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Introduction. The following Liebmann-Siiss theorem? :

A convex hypersurface M with constant mean curvature in Euclidean
space E is a sphere of dim M,
has been generalized by Y. Katsurada® (1964) [2] to the case in which E is
replaced with an Einstein space admitting a suitable conformal vector field.
Her tools of the verification of the theorem are some integral equalities and
the first one of the Newton inequalities on symmetric square matrices.

On the other hand, S.S.Chern (1959), [1] has proved uniqueness theorems
for closed hypersurfaces in Euclidean spaces, making use of some integral
formulas which are obtained by a remarkable method by virtue of moving
frames due to E.Cartan.

The object of this note is to prove theorems more generalized than
Katsurada’s theorem, making use of Chern’s methods.

1. Preliminaries. Let M and M be oriented differentiable Riemannian
manifolds of dimensions # and n+1 respectively, and let x: M— M be an
isometric immersion. Let F(M) and F() be the bundles of orthonormal
frames of M and M such that their orientations are coherent with those of
M and M. Let #(p), pe M, be the unit normal vector at x(p) such that for
any orthonormal frame & = {p, e, -+ -, e,} € F(M), b ={x(p), dxz(e,), - - , dx(e,),
&(p)} € F(M). We denote this mapping of F(M) into F(M) by Z. Let @ be
the basic forms for the frame bundle F(M)» and w),,=—®, be the connection
forms for the Levi-Civita’s connection of M, then we have

1.1) dor =2 o \Gu, dory =2 G, \Bpy + O,

1) This theorem dues to H. Liebmann (1901) [3] in case dim E=3 and W. Siiss (1929) [4] in
case dim E>3.

2) K. Yano [5] has recently generalized Katsurada’s theorem to the case in which E is replaced
with suitable Riemannian manifolds.

3) In this note, Greek indices run from 1 to #+1 and Latin indices from 1 to =.
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— 1 - . — _
(1- 2) Qe = _2— ZRMLVP a-’u/\‘*’p ’ Riwp = — Rappy «

Putting wx = Z*@), @1, = ¥, as is well known, o; and o;; are the basic
forms and the connection forms on F(M) for the Levi-Civita’s connection of
M, and so we have

(1- 3) dﬁ)i = Z ;N\ @j; , dwij = Z a’ik/\")kj+ﬂij ’

1
(1- 4) Qi} = —2—2 Rijh.k o, \ oy , Ri}hk = _Rijkh .

Furthermore we have

@, =0, Zmi/\win+l =0
and

Q5= Z*Quy — @ ne1 \N®j sy -

Hence, putting
@i ny1 = Z hu‘l’: , hy= hjz >

we have

(1- 5) Rijlcl = Ri}kl - hikhjl + hilhjlc s

where h;; are the components of the second fundamental tensor of the immer-
sion of M into M.

2. Integral formulas. In this section, assume that a vector field € is
given on M. According to Chern [1], we introduce the differential (n—1)-form
on M

(2'1) A:(E,E:dx"",dx)>
n—1

where dxr =Y we;, b = {p,e,+++,e,} € F(M), and the expression is a deter-
minant of order n+1 in the following sense, whose columns are the components
of the respective vectors or vector valued differential forms with respect to
frames b or Z(b), with the convention that in the expansion of the determinant
the multiplication of differential forms is in the sense of exterior multiplication
and (e, +++,e,€,,,) =1, ¢ identifying dx(e;) and e,., = &).
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Since € = &'er, DE =(dE*+®,E") er = E*,,5"es, putting @, =a,1 etc., on M
and D(dz) = (de'+w;,! Nw’)e; = 0 on M, we have

dA = (DE,E,dx,' b ,dx) + (E)Dg,dx,' b :dx)
= ('— 1)72—1(?]', i("i €;, dx’ cecy dxa en+1)
+ (_1)71, <E’ en+l> (mn+{ei’ dx, e, dx, e,,H) N

that is

@.2) dA = (=17l | <E.8> PAH) + By} aV
where

(2.3 P(H) =~ The, H=(h),

2.9 AV = o, N\ =+ No,.

Now, for any two vector fields 7, f of M along x: M — M, we define
a vector field of M by

(2.5) Dp(p) = 2°7",:Pre;, D7 = 7', 0'e,
especially
DEE) = (@u1,'e)€) = (—hf o’ e)€) = —h' e .

