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It is known that the differential forms on a differentiable manifold X
may be denned as a species of singular real-valued cochains0 on X. Now let
X be an arbitrary topological space and $ a set of continuous real-valued
functions on X. As will be seen in the sequel, one can again single out
a species of real singular cochains on X by letting $ play the role of a
differentiable structure^, and obtain thus a graded differential exterior algebra
G associated with the pair (X, 3*). Moreover, such pairs can be regarded as
objects of a local category3) ©, in which case G becomes a contravariant
functor on 2) with values in the category 31 of graded differential algebras.
By a sheaf-theoretic process, G generates a functor F from 3) to SI of the kind
previously referred to as a sheaf4> on 3). This sheaf F constitutes an extension
of the classical differential forms (regarded as a functor on the local category
of differentiable manifolds). In the present paper we shall be concerned with
the question under what conditions the cohomology of the complex F{X)
reduces to the real sheaf cohomology5) of the underlying space X. It will be
seen that this holds for objects X lying in a certain subcategory (£ of 3),
which however is considerably larger than the category of differentiable
manifolds. One has obtained in this way a generalized version of the de
Rham Theorem.

Nonclassical objects in 3) arise in various ways, e.g., as quotients of a
differentiable manifold M. More precisely, every quotient space X of M
carries a natural differentiable structure $ (in the sense referred to above).

* This research was supported in part by the National Science Foundation under NSF GP-1605.
1) From this point of view, the theory of differential forms was extended to Lipschitzian

manifolds by Whitney (see [7]).
2) Strictly speaking, we shall find it convenient to deal only with sets $ satisfying an

appropriate closure condition.
3) For basic definitions regarding local categories we refer to Eilenberg [2].
4) See Clifton and Smith [1], p. 446.
5) This cohomology is defined in terms of the canonical resolution of the simple sheaf

-with fibre R (the group of real numbers). See Godement [3], p. 173. We shall not be concerned
with general families of support Φ , but will always suppose Φ to be the family containing
X itself.
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In the last Section we shall examine the general de Rham Theorem with
reference to spaces X=(X,ι$) arising in this manner. It will be shown that
F(X) can now be identified with a subclass A of the (classical) differential
forms F(M). When X belongs to (£ one may thus conclude that the cohomology
of the complex A gives the real cohomology of the quotient space X. In the
special case where X is the orbit space determined by the action of a Lie
group, this result is closely related (but not equivalent) to the theorem of
J. L. Koszul6) regarding the cohomology of basic forms on a regular G-variety.

1. The category 3).

Differentiable spaces. We let R denote the set of real numbers and 3ΐ
the set of all open subsets Ωci? n , n ranging over the positive integers. Let
a topological space X and a set 3* of continuous real functions on X be given.
For every Ω € 9ί, ?ϊ(Ω) shall denote the set of all (continuous) maps g : Ω —• X
such that f°g£ C°°(Ω) for all fz g, where o indicates composition and C°°(Ω)
the class of real C°°-functions on Ω. The set g will be called a differentiable
structure on X provided it satisfies the following closure condition: Given a
continuous function f:X-+R such that fog^C°°{β) for all Ω^SΪ and
gζ δ(Ω)> t h e n / ^ 3\ The term differentiable space will henceforth be used to
denote pairs (X, 30, δ being a differentiable structure on X.

This definition naturally leads to a number of simple observations, the
first being

PROPOSITION 1.1. Given a topological space X and arbitrary set $ of
continuous real-valued functions on X, there exists a unique differentiable
structure g* on X such that %*(Ω)

To prove existence one takes %* to be the set of all maps/:X—»i? such
that /o g € C°°(Ω) for all Ω<ΞΣR and j€g(Ω). We note that S(Ω)cδ*(Ω) for
all Ω^SR. Consequently, if f:X-+R is a map such that fogζC°°(Ω) for all
Ω € 9ϊ and g € δ*(Ω), then fs g*- Hence g* is a differentiable structure on X.
Now suppose Ω € 9ΐ and ^ € g(Ω). Then by definition of 5*, ^ € 3r*(Ω), proving
that 3:^(Ω) = 3;(Ω). One verifies immediately that g* is unique.

We shall say that the differentiable structure g* is generated by $. We
also note that £p is closed under addition and multiplication of functions, and
that it contains the constant functions. Thus δ * constitutes a ring with unit
element.

6) See Koszul [4].
7) This clearly implies
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PROPOSITION 1.2. Let X be a C°°-manifold and g the set of all real
C°* functions on X. Then $ is a differentiate structure (in our sense).

For suppose f:X->R is given such that fog^C°°{Ω) for all Ω<Ξ9Ϊ and
g € ι$(Ω). Given x € X, let σ : U —• Ω be a chart denned on a neighborhood
U of x. Then σ"1 € $(Ω)? and consequently the restriction / | J 7 is of class
C°°. We may conclude that / is a C°°-function, proving that $ satisfies the
required closure axiom.

General examples. Differentiable spaces come up in several different
contexts, three of which will now be briefly considered.

( i ) Let M be a differentiable8) manifold, X a topological space and
φ : X —> M a continuous map. Given Ω € 9ϊ, let [Ω] denote the set of all maps
g : Ω —• X such that φ o gr is a C°°-map. Let $ denote the set of all continuous
functions f:X-+R such that fog <= C°(Ω) for all Ω<Ξ3Ϊ and #£[Ω]. We assert
now that 3:(Ω)=[Ω] for all Ωe 91, which would imply that Qί is a differentiable
structure on X.

