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Introduction. Let {¢,(#)} resp. {y.(¢)} be the systems of Rademacher
resp. Walsh functions (see [1] and [5] for detailed properties of these functions)
and let w(2), Q(k) be weight functions introduced by I.I. Hirschman [2], that is

0(0) =0, 0@)=2" C2"=¢t<2™, n=12-...)
QO0) =1, k) =2" Q"=k<2", n=012,--+).

Hirschman [2] extended Paley’s inequality, the key theorem for L” (p> 1)
theory of Walsh Fourier series (abbrev. WFS), to weighted L?-norms and
gave also discrete analogues for uniform and weighted norms. The purpose
of this article is to study the behavior of the decomposition of WEFS in
weighted L' case, and to reconstruct thereof Hirschman’s results by means
of the interpolation theorem of J.Marcinkiewicz [7, II, p. 112]. Analogous L!-
estimates for trigonometric Fourier series are found in S.Igari [3], and we
borrow basic tools from [2] and [3], though we treat the decomposition in a
slightly different form, so that somewhat more tedious inspections are needed.
Let us write, for flx) and/or {c;} suitably restricted,

f@ =T ean@, o= [fov®d, cn=[foxnod Go=1

gm41-]

te 27", 2771), =0 otherwise), 8o(x; ) = o Suir(x; 1) = 2 curi(),

k=2m

x; ) =2_8:8.(x; /), cfF =2 8ECurs
n=0

n=1

where {&,} is any sequence consisting of 0,1 and —1.
Our main results are the following:

THEOREM 1. Let 0=a <1. Then there exists a constant A, > 0,
depending on a only, such that for every y > 0 and for every fe L',

M_a({x; |8*(x,f)[ >y}) é Aa ”f”l,—-a/y,
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where p_(E)= [w*(0)dt and Li.= (3 flh-c= [1#1au0<oy.

THEOREM 2. Let 0= a <1. Then there exists a constant A,>0,
depending on a only, such that for every y>0 and for every c={c;} €l NI

pool{k; 1]l > y}) = Adll ¢ I, -/
where p_o(E)=73 Q7 *Fk) and Lo = {c; | clh-a=D_ |cr| Q7*(k) < oo} .
keE

1. Compact case. We begin with some lemmas needed later.

LEMMA 1. Let —1<a<1l. Then
fls*(x;f)l%“(x)dxg A,,flf(x)lﬁm“(x)dx,

where A, depends on a only.
This is proved along the line of [2], and we omit the proof.

LEMMA 2. Let 0=a <1, feL', and let y> || fl, -« be given. Then
we can decompose f as follows:

(1) f=v+w, w=2 wy;
(ii) lv] = A,y ae.
(iii) “ v ”1.—04 é Azx H f ul,-a
(iV) ZH Wij Hl,—rxéAa "f"],—zx

(v) there exists a system {I,;} of disjoint dyadic intervals I,;=|a;;, a;+27%),
'w“:O Outside I“' and

1
peal) = peo(\J 1) = Till) = 1 f e

(vi) for every I;; = I, w;; = u,

fudx:'/;udx=0.
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This also is essentially known. We refer the reader to S.Igari [3] and
[4], omitting the proof. We will give a complete proof to the discrete analogue
of this lemma (see Lemma 7 below). Observe that Lemma 1 is used in the
proof of Lemma 2.

LEMMA 3. With the notations in Lemma 2, we have
Sk(x’w) =0 for x ¢ E’ k:0,1,2,"’

This is proved in [6] for the case of ®=0. The same proof, starting now
from Lemma 2, applies for general case 0= a < 1.

PROOF OF THEOREM 1. For given y > 2| f |, .. decompose f by
Lemma 2, obtaining

f=v+w, x;f)=8x;v) + &Fx;w).
&8*(x ; w) vanishes outside £ by Lemma 3. Thus
s | 8z )l > 2y} C {z; |8z 0) >y} U E.
We know that pu_(E) = || fli-o/v. On the other hand

p-o({; IS"(‘(x,v)l>y})§yﬁ2f‘87‘(‘(96;7))‘2”1“—«%‘4“3’_2[ lwl*dpa
= %f | 0(@) | dpima = Aall f ol -

Writing y instead of 2y we obtain the required result. The truth of the
theorem for smaller y is easily verified (see [6]).
With suitable choice of &,’s, we have

COROLLARY. Let 0=a <1, fe L', and let s,(x;[f) be the n-th partial
sum of its WEFS. Then

p-fzs sk ) > 9D = Add flh-a/y s
where A, depends on a only.
2. Discrete case. Since the underlying measure space is atomic and no

longer totally finite, we must argue more carefully and the proofs will be
much more complete than the preceding case.
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LEMMA 4. Let fe<L¥0,1), ¢; and cn. be defined as in Introduction.
Then we have

D CmkCaxr =0 for ma¢n.

k=0

This is a special case of [2, Lemma 3.1 d], but we include a proof, which
seems simpler and more straightforward. In fact we have

Y cunine = 2 [ FOXaO100 dt [ £l 300 ¥0l) i
= [ %001 8 [ 0 s T e+

= [ 000 St P di = [ O xuO 20 dt = 0,

because Sy(¢;fx.) tends in L*norm to f(¢)x.(f) as N—oo, q.ed.

