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1. Introduction. Throughout this paper we assume, unless otherwise stated
explicitly, that a real-valued function f(t), defined on the whole real axis
— oo < t < °°, is continuous and periodic with period 2τr and has finite second
derivative f'\x) at t = x. Let

be a non-negative even trigonometric polynomial of order n, and let

£(/ )

be a positive linear operator with the kernel un(t). Our main theorems may
be stated as follows.

THEOREM 1. Let p and q be positive integers such that p^q~^2 and
let

I 4 W ; x) = ~ / f(x+t)un(t) dt

with the kernel

I oin (^ ^ pn—Q

where



14 Y. MATSUOKA

. „„ nt

i r »*" 2

M(«) = 7 7
2 dt

/ 2/>\

— 2) (vn— q + 2)(vn — q+l).

Then for any continuous function fit), defined on — °°< t <oo α«ίί periodic

•with period 2τr, we have

uniformly in x.

THEOREM 2. Under the same condition as in Theorem 1 concerning

the kernel un(t\ the following asymptotic formula holds for any fit):

Lϊ^ (J;x)= f(x) + cp,vf"(x) ±r + o Uλ (n -> oo)

where cViQ is a numerical constant depending only on p and q and is defined

by means of

c,.Q = -(βq-ΐKq-1)

The special cases of Theorem 2 have been treated by various authors. In

[6] I. P. Natanson proved, in our notation, that £2,2 = 3/2. In [4] Y.Matsuoka

established that c3i3 = 10/11 and cAtA = 105/151 and later independently in [7]

F. Schurer obtained the same result. Further in [8] F. Schurer proved that

c5ι5 = 8820/15619 and cβfβ = 311465/655177.

For the purpose of numerical calculation and investigation of the behaviour

of cPtQ it is convenient to express cp<Q, q being fixed, as a rational function of p.

THEOREM 3. The constant cP)Q in Theorem 2 is also given by the
formula
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c,.q = (βq-iχg- &=£&,

where the sequence [fk(p)} of polynomials in p is defined recurssively by
means of

UP) = i

UP) = P

Up) =

x (2p-2k-l)(2p-2k+l)

- 2£(2£ +1) Bk(2p- 2k - l)(2p- 2k+1) (2ρ- 5)(2p- S)fo(ρ),

denoting Bi —1/6, 5 2 = l/30, B3 — l/A2, Bernoulli numbers.

The first nine polynomials fk(p) (k=0,1, , 8) are

UP) = i

UP) = p

UP) = P(Uf-2Ap+5)

UP) = p(A96p3-672p2+3Up-63)

UP) = PiUfidβp* - 24,256/^+22,046/.2 - 9,476p+1,575)

UP) = />(349,504/>5-l,126,296/>4 + l,576,360/>3-l,16

+ 444,196/)-68,409)

f7(p) = />( 14,873,104^-66,046,080/> + 131,053,440/>4-145,603,200^

+ 93,792,946/>2 - 32,674,800/)+ 4,729,725)

UP) = />(819,786,496/- 4,794,238,720/)'' +12,769,986,304/>5

-19,739,968,960/)4 +18,846,542,944/)3-10,967,224,000/>2

+ 3,555,926,256/)-488,783,295).
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By making use of these polynomials, we obtain the following results:

c 2 i 2 = 3/2, c 3 l 2 = 3, c4,2 = 15/4, ciΛ = 21/5,

cβ,2 = 9/2, c 7 i 2 = 33/7, c8,2 = 39/8, c9,2 = 5,

c,,t = 10/11, c4,3 = 2, c5,3 = 50/19, cβ,3 = 70/23,

c7,3 = 10/3, c8,3 = 110/31, Co, 3 = 26/7,

c 4 i 4 = 105/151, c5,4 = 57/35, ctΛ = 69/35,

c7ίi = 441/167, c 8 i 4 = 651/221, c9,4 = 8,085/2,543,

c5,5 = 8,820/15,619, c6,5 = 1,116/809, cτ,5=6,012/3,101,

c8,5 = 7,956/3,391, c9,5=91,548/34,465,

cβ,β = 311,465/655,177, c7>6 = 2,215/1,851,

c8,β = 16,955/9,871, c9,6 = 172,325/81,613,

c 7 i 7 = 11,117,106/27,085,381, c8,7 = 59,226/56,057,

ctι1 = 489,678/317,615,

c 8 i 8 = 841,695,855/2,330,931,341, c9,8 = 33,349,575/35,263,201,

c 9 i 9 = 685,798,733,048/2,127,599,641,825.