To prove this assertion, we observe in the first place that if g € [Ω], then
fogz C°°(Ω) for all fe g, which implies that [Ω]cS(Ω). Conversely, let gz g(Ω)
be given. For every C°°-function h:M-^R, hoφζft, and consequently hoφog
€ C°°(Ω). But this clearly implies that φog is a C°°-map, and therefore gr€ [Ω].

It is easy to verify that in the special case where X is a submanifold of
M (φ being the inclusion map), % reduces to the class of C°°-functions on X.

(ii) Next we consider a differentiable manifold M, a topological space X
and a continuous map IT : M—> X Let fj denote the set of all continuous maps
f:X~-*R such that/oTΓ is a C°°-function. Then $ is a differentiable structure
on X

To show this, one first observes that if Ω £ 3ϊ and h : Ω —> M is a C°°-map,
then τro/i£g(Ω). Given a function f:X->R such that /o^C°°(Ω) for all
Ω ^ #ϊ and # e g(Ω), it follows now that fcπ-oh e C°°(Ω) for all C°°-maps h : Ω->M
But this implies that f° π is a C°°-map, and consequently that / £ ^.

Let us suppose next that X is itself a differentiable manifold, and that 7r
is an open, differentiable surjection. We now assert that 3 is precisely the
class of C°°-functions on X.

It is obvious, in the first place, that every C°°-function on X belongs to 3*.
Conversely, let fz $ be given, and let x £ X Since TΓ is surjective, there
exists y^M such that π(y)=x, and since TΓ is open and differentiable, it must
have maximal rank at y. It follows now by the implicit function theorem that
there exists a neighborhood U of x and a differentiable function p :U —* M
such that 7rop gives the identity map of U. Consequently the restriction /1U

8) The term differentiable will always be used in the sense of C°°,
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is precisely /Wop. But foτr being differentiable, it follows that / is differen-
tiable at x, which proves our assertion.

(iii) Lastly, let 7 be a topological space and X the space of continuous
real-valued functions on Y, endowed with the compact-open topology. Every
yzY determines a function ψy : X —» R defined by

ψυ(x) = χ(y), xz X;

and moreover, ψy is continuous. For every Ω ̂  3ϊ, we denote by (Ω) the set of
all continuous maps g : Ω —• X such that ψy o g € C°°(Ω) for all y £ Y. Now let
5 denote the set of all continuous functions f:X—>R such that f°g£ C°°(Ω)
for all Ω z 9ί and </ € (Ω). It is again a simple matter to verify that 5 is a
differentiable structure on X.

Differentiable maps. Let X=(X,%) and X ' = (X', $') be differentiable
spaces. By a w<ẑ > h: X —> X' we shall understand a continuous map h : X—>X'
such that jΓo/i 6 5 whenever / ' € g\

Two observations should be made in regard to this definition:

PROPOSITION 1.3. Let I = ( I , 5 ) be a differentiable space and let R
denote the differentiable space of real numbers (see Proposition 1.2). A
function f:X—+R is then a map f: X-+ R if and only if fζ 3"

PROPOSITION 1.4. For differentiable spaces which are C°°-manifolds,
the notion of map (as defined above) reduces to the ordinary notion of a
C°°-map.

These facts are easily ascertained, and we will omit the proofs.
It is clear that the totality of differentiable spaces and their maps give rise

to a category under ordinary composition of functions. We denote this category
by ®. One sees (in virtue of Proposition 1.2 and 1.4) that the category (£°°
of differentiable manifolds and differentiable maps constitutes a full subcategory
of Φ.

We now define a functor F° on 2) as follows: Given X=(X, £?) in 3), we
take F0(X) = %. Given a map h\X-*X* in 3), F°(h) shall be the induced
map Λ* : F°(X') —• F°(X). This gives a contravariant functor with values in
the category B of rings with unit element. In order to describe certain good
properties of F°9 it will now be convenient to avail ourselves of terminology
pertaining to local categories. Let C denote the category of topological spaces
and continuous maps, and let L denote the (covariant) functor from 3) to C
which to every differentiable space asisgns its underlying topological space,
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and to every map in 2) the corresponding map in C. If X is an object in %
and U an open subset of L(X), we let 2v denote the differentiate structure
on U generated by the set of all restrictions f\U as / ranges over F°(X).
We define X\U to be the differentiate object ([7,3^), and ix\U to be the
inclusion map from X\U to X. It is trivial to verify that this structure
defines a local category (which we shall likewise denote by 3)). Given an
object X in C, we shall denote by c(X) the category of open subsets of X
and all inclusion maps. With every object X in 2) one can now associate
the covariant functor Tx: c(L(X)) -> 3) defined by

UcL(X);

It follows readily that for every X in 3), F°oTx is a sheaf9) on L(X) with
values in ffi. In accordance with the terminology of [1], F° is thus a fϊ-valued
sheaf on the local category 3).

