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Introduction. Let {φn(t)} resp. [ψn(t)} be the systems of Rademacher
resp. Walsh functions (see [1] and [5] for detailed properties of these functions)
and let ω(t), fl(&) be weight functions introduced by 1.1. Hirschman [2], that is

ω(0) = 0, ω(t) = 2~n (2~n ̂  t < 2"n+1, n = 1, 2, )

Ω ( 0 ) = 1 , Ω ( k ) = 2n ( 2 n ^ k < 2n+1, n = 0 , 1 , 2 , - • - ) .

Hirschman [2] extended Paley's inequality, the key theorem for Lv (p > 1)
theory of Walsh Fourier series (abbrev. WFS), to weighted ZΛnorms and
gave also discrete analogues for uniform and weighted norms. The purpose
of this article is to study the behavior of the decomposition of WFS in
weighted Lι case, and to reconstruct thereof Hirschman's results by means
of the interpolation theorem of J. Marcinkiewicz [7, II, p. 112]. Analogous L1-
estimates for trigonometric Fourier series are found in S. Igari [3], and we
borrow basic tools from [2] and [3], though we treat the decomposition in a
slightly different form, so that somewhat more tedious inspections are needed.

Let us write, for f(x) and/or {ck} suitably restricted,

/(*)=Σ'***(*)> ck = fβt)Ψ*(t)dt, cnk=ff(t)χn(t)dt (χn(t) = l,

t e [2Λ 2-"+1), = 0 otherwise) , S0(x;f) = c0, Bn+ι(x;f) = Σ, c^^x),
k=2n

where {6n} is any sequence consisting of 0, 1 and — 1 .
Our main results are the following:

THEOREM 1. Let 0 ^ Λ < 1 . Then there exists a constant Aa > 0,
depending on oί only, such that for every y > 0 and for every fz LLa

μ.a{{x; \Z*(x;f)\ >y})^Aa \\fh,-Jy,
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w h e r e μ ^ a ( E ) = £ ω - " ( t ) d t a n d U.a = { / ; || / I k , - * = j \ f \ d μ . a < <»} .

THEOREM 2. Let 0 ^ a < 1. Then there exists a constant Aa > 0,
depending on a only, such that for every y>Q and for every c— {ck} e /!_αnZ2,

where μ.a(E) = Σ^'a(k) and l\a ={c;\\c ||,._α =J2 k»|fl-«(*) < °o}

1. Compact case. We begin with some lemmas needed later.

LEMMA 1. Let -l<a<l. Then

f\8*(x;f)\*ω%x)dx^AΛf\f(x)\*ω*(x)dx9

where Λa depends on a only.

This is proved along the line of [2], and we omit the proof.

LEMMA 2. Let 0 ^ a < 1, fz LLa and let y > H/Ji,-* be given. Then
we can decompose f as follows:

( i ) f = v + w y w = Σ, τvίj
hi

(ϋ) \v\ ̂  Aay a.e.

(iϋ) II v | | i -a = A a I! f \\Ύ _α

(iv) 2Z II w o lli,-α = Aa II / || l t_α

(v) there exists a system {Iυ} of disjoint dyadic intervals Iij = [aij9 α i j+2~ ί),
te;ίj = 0 outside Iυ and

(vi) / o r £?7<?r:y /^ = /, wi5 — u,

I w ί/x — j u dx — 0 .
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This also is essentially known. We refer the reader to S. Igari [3] and
[4], omitting the proof. We will give a complete proof to the discrete analogue
of this lemma (see Lemma 7 below). Observe that Lemma 1 is used in the
proof of Lemma 2.

LEMMA 3. With the notations in Lemma 2, we have

hk(x, w) = 0 for x φ E, k = 0,1,2,. .

This is proved in [6] for the case of a — 0. The same proof, starting now
from Lemma 2, applies for general case 0 ̂  oi < 1.

PROOF OF THEOREM 1. For given y > 2 II /|li,_α decompose / b y
Lemma 2, obtaining

f=v + w, $*(x;f) = $*(x;v) + $*(x;w).

8*(x w) vanishes outside E by Lemma 3. Thus

[x;\8*(x;f)\ >2y} c {x;\$*(x;v)\ > y} u E .

We know that /*_«(£) ̂  \\f\\i,-a/y. On the other hand

^y-2 J \hHx;v)\'dμ^^Aay

v{x)\ dμ,a rg Aa || / |

Writing y instead of 2y we obtain the required result. The truth of the
theorem for smaller y is easily verified (see [6]).

With suitable choice of £w's, we have

COROLLARY. Let 0 fg a < 1, /<= U-a and let sn(x;f) be the n-th partial
sum of its WFS. Then

μ-a({x; \sn(χ;f)\ >y})^Aa\\f\U,-a/y9

where Aa depends on cc only.