Let ¢ be the orthogonal projection of & onto T(M), that is
(2.6) t=¢— <t,E>¢,
then the above equation can be written as®
@7 DEE) = onn' (@) e

Then, we introduce the second differential (n—1)-form on M

2.8) B = (D&E), € dx,+ - ,dx)

n—1

4) ¢ is here identified with its horizontal lift on F(M) with respect to the Levi-Civita's con-
nection of M.
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from which we have
dB = (D(D&E)), £, dx, - - -, dx) .
By (2.7), we have
D(DEE)) = D(@n:i(§)e)

= {d(wn&(g)) + wnd(?)wj} e + wn+{(§) 0f enyy .

Making use of the same notations for the basic horizontal tangent vector field
corresponding to ¢; and ¢ on F(M) and using (1.1), we get

{d(0,:1(8)) + @n4i(§) @5} (e:) = €@n41(0)) + @,.1(8) @i(er)
= z(dmn+% - wn+{ /\ wé)(ei) C) + mn+{(ei) CO.E(C)
+ C(mn+{(el)) + (D"+{:([e,;, é‘])

= (En+]i.hkwh /\ ("k)(ei’ é‘) - g(tr (H)) + §j7 imn+11~:(ej)

= Rust'ul® — &(tr (H)) — hite ;.
On the other hand, we have

DE! = dE + Flol + B 0.l = dt’ + o/ +E" o,

2.9 E.=¢,— <t E>h'.

Let R = Ri be the components of the Ricci tensor of M. Then we have
finally

{d(@n4i(©) + 0n:{() 0} (e:) = RauE'CH — E(tr (H)) — hy'Cui— <€, &> hi'hi .

Now we define P,(H) by means of the equation

(2.10) det I+ Hy) =3 (’;) PHD) y .
_ 7=0
We have easily
hith? = tr H? = n*(P,(H))*—n(n—1) P,(H).

Using the above equations, we get
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@1)  dB= (=1 nl[= <E,E> (n(PED) — (n—1) P(HD)}
— (PUED) = b Eut S Ru £V
From (2.2) and (2.11), we get a formula
(2.12)  dB+P,(H)dA = (—1)"'n![(n—1)<E,&> {P,(H) — (P,(H))%}

— EP(E)) + - (PUEDE 1) + R84V .

3. Liebmann-Siuss Theorem in general cases. According to Katsurada
[2], assume furthermore that M is compact and £ is conformal. Then

(3' 1) EML + Eu,l = 2$8M

in M and along x: M — M

@) =nF, hiFi= 5 hEtE) = §tr () = P PuCH).
Hence (2.12) becomes
(.2 dB+P,(H)dA = (=1 n! [(n—1)<E, &> (Py(H) — (P,(H))'}

— UP(HD) + — R £ E1dV .

THEOREM 3.1. Let M be an orientable (n+1)-dimensional Riemannian
manifold admitting a conformal vector field €. M be a compact orientable
n-dimensional Riemannian manifold and x : M—M be an isometric immersion.
Let ¢ be the vector field of M which is the naturally defined orthogonal
projection of € onto T(M). If the mean curvature of M in M is constant,
€ is not tangent to x(M) everywhere, and ¢ and the normal vector field §
of M is conjugate with respect of the Ricci tensor of M, then M is umbilical
at every point.

PROOF. By the assumption we have
P,(H) = const., ¢(P(H) =0,

(8.3) RuEe=0.
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From (3.2), we get
0= [ @B+P.(H) d) = (=15 (r= D! [ <E, 8> (PuH) — (PGHDY) 4V .

By the Newton inequality, we have
(3.9 Py(H) = (P(H)).

By the assumption. <<F, &> =0 at every point, we must have
Py(H) = (P(H))*,
which implies that H=P,(H)I. Hence, M is umbilical at every point.

REMARK. In this theorem, if M is an Einstein space, the condition (3.3)
is satisfied automatically. In this case, Theorem 3.1 becomes Katsurada’s one.

4. Tensors derived from the second fundamental tensor H. For the
second fundamental tensor H of the immersion x: M — M, we introduce some

tensors of type (1,1) and (2,2) as follows.
Let A} = h;; be the components of H with respect to an orthonormal frame

b= (P)ela ° eﬂ)e F(M) Let
(4.1) P(y, H) = det (I+ Hy) = é(;’)P,(H) 5,

where y is a parameter.

Now, we denote the cofactors of A¥ and the minor AFA} — RLA} (i <j, k<)
of H by HY and HY) respectively and use the analogous notations for the
identity matrix I = (8f). Let

n—1

2 PNy H)=det(I + Hip) = 5 (") PhoEDy
7=0
and
P T 1 FI6D (-2
4.3 (¥, H) = det I@) + HE y) = Z , iy (H) 7
7=0

LEMMA 4.1. (=1)"**Pf,(H) are com ponents of the tensor H., defined by
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n—1 _(n _(n
ay  ("HHEH=)PEI- ()P EDH -

+ (=1 (2 )P EDEP + - - +(~ 1V,
r=0,1,2++, n—1.