2. Differential forms on 3).

The functors Gp. We now consider a differentiate space X, and our first
task shall be to single out a preferred class of singular cochains on the
underlying topological space X. By a p-dimensional cube (p > 0) we shall
understand a closed subset of Rp, bounded by 2p axis-parallel hyperplanes.
Let Jp be such a cube. A map σ: Jp —> X will be called a singular p-cube
in X provided there exists an Ω<Ξ 9ΐ and a map /:ί2—>X ( / belonging to 3))
such that σ=f\Jpl0\ Let KP(X) denote the set of all singular ^-cubes in X,
and let CP(X) denote the set of all functions a: KP(X) -> R. Clearly CP(X)
is a vector space over JR. For every p> 0 we now define a function λ^ : $p+1

-+CP(X), where 5 denotes the given differentiate structure1 υ on X. Thus,
given p + 1 functions /0, ,fp€ i$ and a singular ^>-cube σ: JP-*X in KP(X),
we will define an inner product of σ by λp(/0> * > j Q This is done as
follows: Let 11^3? and / : ί l - > X be a map in 3) such that σ=f\Jp, and
let gi =fi of, 0 ^ i g />. Each gft is simply a real-valued differentiate function
of >̂ real variables, which we will denote by (ίi, ,ίp). The value of
λp(/o> ,fp) on σ is now defined by

(2.1) λp(/., ,/PXσ) = [ L - 1 ? - - ^ ^ - Λ. * ώp
J JP J C\tly * * ' 9 t p )

9) See Godement [3], p. 109.
10) Strictly speaking, we should say σ = L(f) \JP.
11) In other words, §f =
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Since the right side depends only on σ (and not on its extension f), λj3(/l), ,

fv) is well-defined as an element of CP(X). We now let GP(X) denote the

linear subspace of CP(X) generated by the image of Xp. For p=0 we define

G°(X) to be precisely g and take λ0 to be the identity map of 3*.

It is clear that a map f:X->X' in 3) induces (linear) maps f*\Cp(X')

-> CP{X). Given f ' o , . . . , / ; € G°(X')> let / , = fl °/. Then

(2. 2) /*[λ^/ί, ,/;)] = λ,(/0, ,Λ) ,

as may be verified by letting both sides operate on an element σ e KP(X).

Consequently the spaces GP(X) are seen to be functorial in the sense that

they derive from a (contravariant) functor Gp on 3).

We now observe that a space O € 9ϊ is certainly a C°°-manifold, and con-
sequently belongs to 3). Let FP(Ω) denote the space of exterior differential
p-ίorms on ίλ It is useful at this point to make the following observation:

PROPOSITION 2.1. There exists a canonical isomorphism1^ φ: Gp(β)

-» Fp(β), such that

(2. 3)

To show that a linear map φ satisfying Equation (2.3) exists, we must
verify that given

(2 4) Λ = £ λ,(gί, > $ > 356 C-(ίl)
ί

the differential form

(2.5)

is uniquely determined by a, i.e., is independent of the representation (2.4).
To this end we observe that

ω = cc(σ) for all σ € Kp(ίί) .

But a differential form is uniquely determined by its action as an integral,
and therefore φ exists as a linear map. The same observation proves that φ
is injective. Moreover, since every ω € FP(Ω) may be expressed in the form

12) qua linear spaces.
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(2.5), it follows that φ is also surjective, and thus Proposition 2.1 is established.
Exterior product. We assert the existence of an exterior product:

PROPOSITION 2.2. There exists a unique bilinear map

Λ : G*(X) x G\X) ->

defined for X in % and p,q>0, such that

(2.6) Λ(α, β) = \+Q(fofo,fi> '

when

a = λp(/o, ,/p)

It is of course obvious that Λ is uniquely determined by the condition of
bilinearity together with (2.6). To prove existence, one must verify that given

β = Σ KifL -•-,/!), fi,fί * G°(X)

j

the cochain

Λ(Λ, β) = Σ KΛfifl, fί - ,fl, Ά, - Jϊ)

is uniquely determined by a and /9. To see this, consider an element σ € KP+Q(X)
and let ̂ : Ω —>X be an extension of σ. In virtue of Proposition 2.1, we may
regard f*(ά) and f*(β) as ordinary differential forms on O. It follows now
by a simple direct calculation that

(2. 8) Λ(Λ, /8)(σ) = f/*(Λ)Λ /*(/β)

Since the right side of Equation (2.8) depends only on ay β and σ, it follows
that /\ is well-defined as a bilinear map.

It may be of interest from an expositional viewpoint to note that Proposi-
tion 2.2 can also be established by a direct argument, without referring the



122 J. W. SMITH

matter back to the classical theory of differential forms. The requisite cal-

culations, however, are not entirely trivial.

We also observe that the Λ -product, as denned by Proposition 2.2, is

clearly associative and anticommutative in the sense that

The usual notation /\(<x, β)=a/\β will henceforth be employed.

Exterior derivative. The existence of exterior derivatives may be esta-

blished by the same approach.

PROPOSITION 2.3. There exists a unique linear map

defi?ιed for X in 3) and p^O, such

(2.9) d\p(f09 ,Λ) = \p+ι(l,fo, ,/„) > fi € G\X).

The proof is entirely analogous to the preceding argument and will be
omitted. One can verify without difficulty that d is precisely the coboundary
operator (Stokes theorem), and moreover one recovers the usual formula

d(aAβ) = da,\β + (-1)* aAdβ ,

where p denotes the degree (dimension) of a.

The sheaf R For X in 3) let

G(X) = Σ &{X)9

the right side being understood as a direct sum. The Λ -product and J-operator
make G(X) into a differential exterior algebra. If / : X—> X' is a map in 3),
it follows by Equation (2.2) that the induced map f*: G(X')->G(X) constitutes
a homomorphism of the differential exterior algebras. One obtains therefore
a (contravariant) functor G on 3) with values in the category 21 of graded
differential algebras. By the usual process14) of "passing to the sheaf", G

13) Here 1 denotes the constant function with value 1.
14) See Clifton and Smith [1], p. 447, as well as Godement [3], p. 110.
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generates an 3ί-valued sheaf F It follows by Proposition 2.1 that the restriction
of F to (£°° may be identified with the classical sheaf of differential forms.
We also note that on dimension 0, F reduces to the functor F° defined in
Section 1.

