incident
to A, Therefore, there is a point A,y which is incident to both A,r and
A;_;. We have xy™' € A,A, and vy € A,A;_,. Thus we have x ¢ A,4,4,_,.

The properties (3.1),++-,(3.9) characterize the n-dimensional projective
geometry (cf. Appendix). Therefore we have the following.

PROPOSITION 1. Let G be a group which has n subgroups A,,«+-, A, (n=2)
satisfying (2.1),«++,(2.7). Then the geometry 1(G; A,,- -+, A,) is an n-dimen-
stonal projective geometry and G has a representation on a collineation group

of the space

If G is finite, I" is a finite projective geometry. We shall say that the
order of I" is m when A4,: A, N A, = m + 1. By Theorem 4 of A.-Wagner [5],
for a doubly transitive collineation group of a finite projective space of 7n-
dimension and of order m with n =4, except when » =3 and m = 2, the
group contains the little projective group (i.e. the group of collineations
generated by all elations of I, where an elation is a collineation of I' fixing
all points incident to a hyperplane S,_, and all hyperplanes incident to some
point which is incident to S,_;) and when n =3 and m = 2, the group is
isomorphic to the alternating group on 7 letters or the group of all collinea-
tions. Therefore we have the following.

THEOREM 1. Let G be a finite group which has n, 2 =n = 4, subgroups
A, - A, satisfying (2.1),++-,(2.8). Then, unless n =3 and m = 2, G has a
representation on a collineation group of an n-dimensional (Desarguesian)
projective space which contains the little projective group. When n = 3 and
m =2, G has a representation on the group of all collineations or on the
alternating group on 7 letters.

By Theorem 3 of A.Wagner [5], for a collineation group ot a finite
projective space of n-dimension, n=3, of order m with the following
properties
(i) The group is transitive on the space,

(ii) For any hyperplane S,_; of the space, the subgroup of all collineations
such that S,_; transforms onto S,_;, as a collineation group of S,_;, contains
the little projective group of S,_,,

unless n = 3 and m = 2, the group contains the little projective group of the
space. Therefore, if we replace (2.8) by the following
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2.8) G=AUA A, for some x € A, NA,N---NA,,

we have the following theorem by induction with respect to 7.

THEOREM 2. Let G be a finite group which has n subgroups A,,- - -, A,,
n =5, satisfying (2.1),+++, (2.7) and (2.8"). Then G has a representation on
a collineation group of a n-dimensional projective space <which contains
the little projective group.

4. Groups admitting Bruhat decompositions of type (4,). Let G be a
group admits a Bruhat decomposition with the symmetric group of degree n + 1
as Weyl group, i.e.,, a group possesses two subgroups B and W satisfying (1.1),
+++,(1.5) where B is the symmetric group of degree n + 1. Let I = {m,+ - -,
7.} be the system of generators of ¥ such that
(4.1 mi=1foreach 1=i=#n and (mm.,) =1 for each 1=i=n— 1.
Let A,,---,A, be the subgroups of G defined as (1.8) for the generators
(4.1). To prove that the groups satisfy (2.1),---,(2.7) and (2.8), we need
some lemmas on the Weyl group @ of type (A,).

We shall identify @ with the Weyl group operating on a root system A
of the type (4,). Then the element 7; of the system of generators is a reflexion
with respect to the root a; of a fundamental root system {a,, .-, a,} of A.
We define a linear order in A with respect to the fundamental root system.
Denote by 3 the set of all postive roots.

Then

S={a,=a,+a.,+ -+ +a; 1=i=j=n, a;; means a,}

a;; <ag, if and only if j <[l or j =1/ and 2 <i

A=3+(—3)
For any root <A, we denote by (r) € & the reflexion with respect to 7,
then () = (— r). Therefore we use only positive root for the notation (7).
For any two roots » and s, () and (s) are commutative if and only if » + s is
not a root. For any 7,1 =i = n, 3 may be partitioned to two subsets =, and
3 such that

Si={lapji=k<iori<j=k}
Si={ays J=1=k].
Now denote by T the subgroup of ¥ generated by =; for all j distinct from

i. Any element of B, can be expressed by a product of some elements () for
r € 3,. We have the following

LEMMA 6. For any w € B and i € I, if w & B, we have
w=w(r) .- (ry) (resp. w=(r)++-(ry) w)
where w' € 8y, r; € 3, for each 1=j =N, (r;) and (r,) are commutative
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to each other for 1 =j, k= N.