LEMMA 5. Let f, cx, cor be as above. Then
Sl =101 (= 2 lal?).
k=0 k=0

ProoOF. For a fixed natural number N, define

) =F@) ¢z27), =0 0=¢<2)

& = [ A x®¥ult) dt, &% = 3 e,
n=1
Qur assertion is true for f» and {¢{"*}: in fact

Sl = 2 (L enc) (X act?)

k k

S22 1R H+22 2 EnEaciR ey
k n

k m<n
=22 P +22 8.8, 2 R =S+ T, say,
k n m<n k

the summation over m, n being finite (observe that ¢{’=0 for n = N and
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& = cu for n < N). The inner sum in T vanishes by Lemma 4 for every
pair (m, n), while S is equal to

21wl = 5 [ 14000 d = [ £

by Parseval’s relation.
Since fy — f in L? as N — oo, this inequality is easily extended to whole

L?, which completes the proof.

By Hirschman’s method, we can generalize Lemma 5 as follows.

LEMMA 6. Let —1<a <1l There is a constant A,, depending on o
only, such that, for every c=f{c,}<lini?,

2 ek |PQ(k) = ALY | ce? Q4R) .

LEMMA 7. Let 0=a <1 and y >0 be given. Then c={c;}€l', can
be decomposed as follows; '

(i) c=v+w, w=Zwki'j’, v = {v}el,;
(ii) lvg| = Ay for £=0,1,2,---

(iii) " v “1,—« é Aa ” (4 ||1,~a

@iv) Z | w®® -« = Aal ¢ I3, —a

(v) There exist disjoint “intervals” I;:
u=w = {w} vanishes for k & I = I;

S el = el

(vi) Dur= uy =0, for every u=w' I=1,.
k

ker

PrOOF. We divide the whole sequence [0, o) into disjoint “intervals”
Jo; (j=1,2,+++) as follows. '

Let J,; be the smallest “interval” [0,2") for which we have p_.([0,27™))
= |lclli,-«/y. Having defined J,; with right open extremity b;, let J,;., be
the smallest [b;,2™) for which p_.([(6;,2™) = lclly,_o/y. Thus J’s are all
defined, of the form [2% 2°) (except possibly J,, = {0} = [0, 1)).
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Divide each J,; into two parts (to be precise, we should confine ourselves
to those J’s which contain at least two integers, but the reader will not be
confused if we omit this trivial remark)

Jo; = [2°D, 2°D) = Ji,Ud3; say, where
Ty = [200, 207 if a(j) < b(j) — 1
= [299)) 20042901y if a(F) = b(j)—1 i.e. J,; consists of 2°? elements.
Jo=Jy— J
Observe that in either case p_(J) = p_o(Jo;) = Acp-(Jy), I = 1,2.
If #-a(Jéj)<%Z{lck|n*“(k); keJy}, we call JYy an I,.; if not, J} is

called a J,.; we enumerate them in two systems from left to right, obtaining
{I;} and {I,;}. Divide each J as above, and repeat this process indefinitely.
Observe that the J’s are divided until they consist of a single point (integer),
and each I = I, is either “purely dyadic” (by this we mean I=[2™, 2")) or is
contained in an “elementary dyadic interval” [2", 2"*!). We obtain two systems
of disjoint intervals {I;;} {J,;}, each of the latter consisting of a single point.

Put vsz—}—IZc,, for kel=1I;

ver
= cy for R§E= Ul
ue = wiP = c,—v, (kel= 1))
~0 (k&I=1)
wp = > wi =D uy .
0 )

Clearly (i), (v) and (vi) are satisfied. Let us verify (ii). If k<I for some
pair (Z,7) then

26

vel

1 Aoc —a
émz Icvl = ,lb_a(I) Zlcvlﬂ (V)

1
* o] = 75
(%) | vk 7T 2 2
In fact, if I is “purely dyadic”, I = [2™, 2"), we have

n—1 29411

p-o(I) = Z Z Q) = A, 2707

j=m vy=2*

and
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n-1 29411 211

—;TZICU‘ <2—n+lz Z |Cv| <22 n(1— a)Zz —ja Z |CV\
ver

a(I) sz VZ;J le,| Q*(v) = _,1(1) ; e, | Q“@).

and if 7 is a part of an “elementary dyadic interval”, the proof is simplecr.
Thus, by the definition of the intervals I’s, we have

‘vkl =S —a(I) Z lcvlﬂ-a(”)—«

vel

and (ii) holds for k< E. But, if 2% E, % must be the unique element of a
certain J;;, and the inequality distinguishing J’s from I’s may be interpreted
as || =y.

(iii) is directly verified :

190 = (Z + ) lucl@-e(®)

k¢ E keE

=2 lal QR + 22 3 lve Q7(k)

by @) above) =3 |l 0 + A X 255 6l 06)
k¢ E i,j keI -« vel

=2 el QB + Au 2_ 3 16,107%W)

ke E 4 ver
= A, ; lce|Q™(k) = Aaliclh, -« q.ed.
(iv) follows from (iii) and (v):
Z, w2 e = lwlh-a = lclh-a + [ lh-a
This completes the proof.