The chain rule. In the preceding paragraphs the notion of differential
forms was extended to arbitrary differentiable spaces. It is important to note
that the computational aspects of the classical theory, in short, the calculus of
differential forms, carries over to this more general setting with practically
no modification. It is true that the notion of local coordinate systems has
disappeared completely, so that we are no longer dealing with skew-symmetric
tensors. But we are dealing with the elements of a differential exterior
algebra, and this is the essential fact.

To develop the Cartan calculus on 3), it will be convenient to drop the
rather cumbersome X^-notation (which was used simply to clarify the basic
definitions) by setting λ^l ,/) = df Since λp(/ 0, ,/„) = λo(/o)Λλ1(l,/1)Λ
• A^i(l,/^), one may now write15)

λpC/o, ,fp) = /o έ?/iΛ Λdfp .

Given X in SD, let gi, ,gn be functions in G°(X) and φ:Rn —> R a
C°°-map. A function f: L(X) —> R may now be defined by setting

fix) = φ{gίx\ , gn{x)\ x € L(X).

We claim that / belongs to G°(X), and that

(2.10)

To show that fz G°(X), we set ?? = G\X) as in Section 1 and consider ί2 e 3ϊ
and h'M^L(X) in SjftΩ). Then g^h^C^iβ) and therefore /<>&(= C°°(ίl).
Since this holds for arbitrary ί l and h, one may conclude by the closure
condition for differentiable structures that /<= 5. Equation (2.10) follows now
from the ordinary chain rule of calculus by letting both sides operate on a
singular 1-cube σ in X.

Product spaces. In Section 1 we confined ourselves to consider only the
most basic aspects of the category Φ. Among other matters which may be of
interest, we neglected to examine how two differentiable spaces X' and X"
give rise to a product I ' x l " in %. Since this idea will now become

15) We recall that λo(/0)=/o Moreover, the A-symbol following an element of dimension
0 may be suppressed without causing ambiguity.
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relevant, we interpose the following consideration: Let $' and $" denote the
differentiable structures of X' and X", respectively, and set X=L(X')xL(X").
Let g denote the set of all continuous functions f:X—>R such that f(g\g")
€ C°°(ί2) for all ί l e 3ΐ, r/ € g'(β) and g" e ft"(i2). We claim that % is a differ-
entiable structure on X.

For suppose f:X—>R is a continuous function such that f°he C°°(Ω) for
all ί2€ 9ϊ and he j$(Ω). Now consider ίl€ 3ΐ and h=(h',h"), with Λ'<=
and A"€ $"(Ω). Then for every #£ g, #0/^ C°°(Ω). It follows that he
and therefore f°he C°°(ίl). By the definition of g, this implies that fe g.

We define the product Γ x l " to be the differentiable space (X, 30. Let
us suppose that g'l9 , gn e $' and gϊ, , g'ή e $" are given, and that φ : i?n + m

—>R is a C°°-function. We let TΓ' and 7r" denote the natural projections of
X ' x X " onto X' and X", respectively, and note that this gives ®-maps of the
corresponding objects. Let f[=g%o^ and f'ί = gίorπ" f° r a n relevant i and 7.
It is immediately verified that the function / : X —> R given by

(2.H) f=Φ(fΊ,---,fn,fϊ,-- ,f'ή)

belongs to F°(X'xX'y*\ We let F° denote the class of all / e F ° ( X ' x X " )
which admit a representation of the form (2.11). A map / n X ' x X " — > F
will be called proper if ^o/̂  <E F° whenever g € F°(Y). Clearly TΓ' and 7r" are
proper. Moreover, when X' and X" lie in (£°°, /ι is always proper, and thus
this distinction does not arise in the classical context. It will be needed,
however, to define a useful notion of homotopy on ®.

F°, being a linear subspace of G°(X/xX//), generates a differential
subalgebra in G(X'xX"), which we denote by G(X'xX") 1 7 ) . It follows
that every proper map h\ X' x X" —>Y in % induces a differential algebra
homomorphism h* : G(Y) —> G(X' x X").

Converse of the Poincarέ lemma. We will consider the unit interval
Ic.R as an object in 3) by way of general example (i), Section 118). An object
X in 3) shall be called differentiably contractϊble (d.c.) if there exists a proper
map h:IxX->X such that h(l,x)=x and Λ(0, x) = x0 for all xeL(X), x0

being a point in L(X). The map h itself may be referred to as a contraction
of X.

16) To simplify the notation, we will henceforth avoid notational distinction between f'% and

g'v f'j' and g\'. In other words, it will be understood that a function denned on one of the

factor spaces may also be regarded as a function denned on the product.
17) As usual, a superscript p will denote the vector space of homogeneous elements of degree

P-
18) The inclusion map i:I-*R plays now the role of φ:X-*M.
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PROPOSITION 2.4. Let X be d.c. and azGp+\X) such that da = 0.
Then a = dβ for some βz GP(X).