PROOF. For r ¢ 3} and s € 5;, if () and (s) are not commutative, we
have (r)(s) = (s)(r) for some s ¢ 3, Therefore w = w'w” where w’ is a
product of (r)’s for r € 3,,i.e., an element of B, and w” is a product of (#)’s
for re 3. Let w=w'(r,)+ - (rv) be an expression of w such that N is a least
possible number of such expression. Then (r;) and () are commutative to
each other for 1 =3, £ =< N. For, if there is a pair j,k such that (r;) and (r%)
are not commutative, we can express w as a product of an element w’ of B,
and (s;)« -+ (sx) where s; € 3; and M < N. The second assertion is also proved
similary.

COROLLARY. For any w ¢ B, if w&BW,, we have w = w'(r) (resp.
w = (r) w’) where w € W, and r € 3;.

For any two roots where », ' in 3, (») and () are commutative.
Therefore we have immediately our assertion from Lemma 6.

LEMMA 7. B = B, U B,(a,)B,.

PROOF. Let w € W. If w&BW,, then w = w'(r) where w’ ¢ &, and
r e 3. If r=a,,; then (r) = (a,.)(a,)a,). Thus we have w €T (a,)B,.

LEMMA 8. B; Cc WL, for i=j=k.

PROOF. Let we B, If wd W, we have w = w'(ry) - (ry) where

w €W, andr, € 3, N3, for all 1=I=<N. Since i=j=%k, (r) < B, for
1=1= N. Therefore, we have w ¢ ,3,.

LEMMA 9. B = &.2,,,%, for each 1=i=n—1.

PROOF. For any w ¢ B, if w ¢ B,, we have w = (r)w’ where w’ ¢ B,
and r € 3. We shall show that () € B,®,,,B,. Let r = a,;. If =4, then
(r) € B,.,. f k=i + 1, then we have () = (a,x) = (@s11.1) (@1,:) (@i+1,,) Where
(@i1,x) is contained in both B, and W, and also (a,;) € W,,,. Thus
we have w ¢ B,%,,,8,.

Similarly we have the following.

LEMMA 10. B = BT, 8, for each 2=i=n.

COROLLARY. B, Cc &®.%,_,%,_, for each 2=i<j=n.

LEMMA 11. B, N B,,, B, ¢ BB, U B, B, for each 1=i<j=n.
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PROOF. Let w € B,%;, N 9B,,,8W,. We shall show that if w ¢%,2,, then
w e BW,;,,W,, By Lemma 1 and its corollary, since w € B,,,2,, we have
w = (s)w’”’ where w” ¢ B, and s € 3; N 3,,, and also, since w ¢ W,BW,, we
have w = w'(r;) - (ry) where w’ ¢ W; and 7, € 3, N ;. Moreover, since
w & W,T,, s € 3/ and there is at least one root r;, say r;, contained in 3
and yet, since the roots of 3; are commutative each other, r, is the only one
root contained in . Therefore, we have (7y)(ry_1): * *(r.) = wi € BB,. Thus we
have (s)w'(ry) = w"w; € B, where w’ ¢ W,,s =a,; and r, = a,x C=k =)
We shall show that w’ ¢ B,,,%; which proves w ¢ 8,,,%,. Assume that
w & BW,,,BW,. Then we have w' = wi(x) where w; € W, and u € 3, N 3,
for the roots of 3., N3, are commutative each other. Since w’ & ,,,B;,
we have # € 3 N 3,; N 3. Let # = a;..,, L =j. Therefore

($)w'(ry) = (s)wi(u)(r,) where (s)w; € ;...

We shall show that (s)w'(r,) = wi(r) where w; ¢ B, and (r) & B,. This
contradicts to the fact that (s)w'(x) € 8, Thus we shall have w’ ¢ B,,,B,.
First, if (s)wi € B,, then (s)wi(u) € W, and () & BW,. Next, if (s)w; ¢ B,
we have (s)w; = wy(v) where w; e B, and v e 3N 3, Let v=a,n,
1=m=1i. Since m=i<k<j=I[, when m =i,

(v)(u)(r) = (al.t)(ai+l,l)(al,k) = (ai+1,l) (ar,1) (al,k) = (ai+1,l)(alc+l,l)(a1,l)

and when m <71,

(v)(u)(ry) = (al,m)(ai+l,l)(al,l) = (ai+l,L)(a1,m)(al,l) = (ai+1,l)(am+l.l)(al.m)

where (@;.1,0(@k+1,0)s (@i+1,)(@ms1,)) are elements of B, and (a1,), (ay,m) are
not contained in T3,.