PROOF. With respect to a suitable frame b e F(M), H is written as

Then, we get easily P*(y, H) =0 and so P#,(H) for if=k. Fori=%k=1,

we have

det IR+ HEy) = A+ky) - (Lt kyy) = SLTFHY)
1+ky

=2 (P Py - —hy+ ki =),
r=0
hence
("D oD = (2 )PAED = (L7 ) Pros(ED By 4 - -
s( 7 s L T
+ (1 (2 )P ED e e (<1 R
The right hand side is equal to the corresponding component of (n;l)H .

(r)

LEMMA 42. (=1)"**+ P8 (H) are components of the tensor HNH
defined by o

(4.5) (":2>H(/r\)H - (jf)P,(H)I/\I— (71 PraEDENT+INH) +

coe ot (1 (2 ) P EDE AT+ H A H -

+ HNH7'+INH) 4 +++, r=0,1,2,-++,n-2.
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PROOF. Analogously to the proof of Lemma 4.1, we have Pi(y,H)=0
and so Pi,(H)=0 for (i,7) == (k,l). For i=k=1, j=1=2, we have

det(I+ Hy)
1+ k&) A+ k)

det (163 + Hiy) = L +ksy) » 1 +kay) =

= g(f)PT(H)y"(1—k1y+k12y2~ e A=yt RSy — e 0),

hence
(" )Pt = (2 ) PUED = (.2 ) Pres(BD s+ R

(1) P ED R+ Bkt kD) + -+ (=12 ) PreGED (R

+ Ry Ty e+ R kST RS oo + (1) (R R R,

Foeee+ Bk R
The right hand side is equal to the corresponding component of the tensor
(”;2>H AH

REMARK. From (4.4) and (4.5) we have especially

H=1, H=-_P@I-_-1_H,

©) @) n—1

2

n 2n 2
= g B = w5y D H+ 50—

and

HAH=IN, HAH=-"_PH)IN - L (HAI+INH).
(0 (1) n—2 n—2

5. Main theorem. As in §3, we shall assume that M is compact and &
is conformal. Putting

(5.1) Erp— Eur =28,

by (3.1) we have along z: M — M
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DE =3 tyo'an =) ($8,+Sy) e,

that is

(5.2 DE =¢dx + > Sye'en.

Now, we introduce the differential forms on M

6.3) A, =p'&,E DE,---,DE dx,- -+, dx)

n—r—1 r O=s=n—r-1,
(54) Drs :ps(E: DE’Déa"',DE, d.r,---,dx),

n—r r 0=s=n—r

where p is an arbitrary function on M. For simplicity, put
<E’ E> = <E’en+1> =Zz.
We have

dATS =ps(E,D{—,---,Df,dx,---,dx)—p’(E,DE,---,DE,DE,dx,---,dx)

+(n—r—1)p*&, & D¢, DE, - - -, DE, dx, - - - ,dx) + sdlogp \ A, .
We have

(E’Dé,...’Dé,dx’...,dx):z(E,DE’...,DE,dx’.'.’dx)’
(E,DE,---,DE,DE,dx,---,dx)=$(§,D§,---,D§,dx,---,dx)

r r+1
+ (E, DE’ e ,D§3Z‘§ijela dx: R dx)
r

and
(€ DE,--+,DEY. Syo'e, dz, -+, d2) =0,
because DE = - Zh” (Djej, hij = hji’ S—ij = —Sji. Hence we have

dArs = zDrs—$Dr+1.s + (n-—r-—l)ps({,‘, Es ng, DE, ccc, DE; dx; cty dx)
+ sdlogpAA,s.
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Now, we prepare some equalities for the above equation. Firstly
c n n—r n - n n—r
2 () Dy = 10 () -+, D d )y

=(=1" 3 &er(@"+oi ) A e A (0" +0fy)
iy, 000, in
= (=1)"nl(0'+@huy) A -+ A (0" +oray)
=(=1D"n!ldet [—Hy)o'\ +++ No"
— (—1)\2 5! - n  A\R—T
(17nt S () PaHY= 97 AV

hence
(5.5) D,,=(=1)yn!pP,_(H)dV .
Now, put

E = (§7§,DZE’D§,' °° ;DE’dx:" ',dx) .
n—r—2 r

Since DE = ok, 6, D¢ = (dol., + o) A\ @hi)e;, we get

S (" A Byt = (<0 ("72) € D% D -, Db d o, B

7=0 7=0

= (_ 1)n—1 Z Eiyen, é‘ilﬁkﬂ A ("’i'+(017:+1y) VANRRRIVAY (wi"+wi"+1y)
1), 000,8n

= (=)' (@—-2)! 2 (=D Qi Qr) A0+ @b y) A

i<j

e A mny) N A (muy) Ao AN@"+ohay)®

= (=1 (=2t 2 (=D Rasdn — § Ras'i) X

i<j, k<t
x 3 ("7 %) Pllcs-n(EH) (= yy 7 aV .
=0

Using Lemma 4.2, we get

5) The notation “ \” means the omission of the symbols under it.
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(5.6) E = (-1 (=2 2 €'Rusile = &' Run) HN\HDE AV .
o) §