On the present level of generality it would not be feasible to prove this
result by a formal calculation involving the differential forms. Our proof will
still proceed along classical lines, but now some care must be taken to handle
the topological aspects of the problem by an essentially topological argument.
This will entail that we introduce the singular chain groups CP(X)> the
boundary operators 3 : Cp+ι(X)-+ CP(X) and cone operators k: CP(X)

For all p^O CP(X) may be defined as the free abelian group generated
by KP(X), where now K0(X) is understood to be precisely X, the underlying
space of X. Let σ: Jp+1 -• X be an element of Kp+ι(X). The region Jp+1

czRp+1 is defined by inequalities

where t19 9tp+1 denote as before the canonical coordinates on Rp+1. For
an arbitrary value of the index z, let Jf+1 denote the ^>-cube given by

and let the maps φf :JP+1-^JP+1 be defined by

Φt(tl9 * " * 9 tp) = (*1> # > ti-l 9 A* 9 tt + 19 # ' #

 9tp) .

We define the boundary operator 3 : Cp + 1(X)-> CP(X) by the formula19)

(2.12) d

p+1(X)-> CP(

p+l

When p=0, σoφ~ must be interpreted as the endpoints of σ in the ordinary
sense.

Let σ: Jp-+X be an element of KP(X) for ρ>0. The product IxJp

may be regarded as a (̂ > + l)-cube and one can define a singular (^ + l)-cube
kσ: IxJp->IxX in Kp+1(IxX) by the formula

kσ(tί9 , tp+1) = (t19 σ(t2y , tp+1)) ,

19) Equation (2.12) defines the action of 3 on the generators. Thus 3 is well-defined as a
homomorphism.
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(where tx varies over / and (t2, , tp+1) over Jp). This defines a homomorphism

k : CP(X)—• Cp + 1(/x J ) for p>0. On dimension 0, £ is of course defined by

the corresponding formula:

Lastly, we define two maps u^ux\X-*lxX by setting ιit(x) = (i,x) for all
x £ X. Our definition of the differentiate structure for product spaces
guarantees that u0 and ux are actually maps from X to IxX. One may now
verify by a simple direct calculation that the classical formula2 0 )

(2.13) kd + dk = W l * - «„*

holds on all dimensions p> 0.

Up to this point only some rudimentary notions of singular homology on

3) have been involved. The next step will be to establish the following

LEMMA. The dual operators k*: O H ( / x X ) - > CP(X) map Gp+ί(IxX)
to G%X).

It should be noted, in the first place, that every fz G°(IxX) admits a
representation of the form

f=Φ(t19f19 ••-,/»),

where tλ denotes the canonical variable on I and ft £ G°(X) (see footnote 15).

One may therefore conclude by the chain rule (previously established) that

every element of Gp+1(IxX) can be represented as a sum of terms of the form

ω =

( i ) a dtAdfiA Λdfp> or

(ii) a dfλ/\ ••• /\dfp+1;

where a^G\IxX) and fό € G°(X). To examine the action of k* on ω, we
consider a singular ^>-cube σ : Jp —* X, let gr: Ω —> X be an extension of σ and
set b = a°g, gj—fj°g- One now sees, in the first place, that k*'ω=0 when ω is
given by (ii). This is due to the fact that each gό is independent of tλ> and
therefore the resultant jacobian under the integral must vanish. For case (i),
on the other hand, one obtains

20) The subscript % on u% indicates the associated chain map.
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(2.14) kM") =[" [b *&^1±&> Λ, dtp+ί.

To see what this gives, we consider I adt1 as a function fo:X-+R. Since
Jo

az G°(IxX), it follows that / 0 must be of the form

where ^ : i?w —> i? is a C°°-function. But this implies by the closure condition

for differentiable structures that f0 € G°(X). Since the jacobian in Equation
(2.14) is independent of t19 one sees that now

k*ω=fodfιΛ --Λdfp.

This establishes the Lemma.

As previously noted, the coboundary operator 3* reduces to the exterior

derivative d on spaces G(Y), Y being an object in 2). Since G{IxX) is clearly

invariant under d, it follows that the operator (kd + dk)* maps Gp+\IxX)

to Gp+\X). Therefore, by Equation (2.13),

(2.15) dk* + k*d = uf- ut on Gp+\Ix X) .

Now let h: Ix X he a. contraction of X and set ω — h^oί. Since h is proper,

ω£ Gp+\IxX). Moreover, dω=0 since d commutes with h*. From the fact

that h°Ui is the identity map of X one concludes that ufω=cc. Similarly

u*ω = 0 since h°u0 is a constant map. It follows by Equation (2.15) that α = dβ

for β = k*ω. Proposition 2.4 is thus established.

We now observe that on dimension 0, Equation (2.13) should read

dk = U& — uoχ,

so that

k*d = uf-uf on G%IxX).

As an immediate consequence, one has

PROPOSITION 2.5. Let X be d.c. and fz F\X) such that df=0. Then

f is a constant function.
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3. The de Rham theorem for Z)-spaces. It is rather obvious that the
notion of differentiable spaces, as denned in Section 1, is not sufficiently
restrictive to yield a de Rham theorem, despite the fact that the theory of
differential forms does carry over to the full category 2). Our task now will
be to specify appropriate conditions on differentiable spaces, as unrestrictive
as possible, under which the assertion of the de Rham theorem may be
guaranteed. In virtue of the Leray theory of cohomology with coefficients
in a sheaf2x) one comes to see quite easily what these conditions should be.

Let X be an object in 3) and X its underlying topological space. In
accordance with the definitions of the preceding Sections, F°TX constitutes
an Sί-valued sheaf on X. We will denote this sheaf by $, and for each p^O,
$p will denote the subsheaf of homogeneous elements of dimension p. We will
also let R denote the simple sheaf on X with fiber i?.22) Since the constant
functions on X belong to every differentiable structure on X, there exists an
inclusion homomorphism j : R—> 5°, and one consequently obtains a sequence

(3.1) o^Ri&ί&ί.-.