THEOREM 4. Let p be a positive integer such that p~^2, and let

where

Then the following asymptotic formula holds:

x) = Λχ)+ctlPf"(χ) -j + o(^rj (n - oo)

where the constant cV}V has the same meaning as in Theorem 2.

2. Lemmas. In order to prove the theorems we require the following

lemmas.
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LEMMA 1. [Korovkin; 2] Let

1 n

un(t) = — + Σ tin) c o s & > o

&£ α non-negative even trigonometric polynomial of order ny and let

Ln(f; ^) = v / f(x+t) M* ( ί ) dt

Further we suppose that the condition

(2)

is satisfied.
Then for any continuous function, defined on — oo< t <oo and periodic

zvith period 2π, we have

\im Ln(f;x) =f(x)

uniformly in x.

LEMMA 2. [Korovkin; 3] Let

be a non-negative even trigonometric polynomial of order n, and let

Ln(f; x) = -±r ff(x+1) un(t) dt.

Then in order that the asymptotic expansion of the form

Ln(f;x) =Ax) + (l-p{n))f'Xx) + o(l-Pn

be valid, it is necessary and sufficient that

(3) g
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LEMMA 3. / /

1 λ \ 1 λ + n

~o~ro + Σ r * c o s to I ~ ~γ~ Po + Σ PJC cos £ί (λ ^ 2n) .
/ f c = l / A ; = l

Then we have

pk = - r ^ f c + 2rfc - r n + f c (0 < k < n)

P/fc == ~rk-n + 2rfc r f c + n

p , = 2r 4 - r,_n

pfc = - r f c _ n

PROOF. The assumption yields

-. λ+n / λ

Q _j_ \ Λ, P Λ C ί»/ — (1 p n c -M/ ) I γ -|_ N ^ y , PΠ«! i

n λ-n

= (r0 - rn) + J2 (2rk- rn-k-rn+k) cos *ί + Σ ( 2 r Λ - r Λ _ n - r Λ + n ) cos

λ λ+n

+ 52 (2rk-rk-n)coskt — ^ rk-ncoskt
Jc=λ-n+l Jc=λ+l

from which the result follows at once.

LEMMA 4. /f

t \ \

+ ^ Γ ^ + Σ c o s

p0 = 2r0 - 2rx

pk = 2rfc - rfc_! - r f c + 1 (1 < * < λ +

tf ith a natural convention rλ+1 = rλ+2 = 0.

PROOF. The assumption implies

1 λ + 1 / λ

-9- Po + Σ ^^ c o s *ί = (1— cos ί) r0 + Σ 2 r * c o s

Z \
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λ+i

which implies in turn the required result.

LEMMA 5. Let p and q be positive integers such that p^q^l. Then
the following identity holds :

sin2p -y-
(4) (2g-l)!2^~1 f-

1 pn-Q -. pn-Q

= ~γ rip'Q) + Σ r*v'q) c o s kt = ~γro + Σ r* c o s kt

where

(5)

X

(6) r, =έ(-lΓ"
v = μ

X (έ — i/w — q-\-2)(k — vn—

Alternatively, for the sake of brevity, we shall say that the identity (4) holds
for (p, q). Actually we need the validity of (4) for the case p ̂  q ̂  2, but
we shall prove that of (4) for ^ ^ l

PROOF. We divide the proof into two steps. First we prove the

PROPOSITION A. If the identity (4) holds for (p, q), then it holds also
for (p+1, q), and vice versa.

P R O O F O F PROPOSITION A. By hypothesis we have

Sin (j .. pn-Q

n n l 2
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where rk are given by (5) and (6). Multiplying both members of the above

identity by 4sin2-^- we have

pn-Q \

t)
/

ΓΓ0 + Σ Â COS ί̂J
s i n Z ΰ γ x > x x /

= -ij-po + Σ p * c o s *^ > s a y

We consider the three cases.
1°) 0 <Ξ k <Ξ ̂  Applying Lemma 3 we have

Pfc = —rn-k 4- 2rfc — rn+k

X . . . (k — v n — q-\-2)(k — vn — q+ϊ)

\ Jr

X *..(k-(y-

= ΣΓi + Σ2 + Σs> say.

Put

/(£) = (k-in + q-l)(k-in + q-2). . . (k-in-q + 2){k-in-q+ 1

Obviously /(z) is a polynomial in i of order 2^—1. Observing that
>2q—l and denoting

(^)) (m = 1, 2, 3 ,

we have
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i.e.,

(7) Σ ( - l ) " ( ^ )/(-/>+!+'') = 0.