Lastly, we have

("7 A= o (7)€ D o Dedr e d
= (—D)*'(,dx+ DEy,- - -,dx+ DEy, &)
= (=11 3 &.. (e tolay) A A (0"+ok,y)
fhy 000y 0n
T T~
= (=)' (r—D! 2 (=D 0"+ @ha) A+ ++ Alo*+@,.iy)
[3
Ao A@"+ory)
— (—1\=1 (4 — 1! _1\i-1 t"—l -1 K A \n-T-1
= (1 =D =D () Placr o ED(— )T
1k =0
X' N\eer NOFA oo A",
hence
G.7)  An=(1 - (=D Pl s n(H)o A ADEA - A"
i,k
Putting

dlogp = %Z Py,
i

and using Lemma 4.1, we get

(5. 8) dlogp/\Am:(——l)'(n—l)!Z;“M(I-{i")dV.
i,k n-1=7
Using the above equations, we get finally
(.9 dAy, = (- 1)'n![zpsP,,_T(H) + $p' Py, (H)
_M s Z (E Rusla—& Rusit)(H N H)Y
"(n__l) P Sy n+1 kl n+1 ki AR ij

+ S Ps—lgip’(’,‘fﬁc,)] av .

n



346 T. OTSUKI

Now, we assume that P, , ,(H)==0 at every point of M. Putting

_ Puy (H)
= PraH)

we have from (5.9) the formula

(5.10) d(A,o+Am,1)=(—1)’”![z{P s (FI) — (11);;__12__:((%)2}

- n(n 1) Z({: Roitu— ERni'n) X

i<j

{0 @ 108 - omr=2) =t aoi|

- % & (%)k <n£1-fr> ] av.

THEOREM b5.1. Let M be an orientable (n+1)-dimensional Riemannian
manifold admitting a conformal vector field £, M be a compact orientable
n-dimensional Riemannian manifold and x: M— M be an isometric immersion.
Let ¢ be the vector field of M which is the naturally defined orthogonal
projection of € onto T(M). Let & and H be a normal unit vector field and
the second fundamental tensor with respect to & of the immersion. If <E >
has the same sign except a subset with measure 0 of M, P,_,_y(H)==0 at
every point, —?L‘—"E% is constant, and tr[EANRE)(n—r—1)P,_._,(H)H

n—2-71
N H-(n—r—2) P,_,_ I(H)H A H) =0, then M is umbilical at every point

(n—r—z) (n—7-3)
of M.

Where ¢ A\R(E) denotes the transformation on T(M)NTM) itself such
that £ N REOXAY)=¢ A RE XY).

PROOF. By (5.10) and the assumption, we have

\/;1 P,,_Ti‘, H) {Pn—r(H) P, —7—2(H)_(Pn—r—1(H))2} dv =0.

Since ——=——— has a fixed sign except a set with measure 0 and by the
P n—r—z(H)

Newton inequalities
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P (H)Py-ro(H) = (Pr-r-(H))?,

it must be
P, (H) Pyy-y(H) = (Pn-,-,(H))*,
which implies H = P,(FH{)I. Hence M is umbilical at each point of M.

REMARK. Since

2 Rus’u— é”'ﬁmiu)(H(/o\)H)?} = 2 ERusiu—ERasii) &8

= 2 E'Ruv’y = =8 Ruen = —RuE'8",
for r=n—2, (5.10) becomes to
(5.11) A( A0+ Aprt) = (= 1)n! [{Py(H)— (P,(H)*}
oy R b = P AV

This formula implies also Theorem 3.1.
On the other hand, by (3.2), (6.8) and A=A,_,,, we get

d(B+P(H)A) = (="' n! [(n—1)2{Py(H) — (P\(H))*} — ¢(P(H))

+ = R £ 1AV +dP(H) N Ay

= (~)n! (= D)2 (Pu(H) — (P(H)Y ~ =L ¢(P,(2D)

n

+ L RuE LAV = (= Dd (Aot Auen)

Hence Theorem 5.1 is a natural generalization of Theorem 3.1.
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