The first condition to be imposed on X should guarantee that (3.1) is an exact
sequence, i.e., that it constitutes a cohomology resolution of R. In virtue of
Propositions 2.4 and 2.5, it will obviously suffice to assume that X is locally
differentiably contractϊble (l.d.c.) in the following sense: Given x^X and
a neighborhood U of x, there exists a neighborhood V of x such that VcU
and X\V is differentiably contractible.

At this point one must decide whether to consider arbitrary topological
spaces X at the cost of using a paracompactifying family Φ, or instead restrict
oneself to paracompact spaces X.23) We will adopt the second course as a
matter of convenience. In the case of manifolds this means that we are
assuming seperability. With this stipulation there remains precisely one more
condition to be imposed, i.e., one which will guarantee that the sheaves $ p

are soft (mous2^) for every p^O. A sheaf over X is called soft if every
section over a closed subset ScX can be extended to a section over X. Since,
however, for every p>0, $p is clearly an $°-module25) a ^d S0 is a ^-valued
sheaf, it suffices to assume26) that the sheaf 5° is soft.

21) See Godement [3], chapter 4.
22) Ibid., p. 113.
23) As previously remarked, Φ may then be taken to be the canonical paracompactifying

family which contains X.
24) Ibid., p. 151.
25) Ibid., p. 127.
26) Ibid., Theorem 3. 7. 1, p. 156.
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An object X in 2) whose underlying space X is paracompact will be called
a D-space provided (i) X is l.d.c; (ii) 5° is soft. It is perhaps not obvious
that conditions (i) and (ii) are actually independent. The following simple
examples may serve to demonstrate that this is the case : (1) Let M be the
Euclidean plane and [Xt: i Ξ̂  1} a family of circles in M whose radii rt tend
to 0 in the limit as i—> oo, and let it be further assumed that all circles Xt

are tangent at a given point x0 € M. We take X— UfXi, endow it with the
relative topology, take φ: X —•» Λί to be the inclusion map and let X denote
the differentiable space obtained in accordance with general example (i) of
Section 1. One may now verify that g° is soft. This is in fact quite
apparent in the light of Theorem 3. 7. 2 (Godement [3], p. 156). (2) Take X to
be R (considered as a topological space), and note that the totality of constant
(i?-valued) functions on X constitutes a differentiable structure. Let X denote
the resultant object in 2). Then every continuous map Λ:/xX—>X is a
proper map from IxX to X, so that X is certainly l.d.c. But now $ 0 is
obviously not soft. For example, the section over {0,1} which assigns the
germ of the constant function Λ: to x cannot be extended to all of X.

It is not difficult to see that there is no shortage of nonclassical D-spaces,
i.e., D-spaces which are not differentiable manifolds. For instance, if the
condition r t —> 0 in the preceding example (1) be replaced by rt > r > 0, the
result will be such a Z>space.

Given a paracompact topological space X, let Hn(X, R) denote the n-
dimensional cohomology group with coefficients in R, as denned by means of
the canonical resolution20 of R. For an arbitrary differentiable space X we
will denote by Hn(F(X)) the n-dimensional cohomology of F(X).

THEOREM I. Given that X is a D-space, there exists a canonical
isomorphism

Hn(F(X))-> Hn(L(X),R), n^O.

As previously noted, the fact that X is l.d.c. implies that (4.1) is a co-
homology resolution of R. It was also seen that condition (ii) for Z)-spaces
implies that 5 is soft. The conclusion follows therefore from a known
result28).

4. Quotient spaces. We will now specialize example (ii) of Section 1 by
taking X to be a quotient space of M and TΓ : M—> X the natural projection.

27) Ibid., p. 167.
28) Ibid., Theorem 4. 7.1, p. 181.
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Consequently TΓ will be open and surjective. We recall that the resulting differ-
entiable structure on X (which may be denoted by F°(X)) is precisely the set
of all continuous functions f:X—>R such that foτr£ C°°{M). Moreover, in
accordance with the results of Section 2 we may identify F(M) with the
classical differential algebra of exterior differential forms on M. We now
let A°π denote the set of all hzC°°(M) such that h=foτr with f:X-+R
continuous, and take Az to be the differential subalgebra of F(M) generated
by Al

PROPOSITION 4.1. The induced differential algebra homomorphism
TΓ* : F{X)->F(M) constitutes an isomorphism of F{X) onto A%.

One observes, in the first place, that TΓ* maps F°(X) onto A°π. Since TΓ*
is known to be a differential algebra homomorphism, it follows that TΓ* maps
F(X) onto A*. It remains to show that TΓ* is injective. On dimension zero
this follows trivially from the fact that TΓ is surjective. For p > 0 let us
consider ω € G\X) and σ : Jp -> X in KP(X) such that ω(σ) Φ 0. We may
choose a representation

Λdfί, fit F\X).

