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1. Introduction. Several authors (cf. H. E. Rauch [12], W. Klingenberg [6],
[71,19], M. Berger [1], V. A. Toponogov [14], Y. Tsukamoto [16]) proved the

so-called sphere theorem: “Compact simply connected & pinched (8>%)

Riemannian manifolds are homeomorphic to spheres”. In this paper we deal
with another version of the pinching theorem.

We assume that M is a compact simply connected Riemannian manifold of
positive curvature K, 0 < K =1. Let d(p,q) be the distance between two
points p, ¢ of M. K.Hatsuse introduced the following number L(M);

L(M) = Ma (d(p, ) + dlg,7) + dlr, )}
And he proved the following theorem.
THEOREM A. Let L(M) < 3w. Then M is hemeomorphic to a sphere.
In particular, if L(M)=2m. then M is isometric to the sphere with constant
curvature 1.

REMARK 1. We can easily verify the inequality L(M) = 2.

In this paper we prove the following theorems.

THEOREM B. Let L(M)=3mw. Then M has the same integral cohomology
ring as the symmetric space of compact type of rank 1.

THEOREM C. If M is a compact Kaehlerian manifold of positive
holomorphic sectional curvature hol K, 0<holK =1 and let L(M)= 3=,
then M is isometric to the complex projective space with canonical metric,
where dim oM = 2.

THEOREM D. Let the inequalities 0 < k = K =1 be satisfied everywhere
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and the inequality L(M)> 3mw/2./ k be satisfied, where k is a constant.
Then M is a homological sphere. In particular M is homeomorphic to a
sphere if dim M = 3,4.

REMARK 2. The estimation of Theorem D is the best possible. In fact,
let M be a symmetric space of compact type of rank 1 with canonical metric
which is different from sphere, and the inequalities 1/4 <K =1 be satisfied
everywhere. Then L(M)=3m and M is not a homological sphere.

REMARK 3. By using Theorem A and D we can immediately obtain the
sphere theorem.

REMARK 4. Under the assumption of Theorem D we have the inequality
LM)=2m/5/F . (cf. [9], [13])

THEOREM E. Let the inequalities 0 <k =K be satisfied everywhere
and L(M)=2w// k be satisfied. Then M is isometric to the sphere with

constant curvature k.

REMARK 5. If M is a compact simply connected Riemannian manifold
with sectional curvature K, 4/9 =<k =K =1, then the closed geodesic of
length = 2w/./E can be regarded as a geodesic triangle, because of the
inequality 27/./ k = 3m. Hence we have the following proposition from
Theorem E.

PROPOSITION. Let M be a compact simply connected Riemannian
manifold with sectional curvature K, 4/9=k = K =1. If M admits a closed
geodesic of length 2m// k , then M is isometric to the sphere with constant
curvature k.

2. Notations and definitions. Let M be a Riemannian manifold of dimen-
sion #n (n=2). We denote by < , > (resp. | ||) the scalar product (resp.
norm) which defines the Riemannian structure of M. All the geodesics
considered on M are parametrized by the arc-length measured from their
origin. If A={A\{(s)} (0=s5=s,) is such a geodesic, then A'(s) denotes its
tangent vector at A{s) and we have |[A'(s)|=1 for all s. We denote by d(p,q)
the distance between two points p and ¢ of M, with respect to the structure
of metric space associated canonically to its Riemannian structure. If the
manifold M is compact, we denote by d(M) its diameter, that is the least upper
bound of d(p,q) when p and ¢ vary on M. We denote by G(p, q) the set
of geodesics on M each of which join p to ¢ and whose length is equal to
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d(p,q). By a geodesic triangle here we always mean a geodesic triangle
composed of three shortest geodesic arcs.

3. Review of the known results. The following results are necessary
from now on.

THEOREM 1. (Klingenberg [6], Toponogov [15]) If the sectional curvature
K of a compact simply connected Riemannian manifold satisfies the
inequalities 0 < K = 1, the inequality d(p, C(p)) = = is satisfied for all points
? of M, where C(p) denotes the cutlocus of p on M. In particular we have
the inequality d(M)= .

THEOREM 2. (Klingenberg [8], Bishop and Goldberg [4]) If the holo-
mor phic sectional curvature hol K of a compact Kaehlerian manifold satisfies
the inequalities 0 < hol K =1, the inequality d(p,C(p))=m is satisfied for
all points p of M.

THEOREM 3. (Klingenberg [6]) Assume that there exist two points p
and q of M and a positive number p with the following properties: (1)
dp,q)=p, (2) for any point re M we have d(p,r)<<p or dlg,r)<p, 3)
if r,s are any two points of M such that d(r,s)<p, then the shortest
geodesic arc joining r to s is exactly one. Then M is homeomorphic to a
sphere.