By a simple change of indices, we have

= (-ir9 + 1Σ(-iy( 2P )fi-

Hence, employing (7), and changing the indices, we have

(»=ρ+μ)

μ - 0

Therefore, for 0 < k <! n, we have

- i)p+1 ( ptv)/(»)+ (- Dβ Σ (- iy ( / f „ )/("-

2(f )

since
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( 2p \ + 2( 2p \ + ( 2p W 2p+2 \

Hence the first part of Proposition A is proved in this case. The other cases
can be treated in a similar manner. We sketch the proof.

2°) n < k <^ (p—ί)n. We can find a positive integer μ such that (μ—ϊ)n
<J k ^ μn (2 <C /x <^ p — 1). Making use of Lemma 3 we have

— T]i—n ~τ~ άTk — Vk

p

- Σ(-i
v=μ-l

V

v = μ + l

p+1

3°) (/>-l)w+l < * < / > « . By Lemma 3

4°) / > w + l < * < ( p + l ) w . On the basis of Lemma 3

V+l

v=p+l

Therefore the first part of Proposition A is established. The converse statement
is obvious.
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PROPOSITION B. If the identity (4) holds for (p,p-ΐ) then it holds
also for (p, p), and vice versa.

PROOF OF PROPOSITION B. It will suffice to prove the converse propo-

sition, hence by hypothesis

(2/>-l)!

where

> _ i , , v - - - • * - - • x -x (k-vn-p+ϊ)

1

2

sin2ϊ

sin2ί

, nt
2 1

2

Incidentally, we note that

Multiplying the both members of above identity by 4sin2—^-, we have

(9) 2(2^-1)! — 7 - =
sin2p 2 - ^ -

pτι-p+1

where, by Lemma 4

(10) />* = -r*- ! 4- 2rA - rΛ+1

for 0<^ k^ pn — p+1. Suppose that k satisfies the condition (μ—l)

for a suitable positive integer μ ( 1 < μ < p). Then (10) becomes

(11) pk = Σ(-iy
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X {(k-vn- p+l)(k-vn- p) - 2(k-vn + p-l)(k-vn

+ (k-vn + p)(k-vn + p-l)}

X (k-vn-ρ+3)(k-vn-p+2) .

From (9) and (11) we conclude that

Sin ~ ^ pn-p+l

2(2/.-3)! ^ - = -±-£4. Σ %coskt,
2p-2 .sin

where

(12) ~pk = Σ (-iy>
v=μ

X (k-vn-p+3)(k-vn-p+2) (0 < k < pn-p+l) .

Obviously from (8) and (10)

% = 0 (k = pn-p+2ypn-p+3, , pn + p-2) .

Hence (12) is also true for pn-p + 2 <,k <, pn + p-2. Thus (5) and (6) are
established for (p, p—1).

From the validity of Propositions A and B together with the fact that
the expansion (4) is true for the case p = q = 1, we conclude that the expansion
(4) is valid for any pair of integers p and q such that

LEMMA 6. The following relations hold :

where rk and r-k are defined by means of (5) in Lemma 5.

PROOF. According to (5) we have

X
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X (k + vn-q + 2)(k + vn-q+l)

= Σ (
v=-p

X (k — vn — q + 2)(k — vn —

Thus we obtain

f̂

where the prime indicates that the term corresponding to z/ = 0 is to be omitted.

Therefore

A^ f(-p) + (-

The first term on the right is zero because A2pf(—p) = 0 as in the proof of

Proposition A in Lemma 5 and the second term vanishes since k is equal to

one of the values 1, 2, 3 , , q—1. Hence the result follows.

In view of Lemma 6 we can restate Lemma 5 as follows:

LEMMA 7. Let p and q be positive integers such that p~^q^l. Then

the following identity holds :

«n*>ϋL
(2q-ϊ)\ 22""2'-1 j - = \ n + Σ rk coskt

where
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(k — vn — q + 2)(k —vn —

or zn a more concise form

(14)

X (k — vn — q+2)(k — vn — g+1)

(0* -1) 7i < £ < μn μ = 1,2, 3 , . . . , p) .

LEMMA 8. Suppose that

f(t) = (1-cos tfP(t),

where P(t) is a trigonometric polynomial of order μ λ, μ being integers such
that λ ^ 1, μ ^ 0. Then we have

f"(t) = (1-cos tf^

where Q{t) is a trigonometric polynomial of order μ+1.