Let cj: O —> X be an extension of σ (Ω being an open subset of Rp) and
set (fi = fί o g. Since

there must exist a point t° € Jp such that

(4 i) y j ty*19'" >pJp)
^ \ 1? * * * ' p)

the subscript t° being understood to indicate the function-value at t°. There
also exists a value k of the index j such that

(4.2) όdttί"../,

Let φ : X-> i?" be defined by

Φ0.
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and set g(t°) = x\ φ(x°) = s°. By (4.2), φog has maximal rank at t° and
therefore admits a local inverse ψ, defined near s°. Since 7r is surjective, there
exists a point y° € M such that 7r(>/0) = ^:0, and now the fact that 7Γ is open
guarantees that the map ψoφojr (which is of class C°°) has maximal rank at
jΛ Let # : ί l - > M b e a local inverse, defined near t°. We have thus arrived
at the following diagram:

M

a > x

One observes that

(4. 3) ψoφog = ψoφoπoθ near t°,

since both sides reduce to the identity map on some neighborhood U of t°.
Composing both sides of Equation (4.3) with g (on the left) yields

(4.4) j = τ r o ί on [/.

Now consider a ^>-cube j p in U with t°zjp, and let σ = g\U, σ = θ\U. In
virtue of (4.1) Jp may be chosen sufficiently small so that ω(σ)ΦQ. But by
Equation (4.4), π*ω{σ) = ω(σ). Consequently τr*ω^0, as was to be proved.

The differential forms on M belonging to Aπ may be referred to as baselike
(with respect to 7r), and we shall denote their cohomology by Hn(An).
Theorem I, together with Proposition 4.1, yields

THEOREM II. Given that the dijferentiable space X induced by an open
surjection TΓ : M—> X is a D-space, there exists a canonical isomorphism

The hypothesis of Theorem II is verified in a considerable variety of
situations. For instance, the question comes up in the context of transformation
groups. Let us consider a Lie group G operating (to the left) differentiably
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on M, and take X to be the resulting orbit space MG- It will now be shown29)

that when M i s a regular G-variety in the sense of J. L. Koszul,30) then X

is a D-space. We briefly recall KoszuΓs definitions: Let H be a closed

subgroup of G, and suppose that a linear representation of H on a vector

space L has been given. One then defines an action of GxH on GxL by

setting

(4.5) (s,t)(r,a) = {srΓ\ta)

for s,r£ G, tzH and α <Ξ L. For fixed 5, Equation (4.5) defines an action of
H on G x L (which is independent of s). The resulting quoteint {GxL)H

constitutes the total space of a fiber bundle, with fiber L and base space G/H.

Moreover, taking O to be the origin of L, one obtains a preferred section
(Gx{O})π> referred to as the principal section. One also observes that the
action of G on G x L , as defined by Equation (4.5), induces a corresponding action
on {GxL)H. Now consider a point p^ M and let H(p) denote the stability
subgroup of p. The orbit through p is said to admit a trαnsversαlly fibered

neighborhood if there exists a linear representation of H(p) on a real vector
space L, together with a homeomorphism φ of a stable open neighborhood
of the principal section of (GxL)mp) onto an open neighborhood of the orbit
through p, subject to the condition that φ commutes with the action of G
and maps O to />31). Finally, M is said to be a regular G-variety if H(p)

is compact for all p£ M, and every orbit admits a transversally fibered
neighborhood. The second condition is always fulfilled when G is compact, a
result established by Koszul32).

Now let M be a regular G-variety, X its orbit space and X the differentiate
space induced by the natural projection 7r: Άf —» X. Given x € X, there exists
a point p£ M such that π(p)=x. Moreover, the orbit through p admits a
transversally fibered neighborhood. In the previous notation, this may be
identified with (GxV)H(p), where 7 is a neighborhood of the origin OzL.

The corresponding neighborhood U of x may consequently be identified with
the quotient of V under the action of H(p). Since H(p) is compact, U will
be Hausdorff and consequently X itself is a Hausdorff space. It follows
readily that X is paracompact.28)

To show that X is a Z>space, we must verify two conditions, both of
which are purely local. For this reason it will suffice to consider the matter
for the restriction space X\U, where U is given as above. The functions

29) M is assumed to be separable, and therefore paracompact.
30) See J. L. Koszul [4J.
31) A simple example illustrating the notion of transversally fibered neighborhoods will be

given below.
32) Ibid., p. 139.
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f^F°(X\U) may now be regarded as C°°-functions f:V-^R, invariant under
the action of H(p). As an immediate consequence one sees that X is l.d.c.
For if Vo C V denotes a neighborhood of O which is starlike with respect to O,
and Uo denotes the corresponding neighborhood of x, then the map h:IxV0

—> Vo given by h{t9y) = ty (scalar multiplication in L) defines a contraction of

x\u0.
It remains therefore to verify condition (ii) for a D-spa.ce. Let S be a

closed subset of V and f:S-^R a C°°-function, invariant under H(p). Since
the sheaf of differentiate functions on a manifold is soft, / may be extended
to a C°°-function f:V-*R. We will transform / into a function /, invariant
under H(p)9 by means of an integration over H(p) defined in terms of an
invariant measure μ. We suppose μ(H(p)) = l and set

f{x)= [ Tit x)dt, xzV;

where t-x denotes the image of x under the action of t. It is clear that this

averaging process yields a C°°-function /, invariant under H(p). However,

since f\S is already invariant, it follows that / extends /, as was to be shown.

As a corollary to Theorem II, one now obtains

PROPOSITION 4.2. For α regular G-variety M, the cohomology Hn(Aπ)
of baselike forms on M reduces to the real cohomology Hn(X, R) of the
orbit space.

A corresponding result regarding the cohomology of basic forms on M
was obtained by Koszul.33) We recall that a differential form ω on a G-variety
M is called basic if (i) ω is invariant under the action of G (ii) the interior
product of ω with every left-invariant vector field gives zero. It is clear for
arbitrary G-varieties that every baselike form is also basic in this sense. The
converse, on the other hand, does not hold even for regular G-varieties, as
will now be shown. This means that Proposition 4.2 and the corresponding
Theorem of Koszul represent independent results.