Now, from (1.6), (1.7) and Lemmas 7,---,11, we see easily that the
subgroups A, -, A, satisfy (2.1),- -, (2.5) and (2. 8). (2. 6) follows from the
fact that (a,,) & A4, and (2.7) follows from the fact (a,) € 4, and & A,
and from (1.5). Thus we have

PROPOSITION 2. Let G be a group admitting a Bruhat decomposition
of type (A,), and A,, -+, A, be the maximal subgroups of G defined as (1. 8)
Sor a system of generators (4.1). Then the subgroups satisfy the conditions
2.1),+++,(2.7) and (2.8).

THEOREM 3. Let G be a finite group admitting a Bruhat decomposition
of type (A,), n=2. Then G has a representation on a collineation group of
n-dimensional projective space which contains the little projective group.
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PROOF. From propositions 1 and 2, unless » = 3 and m = 2, we have the
assertion. We shall show that the exceptional case does not happen. Let n = 3
and m = 2. If G has a representation on the alternating group %, on 7 letters,
then %, must have a Bruhat decomposition. Here 9; is a collineation group
of a finite projective space of 3 dimensions and of order 2. Let S,, S,, S; be
a point, a line and a plane of the space which are incident each other.
We denote by A;, 1 =<7 < 3, the subgroups of U, consisting of the collineations
which transform S; onto itself. We have known that B=A, N A, N A, is a
2-Sylow subgroup of %, and of order 2°. Since the homomorphism ¢ of %; on
to a collineation group of the projective space defined by the decomposition
is an isomorphism, the Borel subgroup of %, must be the 2-Sylow subgroups.
Therefore the order of %; must be < 2°-4.3-2.2° = 1536. This 1is impossible,
for the order of %; is 7-5-32.2? = 2520. Thus we have that %, has not any
Bruhat decomposition with &, as Weyl group.

COROLLARY. A finite simple group admitting a Bruhat decomposition
with the symmetric group of degree n + 1, n =2, as Weyl group is isomor-
phic to a special projective group PSL,.,(Fq) for some finite field F, with
q elements.

REMARKS. Each known simple group of Lie type admits a Bruhat
decomposition, but it is not necessary that the Weyl group can be identified
with that of a simple algebraic group. Further, in general, the property for
simple groups that they admit Bruhat decompositions with a given Weyl
group does’nt characterize the family of simple groups. For example, Ree’s
simple groups associated with the simple Lie algebra of type (F,) admit Bruhat
decomposions with the dihedral group of order 16 as Weyl group which is not
isomorphic to any one of a simple algebraic group. Chevalley’s simple groups
of types (B,) and (C,) admit Bruhat decompositions with the same Weyl group
and also there are two distinct families of simple groups admitting Bruhat
decompositions of type (F,) (resp. of type (G,)). However, it may be conjectured
that the family of (finite or infinite) Chevalley’s simple groups of type (4.),
n =2 (resp. type (D,), n =4, or type (E,), n = 6,7,8) is characterized by the
property thatthey admit Bruhat decompositions with the Weyl group of
that type.

Appendix. We shall show that an incidence system I' satisfying (3. 1), - -
(3.9) is a n-dimensional projective geometry. We denote by S, the set of all
points in I" and we identify the i-space with the set of the points which are
incident to the space. Then we have the following:

() For any two linear spaces S, and S, S, < S, if and only if S, is
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incident to S, and p=gq.

Proof of Sufficiency: If a point S, is incident to S, and S, is
incident to Sy, p = g, then by (3.8) we have S, is incident to S,. Proof of
necessity: Let S, &S;. We proceed by induction on p If p=0, then
the assertion is trivial. We assume that the assertion is true for any pair p’
and g where p’ < p. For S,, there is a point .S, which is incident to S,(3.2)
and for S,, there is a hyperplane S,_; which is not incident to S, (3.3).
Then, since S, and S,._; are not incident, there is a (p—1)-space S, ; which
is incident to both S, and S._, (3.6). Therefore, S,.; = S, and we have
S,-1 &S, (3.8). By induction hypothesis, S,_; is incident to S; and p — 1 = gq.
If p—1=gq, then by (3.1) S,-, = S,;. This is a contradiction, for the point
S, is incident to S, and not to S,_,. Therefore we have p < q and, by (3.7),
S, is incident to S,.