PROOF. It is easily seen that the assumption yields

f"(t) = (1-costf-1 (λ(λ-l)P(f) + X2P(t)cost

+ 2XP'(t) sin t + P"(t) - P"(t) cos i] ,

which guarantees the assertion of the lemma.

LEMMA 9. The following identity holds:

(15) (p= 1,2,3,-..).

PROOF. The proof proceeds by induction. In the case p= 1 the lemma
is obviously true. Suppose that it holds for p. Multiplying the both members
of (15) by 2(1 —cos ί), we have
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( pίv

= 2 p(l-cosί) p + 1

The left hand side of (16) is equal to

cos />ί + (-1)"* 1 cos(/> +1) t

p+l

Thus (16) reduces to

which shows that the assertion is true for pΛ-1. This completes the proof.

LEMMA 10. Denoting

have
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PROOF. Differentiating 2k times the both members of (15) with respect
to t, and applying Lemma 8, we have

(17) JZ (- 1Γ* ( ?ί.v ) " " cos vt = (l~ cos tf-« Q(t),

where Q(t) is a trigonometric polynomial of order k. Putting t = 0 in (17)
and noting p — k^l, we have

which was to be proved.

LEMMA 11. Denoting

°n = <rn(k) = Σ 5 y, σ0 = 0 ,
v=l

we have

(18)

τvhere Bυ denote Bernoulli numbers: B^ = 1/6, B2 = 1/30, β 3 = 1/42 ,

PROOF. It is known [1, p. 5] that

E v^ = -j^n™ + \n^ + -Y^ΐ

2

and

- + (-I)* 2^2 (Its) ^.«
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Using these relations we have

n n n

<Γn-ι = Σ (n — v) v2k~ι = n Σ v2k~ι ~ Σ v*
v=l v=l v=l

+ (- V- a b ft- {(2I-3) - ( i l

2 ΰ Ί 0 j " +4

Hence

since

LEMMA 12. There hold the relations

(19) S(p, 2k-ΐ) = Σ (-ir-

(20) 5(ρ+1,2k +1) = - 2£(2£+1) S(p, 2k -1)

A r — 1

+ Σ (-iy-1(2 v-1)
v = l

+ (-1)*"1 2^(2^ + 1)
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PROOF. The first relation is easily proved by applying twice Abel's
transformation:

S(P,2k-i) = Γ C -
v=i

(2P+2\

We turn to the proof of the second relation. Combining (18) and (19), we
have

2£(2£+1)s(j>, 2k-1) = Σ (-iγ-'l *r

le—1

= - S(p+l,2k + l) + Σ.(-lT
μ=l

+ (-1)*-'2^(2^+1) BkS(p+1,1) ,

which is the desired result.

LEMMA 13. Let

(21)

Then

. nt_
sm g

nsin
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where f(t) denotes any continuous, periodic function with period 2m.

PROOF. It is well known that

Differentiating this equation 2p times, we have

(22) -^-άn-θ - T ( 2 P + 1 ) [

By making use of (21) and (22), we have

s i n g a^ sin
(23)

/ \ 2 p + 2 1 ~ sin2p+2nθ

2\ 71 I

Hence, in view of (23), we obtain

. nt

•f- /*/(«')! t

~-fP

A

. nt

αy sin -7^- f a t

N 2 p + 2 ^ '

-+far)

Putting t/2=u, we infer that the last integral equals to

nu
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ι(fc+l)tf1 00 p(

= ^ T Γ Σ /
7 7 k=-00 Jk7C 2

LEMMA 14. TA^ following recurrence relation holds:

zίΛ. a convention a%+l = 0, where αi2n) denotes the coefficient introduced in
Lemma 13.

PROOF. By hypothesis

Differentiating this equality with respect to t, we obtain successively

jTΓ+i sin'2 ί - -2(2w +1)! cos t ]Γ ka%n) sin"2^1 ί ,
a t

- (2n + 3) IZ. ( 2 n + 3 ) ( n

The last relation yields the result.

LEMMA 15. For any positive integer p,

1 Γ*

- l ) ! n'"-1 J

!ίn~1 1

Σί'' c o s **[
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where

(25) Pk

((μ-l)n<k<μn; ^=1,2,3, ,p) .

PROOF. First we shall prove that

1 / 9 \ l f \ 1

(26) -f(2p-ΐ)l f- [Σ aF^dn**-^) = -fPo
f [Σ ^) fPo E ft cos

where the coefficients pk on the right are given by (25).

