ON THE SPECTRUM OF A HYPONORMAL OPERATOR

TAKASHI YOSHINO

(Received April 3, 1965)

1. In this note we show several results on the spectrum of a hyponormal operator T (i.e. $T^*T \ge TT^*$). Throughout this paper, an operator means a bounded linear operator on a Hilbert space. $\sigma(T)$, $P\sigma(T)$, $A\sigma(T)$. $C\sigma(T)$ and $R\sigma(T)$ denote the spectrum, the point spectrum, the approximate point spectrum, the continuous spectrum and the residual spectrum of an operator T respectively. It is known that $P\sigma(T) \cup C\sigma(T) \subset A\sigma(T)$. And $\Sigma(T)$ means the convex hull of $\sigma(T)$. The numerical range of an operator T, denoted by W(T), is the set $W(T) = \{(Tx, x) : ||x|| = 1\}$. We write $\overline{W(T)}$ for the closure of W(T). An operator T is normaloid if $||T|| = \sup\{|\lambda| : \lambda \in W(T)\}$, or equivalently, if $||T|| = \max\{|\lambda| : \lambda \in \sigma(T)\}$. It is known that a hyponormal operator is normaloid [7; Theorem 1]

Following G. H. Orland [4], for a compact convex subset X of the plane, a point $p \in X$ is bare if there is a circle through p such that no points of X lie outside this circle. In this paper, we also consider the "semi-bare point" defined as follow: For a bounded closed subset Y of the plane, a point $p \in Y$ is semi-bare if there is a circle through p such that no points of Y lie inside this circle.

 $B_s(Y)$ denotes the set of all semi-bare points of Y. It is clear that if Y is a compact convex set of the plane, then all bare points of Y are included in $B_s(Y)$. Some results on hyponormal operators,

2. In this section, we shall prove some results on hyponormal operators.

THEOREM 1. If T is an invertible, hyponormal operator, then T^{-1} is normaloid and $||T^{-1}|| = [\min \{ |\mu| : \mu \in \sigma(T) \}]^{-1}$.

The proof is based on the following fact. (see [1]).

LEMMA 1. If $||T^2|| = ||T||^2$, then T is normaloid.

PROOF OF THEOREM 1. Let $y \in H$ and ||y|| = 1, then there exists a non-zero element $x \in H$ such that $y = T^2x$ by the invertibility of T. By the

T. YOSHINO

hyponormality of T, we have $||Tx||^2 = (Tx, Tx) = (T^*Tx, x) \leq ||T^*Tx|| ||x|| \leq ||T^2x|| ||x||$; therefore $||Tx||^2 \leq ||x||$ because $||T^2x|| = ||y|| = 1$; hence $||T^{-1}y||^2 \leq ||T^{-2}y||$ and $||T^{-1}||^2 \leq ||T^{-2}||$. Therefore T^{-1} is normaloid by Lemma 1. By [3; §33-Theorem 2.],

 $\sigma(T^{-1}) = \{\lambda^{-1} : \lambda \in \sigma(T)\}; \text{ hence } \|T^{-1}\| = [\min\{|\mu| : \mu \in \sigma(T)\}]^{-1}.$

As an application of Theorem 1, we have the following results which are announced in [8].

COROLLARY 1. If T is a hyponormal operator with its spectrum on the unit circle, then T is unitary.

PROOF. By the assumption of T, T is invertible and hence, by Theorem 1, we have $||T^{-1}|| = 1$. On the other hand, T is normaloid and so ||T|| = 1; therefore ||Tx|| = ||x|| for all $x \in H$. Since T is invertible, T is unitary.

The following Corollary is proved in [5], by an another method:

COROLLARY 2. If T is a hyponormal operator, then $\Sigma(T) = \overline{W(T)}$.

PROOF. If $\lambda \notin \Sigma(T)$, then $T - \lambda I$ is invertible. And, by the simple calculation, it is easy to show that if T is a hyponormal operator, then $T - \mu I$ is also a hyponormal operator for any complex number μ . And hence, by Theorem 1, we have

$$\|(T-\lambda I)^{-1}\| = [\min\{|\mu-\lambda|: \mu \in \sigma(T)\}]^{-1}$$
$$\leq [\min\{|\mu-\lambda|: \mu \in \Sigma(T)\}]^{-1} \text{ for all } \lambda \notin \Sigma(T).$$

By [4: Theorem 2.], we have $\Sigma(T) = \overline{W(T)}$.

COROLLARY 3. If T is a hyponormal operator and if $\sigma(T)$ is real, then T is self-adjoint.

PROOF. By Theorem 1, $||(T-\lambda I)^{-1}|| \leq |\lambda|^{-1}$ for all non-zero, purely imaginary λ ; hence, by [4; Theorem 1.], T is self-adjoint.

It is known that $||(T - \lambda I)^{-1}|| \leq \frac{1}{\lambda}$ for all $\lambda > 0$ if and only if $Re \overline{W(T)} \leq 0$ (see [4; Lemma 2.]). Therefore we have the following lemma, because $\overline{W(\alpha T + \beta I)} = \alpha \overline{W(T)} + \beta$.

306

LEMMA 2. For any operator T,

 $\|(T-\lambda I)^{-1}\| \leq [\min\{|\mu-\lambda|: \mu \in \overline{W(T)}\}]^{-1} \text{ for all } \lambda \notin \overline{W(T)}.$

In [2], Donoghue gave a simple alternative proof of the following wellkown fact;

If W(T) is a subset of the real axis, then T is self-adjoint.