THEOREM 4. (Berger [2]) Suppose that M satisfies the conditions of
Theorem 1 and the equality d(M)=m. Then all geodesics of M are simply
closed and of length 2.

THEOREM 5. (Bott [5], Milnor [10]) Let all geodesics of a complete
simply connected Riemannian manifold M be simply closed and of same
length. Then the integral cohomology ring of M is a truncated polynomial
ring. Hence M has the same integral cohomology ring as the symmetric
space of compact type of rank 1.

THEOREM 6. (Klingenberg [8]) Let M be a compact Kaehlerian manifold
of positive holomor phic sectional curvature hol K, 0 <hol K =1 and let the
equality d(M)=m be satisfied. Then M is isometric to the complex projective
space with usual metric.

THEOREM 7. (Myers [11]) Let M be a complete Riemannian manifold
and the sectional curvature K of M satisfy the inequalities 0 <<k =K
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everywhere, where k is a constant. Then M is compact and the diameter

d(M) of M satisfies the inequality d(M)=m/~/ % .

THEOREM 8. (Berger [3]) Let M be a compact simply connected
Riemannian manifold and the sectional curvature K of M satisfy the
inequalities 0 <<k =K everywhere, where k is a constant. Furthermore
if the inequality d(M)> w/2./ k is satisfied, then M is a homological sphere.
In particular M is homeomorphic to a sphere, if dim M><3,4.

THEOREM 9. (Toponogov’s comparison theorem, cf. [9], [13]) Let M be
a compact Riamannian manifold and the sectional curvature K of M satisfy
the inequalities 0 < k = K everywhere, where k is a constant. Let p, q,r be
three points on M and T'={Y(s)}, A={\(s)} be two geodesics on M such that
T eG(p,q), AeG(p,7), N0)=70)=p. We denote by S,(k) the 2 dimensional
sphere with constant curvature k and denote by A($ §#) the triangle on Sy(k)
such that d($,9)=d(p, q), d,#)=d(p,r) and that the angle o at $ verifies
cosa=<7(0), N(0)>. If d(¢,#) denote the length of the third side of the

A~ A A

triangle A($§#) of Si(k), then we have the inequality d(q,r) = d(q,?).

THEOREM 10. (Toponogov, cf. [9], [13]) Let M be a complete Riemannian
manifold and the sectional curvature K of M satisfy the inequalities 0<<k=K
everywhere, where k is a constant. And let d(M)=m/ /% be satisfied. Then
M is isometric to the sphere with constant curvature k.

4. Proof of theorems.

PROOF OF THEOREM B. We assume that M is not hemeomorphic to
sphere. Let p, g be two points of M such that d(p,q) = d(M). If we have
d(r,s) <m, (r,se M), then the two points 7 and s can be joined by exactly
one shortest geodesic. By using Theorem 3 we can find a point » of M such
that d(p,7) = = and d(q,7) == By our assumption we have d(p, q) = d(M)
= and L(M)=3=. Hence we have d(M)=m. By using Theorems 4 and 5,
we obtain Theorem B. Q.E.D.

PrOOF OF THEOREM C. Since M is kaehlerian manifold of dim ;M=2,
M is not homeomorphric to a sphere. By the same argument as the Theorem B,

we have d(M)=m. And by using Theorem 6, we obtain Theorem C. Q.E.D.

PrROOF OF THEOREM D. We have 3d(M)= L(M) by the definitions of
L(M) and d(M). Hence we have d(M) > m/2+/ k. So Theorem D is reduced
to Theorem 8. Q.E.D.
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PROOF OF THEOREM E. We prove d(M)=m// k. Then, by using
Theorem 10, M is isometric to the sphere with constant curvature k.

Since we have L(M)=2wr/./k, we have a geodesic triangle A(pgr) on
M with circumference 2m/./ k. Then, by using Theorem 9 we can easily
see that the following two cases can only occur :

(i) One of the three numbers d(p, q), d(q,7), d(r, p) is equal to w// % .

(ii) Three geodesic arcs pg, gr, rp compose the closed geodesic of length
2m/N & -

Under the assumption of Theorem E we have d(M)=m// k.

In the case (i) we have dM)=w/s/k .