By Lemma 7 the left hand side of (26) is equal to

nt
in2** -

V sm

sin2

i \ ι 1 [ - pn-v
1) L Ap'v) + y Ap'v)

~~ Δ*av (2v—Y)\ 2lp~2v I 2

Comparing this equation with the right hand said of (26), we obtain

P

Pic - 2-,av ( 2 ^ - 1 ) ! 22p~2v k

P-I

2 ^ ap-υ Λ

When (μ—l)n<^k*Cμn (K^μ^p), we have, by Lemma 7,

x (k-Xn + p-v-l)(k-Xn + p—v-2) -(k-Xn-p+v

Interchanging the indices λ and v, we get



34 Y MATSUOKA

Pt =
v=μ \=Q

Thus in order to prove (26), it will suffice to show that

x (k-vn+p-X-2) (k-vn-p+X+ΐ).

Putting k — vn = x> the last equality becomes

P l (2/>—1)!

y=0

We shall prove (27) by induction on p. The identity (27) holds in the case
p=2, since a^ = l, α ί 2 ) =-2/3. We have to prove that (27) implies (28):

X (#+/>—!;—1) (α:—p + v) .

Multiplying the both members of (27) by x2, we have

~2p + l _ yΛ(^_iy/ 7(2p-2) (2j?—1).

x

X

Vf_ iy ΛP-2)
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Σ (-ir-'assa {2p^tii)\ 2-

since α^fi2) = 0. By Lemma 14 the expression in the curly brackets of the last
equation is equal to a(pEl+1. Hence we conclude (28). Thus we establish the
identity (26).

On the basis of Lemma 13 and (26), we have

2

= ~- ff(x+t)\ ^2" -fϊ dt

l ί m~ 1

+Σ1

where pk are given by (25). This completes the proof.

3. Proofs of the theorems.

PROOF OF THEOREM 1. First we prove the validity of (1). By Lemma 7

sin2p -γ~ - pn-Q

(29) (2g-l)!22p-2g-1 Γ~=-~2Γr°+ Σ r * c o β * ^
sm 2

where the coefficients rk are given by (14). On the other hand, by the assump-
tion of the theorem
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• 8f» n t

s i n (*) -t pw~Q

(30) tφ) = — = -y- + Σ P*"""'' C°S *<

A p ,»s in 2 «^-

Hence

X (vn+q—2) (vn—q-\-2)(vn—q + l)

as mentioned in the theorem.
From (29) and (30) we conclude that

which obviously implies

(3D 1 - ^ ^ L , i

Now by Lemma 7

Jr

= (2g-l)Σ(-l)ϊ+"(/f l,)ί»'""*»""*-«'' fβ'4» fβ"4 + •}

where a-12+22+ •• +{q—2f. The first term on the right of the above
equality is equal to
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Each term in the curly brackets of this expression vanishes by Lemma 10,
since p^q. Thus

(32) r o - n = (2g~l)(g~l)(-

In a similar manner, by Lemma 7

(33) r. - έ(-l)9

where /3=l 2 +2 2 + + ( g - l ) 2 . In virtue of (31), (32) and (33), we obtain

(34) 1 - A - - ( *

which assures the condition (2) in Lemma 1. Thus on the basis of Lemma 1,
Theorem 1 is established.

PROOF OF THEOREM 2. We prove that the coefficients pίpn~Q) given by
un{ί) in Theorem 2 satisfy the condition (3) of Lemma 2. By Lemmas 7
and 10

ro-r2 =

X

(35) = 2(2ςr-l)έ(-iry+1

x {»'V-(9-3)2}{ι/2n2-(9-4)2} {v

= 4(2g-lX?-lX-l) e + i 5(/», 2ςr—3) n2""3

l ) (- l ) β + 1 VS(p,2q-5)n2<>-s
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where Ί=(q-ϊ)(q-2)-2(q-l){\2+2i+ + (q-3)2}. Hence by (31), (32) and
(35)

lim ±=^- = lim !*=?*- = 4.

Therefore the condition (3) is fulfilled.
Now by Lemma 2 and (34) of Theorem 1, we have

This completes the proof of Theorem 2.

P R O O F O F T H E O R E M 3. Define

(36) UP) = (-ly-iίfc^

Then the equation (20) of Lemma 12 may be expressed in terms of fk(p):

x (2/> - 2>& + 2v - 3)(2p - 2k + 2v - l)fk-Jίp +1)

Bk(2p -2k + l)(2p - 2k + 3)

Writing ^>—1 in place of py we have

= k(2k+iχp-i)fUp-D -

x (2/»-2*-lX2/>-2*+l) (2p-2k+2»-3)fkJj>)

- 2k(2k+l)Bk(2p-2k-lX2p-2k+l) -
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This is the recurrence relation of fk(p) as described in the theorem.