LEMMA 8. Let c={c;}ell,, 0=a <1 be decomposed by the preceding
Lemma and let u= w? be a “piece” of it. If the interval I=1; carrying
u is contained in an elementary dyadic interval, then

Upr= f w(@t) X (O V@)dt =0 for k&1,
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where u(t)= >_ u, V().

vel

PrROOF. [ is of the form
[zn(l) _|_ cee 271(7‘~l)’ 2n(1) 4o + 2n(r—]) + 2n(r))

where n(1)>+++>nr—1)=n(r)=0. Thus

o = [ ult) ) ¥(0)

— [0 ;'um%(t) X6 ¥ru(2) dit

where s=n(r) and N =2"® + ... 427D Since Yo,(f) =1 for 0=¢t <2
and 0 =» < 2% (vi) of the preceding Lemma combined with the definition of
Xx(t) gives

Uy =0 for n>s=n@).

281

On the other hand, if n=s, > wv.,¥,() and x,() are Walsh polyno-

v=0
mials of degree =2°, and so is their product, while Yry(¢)¥,(¢) is a monomial

of degree >2° for £ & I. Thus the integral vanishes by the orthogonality of
the Walsh functions.

LEMMA 9. Let u=w" as above Lemma, with I=1I;; “purely dyadic”.
and let wu.i, ui be defined as before. Then

> lug Q7 (k) = Al ey -a -

k¢r

PROOF. We have I = [2},2™) for some integers I, m and
tan = [ X090 s

#,, vanishes for n>m as in Lemma 8. If n=m, ult)x.(t) is a Walsh
polynomial of degree =2™, so that u,, again vanishes for £k =2". If k<2’
and n=1, y,(£)x.(¢) is a Walsh polynomial of degree =2!, orthogonal to u(z)."

Thus we have only to consider the case 2 <2, I<n=m. Now {n(t)=1
wherever x,(t) = 1, and since x,(¢) is expressed by a difference of Dirichlet
kernels,
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Xa(t) = 27"(2Dp(2) — Din(2))

we have
2711
s = 27" f 1(6) (2 Dys(t) — Din(®)) dt = 2 (Z “"—- S u>
v=2l p=2m"1
Consequently
2n-1
luk| = |2 Enthnk Zlunk|< ZZ Zlu,,
n n=l+1
m n-1 2’*!—1 m—123+1-1 o
=227y 2 lwl=2 3wl X 27
n=1+1 J=l p=g =l p=2 n=j+1
m-—1 211
=2.27% lul,
=l v=2J
which 1is constant for 0 < £ < 2!.. Thus
ol—1
D luk| Q7 (k) = > |ui¥ | Q (k)
ké¢rI k=0
m-1 PRt | m—1 25411
= A,2%~ “’22 I lwl = A2 3 |w| = Adllulh, -
v=2J J=1 v=2)

Combining Lemmas 8 and 9, we have

LEMMA 10. Let F = {k¢E; |wi|>y}. Then
I"'—a(F) ___S_ Aa “ 4 Hl,-—a/y .

PROOF. By Lemmas 8 and 9, w} = > wf = > & u. Iis certainly
1,7

ij n

defined at least for & E. Now

Yp-oF) =y 2 QW)= 3 |wi|Q*(R)= 2 Q%) Z i |

keF keF keF

=22 luk |0 (k) = A Z el - = Adll €1, —a q.ed.
i, keI
PROOF OF THEOREM 2. Let G= {k:|c¢}|>2y} and let v, w be the
decomposition of ¢ by Lemma 7. It is easy to see that vel2
Clearly
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G fk:|vi| >y}ufk: |wk| >y}
c{k:|vi| > yJUEUF,

where F' is defined in Lemma 10.

Both E and F are of measure = zi“ I clly, -« by Lemmas 7 and 10, while

1
yz

poa({k: vt >y = 2 |02 (k)

IA
2N

7= > vk 2 Qo () (by Lemma 6)

k

-

A
8N

=2 o] Qou(b) =

k

iﬂ H c “1,—0: s q.e.d.

A

In order to obtain Hirschman’s inequalities for 1 <p= 2, we interpolate
Theorem 1 and Lemma 1 for compact case, Theorem 2 and Lemma 6 for
discrete case. Now the standard conjugacy argument gives the required result
for p=2; this is evidently possible for compact case, and for discrete case,
this is assured by the following

LEMMA 11. Let a={a.} be a suitably restricted sequence (e.g. a<(®) and
let b={b,} be a finite sequence. Then we have

; at by = ; ai by
PROOF. Write X~ ax¥i(t) = g(8), D biri(t) = h(t). Then
Zk:a,t by = ;bk;&,ank
= En: € ; f f 9O Xa(®) hw) Yt +u) dudt
SO FOPRCVOR:
= 2& [(Zano)vono

= Z en Z Ay b""’ = Z (257 Z en b'nk' = Z akb;: 5 q.e.d.
n k k n k
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