2. Discrete case. Since the underlying measure space is atomic and no
longer totally finite, we must argue more carefully and the proofs will be
much more complete than the preceding case.
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LEMMA 4. Let fe L2(0, 1), ck and cnk be defined as in Introduction.
Then we have

Σ CmkCnk = 0 for m±=n.

This is a special case of [2, Lemma 3.1 d], but we include a proof, which
seems simpler and more straightforward. In fact we have

Σ cmkcnk = Σ ί f(t)Xm(t)ψk(t)dt j f(u)χn(u)ψk(u)du

= I fit) xJt) dt J f{u) χn(u) Σ, Ψt(t+u) du

Λt) Sy{t ;fχn) dt -»ff\t) χm(t) χn(t) dt = 0,

because SN(t;fχn) tends in ZΛnorm to f(t)χn(t) as N—>oo? q.e.d.

LEMMA 5. L^ί jf, cA, cnΛ: έ^ as above. Then

PROOF. For a fixed natural number JV, define

Mt) - /(ί) (ί ̂  2-^+1), = 0 (0 ̂  t <

Σ
n=l

Our assertion is true for fN and {cj^*} : in fact

Σ
A:

= Σ (Σ «» ̂ ) (Σ e»

Σ 6m€n Σ c ^ ^ 0 - S + T , say,
m<n k

the summation over m, n being finite (observe that cffl = 0 for n^ N and
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cffi = cnk for n < N). The inner sum in T vanishes by Lemma 4 for every

pair (m, n), while S is equal to

Σ
n k

Σ IrfίΊ = Σ,f\Mt)xn(t)\*dt = JI Ut)\2dt

by ParsevaΓs relation.

Since ,/>—•/ in L2 as 2V —> <χ>, this inequality is easily extended to whole

L2, which completes the proof.

By Hirschman's method, we can generalize Lemma 5 as follows.

LEMMA 6. Let — 1 < a < 1. There is a constant Aa, depending on a

only, such that, for every c= {ck} Ξ l2

aΓ)l2,

LEMMA 7. Le£ 0 ̂  a < 1 α/zJ y > 0 be given. Then c= [ck] e lla can

be decomposed as follows

( i ) c = v + w , w = Σ ^ ( U ) , v = {vjc} € lLa

( ϋ ) \vk\^Aay for * = 0,l,2,

(in) IMIi,-«^A,lkllll-β

(iv) ΣH«'<M>lli.-«^Λ.lklli.-

(v) There exist disjoint "intervals" It}:

vanishes for k ̂  / = Il}

(vi) 2_ u* = Σ Λ̂: = 0, /or
k kzl

PROOF. We divide the whole sequence [0, oo) into disjoint "intervals"

Joj (y=l, 2, ) as follows.

Let Joi be the smallest "interval" [0, 2n) for which we have /x_«([0, 2~n))

= ll̂ lli,-α/y Having denned Joj with right open extremity bjy let JOJ+I be

the smallest [bj9 2
m) for which μ-Jibi92

m))^\\c\\lt-Jy. Thus J0/s are all

defined, of the form [2α, 2b) (except possibly J o l = {0} = [0,1)).
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Divide each Joj into two parts (to be precise, we should confine ourselves
to those J's which contain at least two integers, but the reader will not be
confused if we omit this trivial remark)

J o j = [2σ(i), 2δ(i)) = JljΌ Jlj say, where

Jί/= [2^,2^-1) if * ( / ) < * C / ) - l

= [2aυ\ 2α(j) + 2αω"1) if a(J) = Kj)-l i.e. J o j consists of 2α(j) elements.

Observe that in either case μ-.a(Jι

Qj) fg μ_a(Joj) :g Aaμ_a(Jι

OJ), 1 — 1,2.

If μ_a(Jι

OJ)< Σίk*l β "* α (*)> ^ ζ ^}> w e call JJ, an / l β if not, Jι

Oj is

called a J j . ; we enumerate them in two systems from left to right, obtaining
{Iυ} and {Iυ}. Divide each J as above, and repeat this process indefinitely.
Observe that the J's are divided until they consist of a single point (integer),
and each / = Itj is either "purely dyadic" (by this we mean / = [2m, 2n)) or is
contained in an "elementary dyadic interval" [2n, 2n+1). We obtain two systems
of disjoint intervals {7έj} {J^}, each of the latter consisting of a single point.

Put vk = jjγ Σcυ for k 6 / = Ii5

= ck for

= WP = Ck-Vk (k € / = 74J)

-0 (**/=/«)

Clearly (i), (v) and (vi) are satisfied. Let us verify (ii). If k £ I for some
pair (i,j) then

( * ) I ' l ..,

In fact, if / is "purely dyadic", / = [2m, 2n\ we have

and
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-n+l Y^ \ ^ I r I < 9.O-n(l-α) V^ O-jα

Ϊ

v=-P j=m

1

and if / is a part of an "elementary dyadic interval", the proof is simpler.
Thus, by the definition of the intervals Γs, we have

and (ii) holds for kz E. But, if k^E, k must be the unique element of a
certain Jυ, and the inequality distinguishing J's from Γs may be interpreted
as I vk I ^ y.