Furthermore we can show that

In order to prove these results we show that

(37)

and

(38)

Obviously we have

(39)

and
00

(40) (l+x)-2 - Σ. (-i)""1 "a?1"1 (W < i)

A comparison of the coefficient of xv~ι on the both members of the product
of (39) and (40) will yield

which implies (37). Meanwhile, by a simple calculation

(41) (l-ix+x'Xl + x)-4 = ΣC-iy-VΛ"-
v=l

In a similar manner, from (39) and (41), we have

2p(2p-A)\
(/>-!)'• (p_2)! '
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which implies (38). The above reasoning was made under the condition
but an actual verification shows that (38) is valid also for p = 2. Therefore,
by (36), (37) and (38)

2(2p - 4)!
{p9 } ~ P'

Thus the sequence {fk(p)} defined by (36) coincides with that mentioned in
Theorem 3.

Now by Theorem 2 we have

c --(2a-ϊta-

We can rewrite this by employing (36) in terms of fk(p):

c,.q = (2q-lXq-lX2p-2g + l) j?-|^j

which is the desired result.

P R O O F O F T H E O R E M 4. By Lemma 15

( 4 2 )

*

On the other hand, it is known [5, p. 254] that

From this it follows at once that

•= Γ.{^r
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In virtue of Lemma 15

(43) />„ = Σ ( i r ( f v

*)*>-* = n»-\-ϊr S(p, 2p-l) .

Combination of the last two relations yields

Thus from (42) it follows that

(44) JW;*) = «2p J / ^ +

1 Γπ / 1 i m "" 1

= V" J /( :c+ί) y + p
c o s

where pk are given by (25).

Next we show that the linear operator (44) satisfies the conditions of
Lemma 2. The positivity of the operator follows from Lemma 13 and (23),
namely,

. nt *p

( i —

dt

Further clearly

(45) T ^
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From Lemma 15 it follows that

(46) Po-pt = Σ (-l)P+v+1(plv) {(vn-2γ>-* -

= Σ, (-ΐ)"+1>+1(plv ) I - 2 ( 2 / > f 1 ) v

S(ρ,2p-2)n2l>-

^ ) S(p, 2P-5) n*»s

since by Lemma 10

S(p, 2p-2) = S(p, 2p-4) = ' - = 0.

In exactly the same manner,

(47) Po-Pl = (-ir» \{\1) S(p, 2p-3) n>»-

S(p,2p-5) n*»

Therefore from (45), (46) and (47) we conclude that

Hence we can apply Lemma 2 to complete the proof. Evidently

(48) 1 _ p i = £o^£L<
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From (43), (47) and (48) we conclude that

μ'v riι

1 o 1 1

On the basis of Lemma 2 the proof of our theorem is completed.

REFERENCES

[ 1 ] L. B. W. JOLLEY, Summation of Series (2nd revised edition), Dover, 1961.
[ 2 ] P. P. KOROVKIN, On convergence of linear positive operators in the space of continuous

functions, Dokl. Akad. Nauk SSSR (N.S.), 90(1953), 961-964 (Russian).
[ 3 ] , An asymptotic property of positive methods of summation of Fourier

series and best approximation to functions of class Z2 by linear positive polynomial
operators, Uspehi Mat. Nauk, 13(1958), no. 6(84), 99-103 (Russian).

[ 4 ] Y. MATSUOKA, Note on Komleva's theorem, Sci. Rep. Kagoshima Univ., 9(1960),
17-23.

[ 5 ] S. MORIGUCHI, K. UDAGAWA AND S. HlTOTUMATU, A table of mathematical formulas
I. Iwanami Shoten, 1956, (Japanese).

[ 6 ] I. P. NATANSON, On the exactness of representations of continuous, periodic functions
by singular integrals, Dokl. Akad. Nauk SSSR, 73(1950), 273-276 (Russian).

[ 7 ] F. SCHURER, Positive linear operators in approximation theory, Mathematical Institute
of the Technological University Delft, Report, 1962.

[ 8 ] , Some remarks on the approximation of functions by some positive linear
operators, Monatsh. Math., 67 (1963), 353-358.

DEPARTMENT OF MATHEMATICS,

KAGOSHIMA UNIVERSITY.