In the case (ii) we assume d(M)<w/./ k and are led to a contradiction.
By this assumption we have at least two geodesic arcs of length = =/2./ %
among three geodesic arcs pq, gr, 7p which compcse the closed geodesic I'. Let
them be pg and rp. And let T' be divided into two parts of the same length
by the two points p and ' on I. Then we can find that the point p lies
on I' between ¢ and . Since we have d(M)<<wm/./ E, we have a shortest
geodesic ®={€(v)} e G(p, p') O=v=m,m=d(p, ), 600)=p’, 6(m)=p, OxI).
Let the geodesic subarc p'gp of I be I''={7,(v)} O=v =/, I=n//E, 7,(0)
=p, " ({)=p). And let the geodesic subarc p'rp of T' be I',={7,(v)} 0=v=/,
l=m/ &, V0)=p", ¥,())=p). Then we have either

<7,(0), #(0)>=0 or <70),6(0)>=0.

First we assume <7,(0),6'(0)>=0. We divide it into two cases: (a)
<71(0), ¢(0)> >0, () <7,(0),4(0)> = 0. In the case (a), we use the cosine
rule of spherical trigonometry and Theorem 9. We construct a geodesic

triangle A(3'% ¢) on Sy(k) sach that d(3',%) = d(p', p), d(3',¢) = d(p',q) and
the angles 4 ($3'¢) = L(pp'q). Then we have by using Theorem 9

® A, P=dp, ) =7/~ k —dP,9).

On the other hand we have by using the the cosine rule of spherical
trigonometry

@ dp,9)<m/vk —dE,9) =7/ &k —dPp,q).

From (1) and (2) we are led to a contradiction.

In the case (b) we also have <(7;(0),6(0)>>=0. By the assumption we have
either d(p,q) > n/2./k or d(p,r)>m/2/ k. 1f we have d(p,9)>m/2./F,
we can use for the geodesic triangle A(gp p) the same argument as (a) and
we are led to a contradicticn. If we have d(p,7) > w/2./ k, we are also
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led to a contradiction by using the same argumet as (a) for the geodesic
triangle A(rp’p).

In the case <<70),6(0)>= 0, we are led to a contradiction by using the

same argument. Hence, in the case (ii) we also have d(M)=m/./ k. Q.E.D.

[11
[21]
[31]
[41]
[5]
[61]
[71
[8]
[91
[10]
[11]
[12]
[13]
[14]
[15]
[16]

REFERENCES

M. BERGER, Les variétés riemannienne 1/4 pincées, Ann. del Scuola Nor. Sup. di Pisa,
Ser. 111, 14(1960), 161-170.

M. BERGER, Sur les variétés a courbure positive de diamétre minimum, Comm. Math.
Helv., 35(1961), 28-34.

M. BERGER, On the diameter of some Riemannian manifolds, Technical report. Uni-
versity of California, (1962).

R. BisHor AND S. GOLDBERG, Some implications of the generalized Gauss-Bonnet
Theorem, Trans. Amer. Math. Soc., 112(1964), 508-535.

R. BOTT, On manifolds all of whose geodesics are closed, Ann. of Math., 60(1954),
375-382.

W. KLINGENBERG, Contributions to Riemannian geometry in the large, Ann. of Math,,
69(1959), 654-666.

W. KLINGENBERG, Uber Riemannsche Mannigfaltigkeiten mit positiver Kriimmung,
Comm. Math. Helv., 35(1961), 47-54.

W. KLINGENBERG, On compact Kaehlerian manifolds with positive holomorphic curvature,
Proc. of Amer. Math. Soc., 12(1961), 350-356.

W. KLINGENBERG, Riemannsche Geometrie im Grossen, Lecture note, Bonn Univ.,
(1962).

J. MILNOR, Some consequences of a theorem of Bott, Ann.of Math., 68(1958), 444-449.

S. B. MYERS, Riemannian manifolds in the large, Duke Math. Journ., 1(1935), 39-49.

H. E. RAUCH, A contribution to differential geometry in the large, Ann. of Math., 54
(1951), 38-55.

V. A. TorPONOGOV, Riemannian spaces which have their curvature bounded from below
by a positive number, Uspehi Nauk, 14(85), (1959), 87-130.

V. A. ToroNOGOV, Dependence between curvature and topological strcuture of Rie-
mannian spaces of even dimensions, Dok. Acad. Nauk, 133(19560), 1031-1033.

V. A. TorONOGOV, Estimation of length of closed geodesics on compact Riemannian
spaces of positive curvature, Dok. Acad. Nauk., 154(1964), 1047-1049.

Y. TSUKAMOTO, On Riemannian manifolds with positive curvature, Mem. of Fac. Sci.
Kyushu Univ. Ser A. Math., 15(1962), 90-96.

KYUSHU UNIVERSITY.