We can also give an alternative proof of this fact by using Lemma 2, and Corollary 3 is an immediate consequence of this fact since if a hyponormal operator T has real spectrum, W(T) is a subset of the real axis by Corollary 2.

3. It is known that the approximate proper vectors of a hyponormal operator T belonging to λ is also those of T^* belonging to $\overline{\lambda}$. However, the converse assertion is not always true.

The following lemma is proved in [6].

LEMMA 3. For any operator T, if $\lambda \in \sigma(T)$, $|\lambda| = ||T||$, then $\lambda \in A\sigma(T)$ and the approximate proper vectors of T belonging to λ are those of T* belonging to $\overline{\lambda}$.

For convenience we shall state the following lemma without proof.

LEMMA 4. If T is invertible, then for any sequence of unit vectors $\{x_n\}, \|Tx_n - \lambda x_n\| \to 0$ as $n \to \infty$ if and only if $\|T^{-1}x_n - \lambda^{-1}x_n\| \to 0$ as $n \to \infty$.

By the definition of the semi-bare point of $\sigma(T)$, it is clear that $B_s(\sigma(T)) \subset \sigma(T)$. And, as a consequence of Theorem 1, we have

THEOREM 2. If T is a hyponormal operator, then $B_s(\sigma(T)) \cap R\sigma(T) = \emptyset$.

PROOF. If $\lambda \in B_s(\sigma(T))$, then there exists a complex number $z_o \notin \sigma(T)$ such that $|\lambda - z_0| = \min\{|\mu - z_0| : \mu \in \sigma(T)\}$ by the definition of the semi-bare point of $\sigma(T)$. It is clear that $T - z_0I$ is invertible and that $T - z_0I$ is hyponormal; and hence, by Theorem 1,

T. YOSHINO

$$\lambda - z_0 \in \sigma(T - z_0 I), \ |\lambda - z_0|^{-1} = ||(T - z_0 I)^{-1}|| \cdots (*).$$

If we assume $\lambda \in R\sigma(T)$, then $\overline{\lambda} \in P\sigma(T^*)$ and $\overline{\lambda} - \overline{z}_0 \in P\sigma(T^* - \overline{z}_0I)$; therefore $(\overline{\lambda} - \overline{z}_0)^{-1} \in P\sigma((T^* - \overline{z}_0I)^{-1})$. (*) implies that

$$|(\bar{\lambda} - \bar{z}_0)^{-1}| = ||(T - z_0 I)^{-1}||$$
; and $(\lambda - z_0)^{-1} \in P\sigma((T - z_0 I)^{-1})$

by [9; Théorème 1.]; hence $\lambda - z_0 \in R\sigma(T - z_0I)$ and $\lambda \in P\sigma(T)$. This is a contradiction.

In the proof of Theorem 3, $(\lambda - z_0)^{-1}$ and $(\overline{\lambda} - \overline{z}_0)^{-1}$ satisfy the condition of Lemma 3 by (*). And by Lemma 4, we have the following thorem.

THEOREM 3. If T is a hyponormal operator, then for any $\lambda \in B_s(\sigma(T))$, the approximate proper vectors of T^* belonging to $\overline{\lambda}$ are also those of T belonging to λ .

And hence, if μ and ν are distinct points of $B_s(\sigma(T))$ and if $\{x_n\}$ and $\{y_n\}$ are the corresponding approximate proper vectors of T belonging to $\overline{\mu}$ and $\overline{\nu}$ resepectively, then $(x_n, y_n) \to 0$ as $n \to \infty$ because

$$egin{aligned} |(\mu -
u)(x_n, y_n)| &= |(\mu x_n - T x_n, y_n) + (x_n, T^* y_n - ar
u y_n)| \ &\leq \|\mu x_n - T x_n\| + \|T^* y_n - ar
u y_n\| \ . \end{aligned}$$

Added in proof. After we wrote this note, we knew that J.G. Stampfli also proved Theorem 1 by an another method in his manuscript "Hyponormal operators and spectral density".

References

- S. J. BERNAU AND F. SMITHIES, A note on normal operators, Proc. Cambridge Phil. Soc., 59(1963), 727-729.
- [2] W. F. DONOGHUE, JR., On the numerical range of a bounded operator, Michigan Math, Journ., 4(1957), 261-263.
- [3] P. R. HALMOS, Introduction to Hilbert Space, New York, Chelsea, 1951.
- [4] G. H. ORLAND, On a class of operators, Proc. Amer. Math. Soc., 15(1964), 75-79.
 [5] T. SAITÔ AND T. YOSHINO, On a conjecture of Berberian, Tôhoku Math. Journ., 17
- (1965), 147–149.
- [6] M. SCHREIBER, On the spectrum of a contraction, Proc. Amer. Math. Soc., 12(1961), 709-713.
- [7] J. G. STAMPFLI, Hyponormal operators, Pacific Journ. Math., 12(1962), 1453-1458.

308

- [8] J. G. STAMPFLI, A hyponormal operator with spectrum on an arc is normal, Notices of the Amer. Math. Soc., 10(1963), 582-583.
 [9] B. SZ-NAGY ET C. FOIAS, Sur les contractions de l'espace de Hilbert III, Acte Szeged,
- 18(1958), 26-45.

TECHNICAL COLLEGE, HACHINOHE.