It P,--+, P, are any p+ 1 points, we say that they are linearly
dependent if there is a g-space S, such that P, &< .S, for all 0 <7 =< p where
g < p. Otherwise the points are said to be linearly independent.

Now, we shall deduce, for example, the axioms for projective space of
n-dimension in Hodge and Peodoe’s Method of Algebraic Geometry, Chap VI
I. IS, ES8:and S; &S, then S, =S,.

IL If S, S and S;& S, then S, &S..
III. Every line contains at least three distinct points.

These are trivial by definition and (x). (cf. (3.1), (3.8) and (3.4)).
IV. Given any p + 1 linearly independent points, there is at least one p-space
which contains them.

By (3.5), we may construct the space step by step.

V. If P,--,P, are p+ 1 linearly independent points which lie in an S,
any S, containing them is contained in S,.

If p=0, the assertion is trivial. We proceed by induction on p. We
assume that the assertion is true for " < p. Let S,, be a (p — 1)-space such
that P, - -+, P, , are incident to it. Then by induction hypothesis S,, is
incident to S,. By (3.7) we have S, is incident to S,.

VI. Any p-space contains at least one set of p+ 1 linearly independent
points.

For a p-space S,, we have shown in the proof of (%), there is a (p — 1)-
space S,_, such that it is incident to .S, and there is a point S, incident to
S, and not to S,_,. Therefore we have a series of linear spaces S, C S, C

-«C S,.,C S, and a set of points P, « -+, P, such that P, is incident to S;_,
for 1 =i < p. We shall show by induction on p that the points are linearly
independent. P, and P, are linearly independent. If P, --P,_, are linearly
independent, by IV, there is a (p — 1)-space S,_, which contains them. By V,
the space S,_; is unique, therefore we have S, = S,_,. Assume that P,---, P,
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are linearly dependent. Then it holds that P, is contained in S,_,. This is a
contradiction.

VII. If Py,+---, P, are p+ 1 linearly independent points of an S,, and Q,,
+++,Qq are g + 1 linearly indepedent points of an S,, and if the p+ g + 2
points Py, <+, P,, Q,,+ -+, Q, are linearly dependent, there exists at least one
point which lies in S, and S,.

Suppose that Py, «--, P,, Q-+, are linearly independent and Q,, for
r+1=1i=gq, is dependent to them. Let S,,,,;_;, 0 =17 =7, be a linear space
which contains P, 0=7=<p, and Q;, 0=k <r— i If S™ is a line which
is incident to Q, and Q,.,, then S{” is incident to S,,,,, (3.7). S,., is also
incident to S,.,.; (3.7). Therefore, there is a point S{® which is incident to
both S{” and S,., (3.9). Now let S"be a line which is incident to S{ and
Q1. Then S® and S,.,-, are both incident to .S,,, and there is a point S’
which is incident to both S and S,,,.; (3.9). Thus we have point S{’,
0 =7 =7, which is incident to S,,, ; and to a line S which is incident to
Sq. For 7 = r, the point S{” is incident to both .S, and S,.

VIII. There exists a set of n+1 linearly independent points but any set of m
points, where m > n + 1, is linearly dependent.

This follows from (3.3) and definitions.

ADDED IN PROOF: After completion of this paper, Prof. J. Tits has
kindly informed the author that he has obtained that each finite simple
group admitting a Bruhat decomposition whose Weyl group is neither a
cyclic group of order two nor a dihedral group of order 8, 12 or 16, is
derived from a simple algebraic group, i.e., is isomorphic to the subgroup
generated by the p-Sylow subgroups of the group of k-rational points of a
simple algebraic group defined over a finite field 2 of characteristic p (cf.
[6]). Therefore, in particular, for a finite group, the conjecture stated in
Remarks has been solved affirmatively. At the same time, I have known
that Prof. C.W.Curtis has also obtained some results in the same direction
(cf. [7D).

Mr. T.Tsuzuku has also informed the author that he has obtained the
nearly same result as ours (cf. [8]).
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