(iii) is directly verified:

Σ= 2-j \ck\®> α(^) + Σ Σ I V k \ ^ α(^)

(by (*) above) ^ £ Ic* I Ω~α(*) + A» Σ Σ y ^ γ Σ I ̂  IΩ-W

= Σ \ck\a-"{k) + Aa Σ Σ klΩ-w

(iv) follows from (iii) and (v) :

This completes the proof.

LEMMA 8. Let c — {ck} £ lLa, 0 fg a < 1 6^ decomposed by the preceding
Lemma and let u — zvw:> be a "piece" of it. If the interval I—I^ carrying
u is contained in an elementary dyadic interval^ then

«»*=/«(<) %«(*) ψk(t) dt = 0 for
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where u(t) = Σuvψv(t).

PROOF. / is of the form

|̂ >n(o _j_ . . . _|_ 2«(7--i)? 2n ( 1 ) + + 2n ( r" i : ) + 2n(r))

where n(ΐ) > > n{r-1) ^ n(r) ^ 0. Thus

uvk = fu(t)χn(t)ψk(t)dt

= J Ψ»(P) Σu*+vψv(t)χn(t)ψ
0

dt

where s = n(r) and N = 2W(1> + - + 2n^r~l\ Since ψv(t) = 1 for 0 ^ t < 2~s

and 0 ^ i/ < 2s, (vi) of the preceding Lemma combined with the definition of
χn(t) gives

unk = 0 for n > s = n{r).

2 « - l

On the other hand, if n^s, ]P Uiv+Vψv(t) and %w(ί) are Walsh polyno-

mials of degree ^2% and so is their product, while ψN(t)ψk(t) is a monomial
of degree > 2s for k ^ I. Thus the integral vanishes by the orthogonality of
the Walsh functions.

LEMMA 9. Let u=zviυ') as above Lemma, with I—Iij upurely dyadic",
and let unk, u* be defined as before. Then

PROOF. We have / = [2\ 2m) for some integers Z, m and

unk = J u(t) χn(t) ψk(t) dt.

unk vanishes for ?z > m as in Lemma 8. If n 5g m, u(t) %n(t) is a Walsh
polynomial of degree rg 2m, so that unk again vanishes for k i^ 2m. If k < 2ι

and ^ ^ Z , ψk(t)χn(t) is a Walsh polynomial of degree ^ 2 J , orthogonal to u(t).
Thus we have only to consider the case k<21, I <n^m. Now ψk(t) = 1

wherever %n(ί) = 1, and since %n(ί) is expressed by a difference of Dirichlet
kernels,
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χn(t) = 2-»(2A--.(0 - A-(0)>

we have

J \ v=2l y=2n-i /

Consequently

< V \u I < V 2"n'
n=ι+i

m 72-1 2 j + i - l m - 1 2 J + i - l oo

- Σ 2-Σ Σ Kl^ Σ Σ I«PI Σ 2-"

which is constant for O^k <2ι. Thus

k=o

m-l

Combining Lemmas 8 and 9, we have

LEMMA 10. Let F= [kφE; \ wt \ > y]. Then

PROOF. By Lemmas 8 and 9, w% = Σu% ~ Σ Yl^vUnic is certainly
U i,i n

defined at least for k^E. Now

yμ-a(F) = yΣ&-a(k)^ Σ \rvϊ\n-(k)^ΣΩ-%k)Σ, \uΐ\
keF keF ktF i,j

lli.-«^ 4,11 ell,.-., q.e.d.

PROOF OF THEOREM 2. Let G = {k: \ c% \ >2y} and let v, w be the

decomposition of c by Lemma 7. It is easy to see that v £ I2.
Clearly
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Gd{k: \vt\ >y}u{k: \wΐ\ >y}

c{&: \vi\ > y}uEΌF ,

where F is defined in Lemma 10.

Both E and F are of measure I S — — ||c|li,-α by Lemmas 7 and 10, while

^ " 4 r Σ I v* 12 Ω-«(*) (by Lemma 6)

l-aW~ | | c | | i f _ α , q.e.d.

In order to obtain Hirschman's inequalities for Kp^2, we interpolate
Theorem 1 and Lemma 1 for compact case, Theorem 2 and Lemma 6 for
discrete case. Now the standard conjugacy argument gives the required result
for p^2; this is evidently possible for compact case, and for discrete case,
this is assured by the following

LEMMA 11. Let a={ak} be a suitably restricted sequence (e.g. azl2) and
let b={bk} be a finite sequence. Then we have

Σ * 7 V Λ η j ,

fc A: /mmj k k
k k

PROOF. Write £ akψk(t) = g(t), Σ **ψ *(0 = h(t) . Then

= Σ e »Σ if

= Σ e» / (Σ

= J2akΊZsn bnk = Σ akbt , q.e.d.
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