Let us take M to be the Euclidean plane and G the group of integers
mod 2. Let (x,y) be Cartesian coordinates on M. The nonzero element of G
shall operate on M by the rule (x,y)—>( — x, —y), and this clearly defines a
regular G-variety. Now let us consider the differential form

ω = xdy — ydx ,

33) Ibid., [4].
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which is certainly basic. It will require a little calculation to show that ω Ξ̂ Ax.

Since ω = r2dθ in terms of polar coordinates, one finds that the integral of ω

around a (suitably oriented) circle Ίr of radius r with center at the origin is

given by

I ω = 2 7rr2.
Λr

On the other hand we shall see that

(4.6) f a = O(r')

for all a <= Aπ. To show this it will suffice to consider a monomial 1-form

a=fodfu where now ft are C°°-functions on M invariant under G. On account

of this invariance one sees that the terms of odd order in a finite Taylor's

series expansion of f L must vanish, so that

ft = at + btx
2 + ctxy + dty

2 + O(r*).

But this implies the estimate (4.6).

It should be remarked that, besides regular G-varieties, the ^-manifolds

introduced by I. Satake34) are also Zλspaces, as may be verified by considerations

analogous to the preceding ones. More precisely, if X is a ^-manifold, the

local uniformizing systems34> which define the V-manifold structure give rise

to a differentiable structure $ on X, and (X, 5) will be a Zλspace. One finds

that the differential forms on (X, $) corresponds in general to a proper

subalgebra of the differential forms on the F-manifold34) X. Consequently

Satake's version of the de Rham theorem34) is independent of Theorem II.

It should be noted that the content of Theorem II is by no means limited

to situations which resemble the regular G-varieties or V-manifolds. In both

these instances we have been dealing essentially with quotient spaces which

arise from the action of a compact transformation group. On the other hand,

quotients corresponding to the action of noncompact groups also turn out to

be D-spaces in a large variety of situations, provided one agrees to identify

nonseparated points, so that the resultant quotient will be a Hausdorff space.

We will conclude this paper with a rather characteristic example of a nonregular

G-variety for which the Hausdorff quotient, in the above sense, is a Z>space.

Let G denote the group of real numbers, E a 3-dimensional Euclidean space

34) See Satake [6].
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and v a nonsingular C°° vector field on E, subject to the condition that the
function p —> || !?(/>) || (Euclidean norm) is bounded on E. The vector field v
defines a differentiable action of G on E in an obvious way (v may be thought
of as a velocity field, t as a time coordinate). In particular, let us introduce
cylindrical coordinates35) (r, θ, z) in E and consider

a . a
i? = cos r —^— + sm r -dz • β " w dθ '

This is clearly well defined on the entire space E and defines an action of G.
Apart from the z-axis (which is an orbit), the orbit through p is a circle
when r(p)=(n + l/2)ττ for some integer n Ξg 0, and a helix otherwise. We
shall only need to concern ourselves with a cylindrical region r<rQ for some
r0 > 7r/2, which is certainly stable under the action of G. To be specific, take
M to be the region r < TΓ. Let us new examine the orbit space corresponding
to the given action of G on Λf. The orbits inside the cylinder r < τr/2 may
clearly be identified with points of an open disc D of radius τr/2. Similarly
those outside the cylinder r = τr/2 correspond to points of an open annulus A,
while the circular orbits in M correspond to points on a line L. This
establishes a point set isomorphism X between the orbit space MG and the set

It is easy to see that with respect to the topology induced on
by %, the points of L are nonseparated. Identification of non-

separated points yields a sphere with an attached disc36), and this represents
the Hausdorff quotient X of the G-variety M. Thus X has precisely the
cohomology of a 2-sphere. The natural projection ΊΓ : M—> X induces a differ-
entiable structure on X, and we let X denote the resulting differentiate space.
We assert that X is a Z>space.

In the first place one sees that stable neighborhoods in M involving only
noncircular orbits actually admit a product structure, and it will therefore
suffice to consider a stable neighborhood V of the cylinder r — τr/2. To be
specific, let V be given by 1 < r < 2. As things stand, the circular orbits of
M do not admit transversally fibered neighborhoods. On the other hand,
consider the vector field

IT* = 2τr yV2 + (—Y cot r

defined on V, which corresponds to a constant angular velocity θ = 2τr. It
gives rise to a new action of G on V. Since the two actions of G on V have

35) r denotes the radial, θ the angular and z the axial coordinate.
36) The point of attachment corresponds to L.
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precisely the same orbits, we may now replace 17 by v*. With this modification,
V becomes transversally fibered, as will now be shown.

Let (x, y, z) be Cartesian coordinates on E and let U denote the intersection
of V with the plane y = 0. Let p denote the point with Cartesian coordinates
(τr/2,0,0). The stability group H(p) is precisely the group of integers. Let
L denote the vector space R2. The preferred generator 1 of H(ρ) shall operate
on L by the formula

and this defines a linear representation of H(p). Now (GxL)H(p) is simply a
plane bundle over G/H(p). Let W denote the region of L consisting of points

fer) with

7Γ2 COt 2 < ξ < 7Γ2 COt 1 .

This is stable under H(p)9 and we propose to define a diffeomorphism φ:
(GxW)H{p)-+ V. To this end we observe that the map ψ:U-*W given by

ψ[(x, 0, z)] = (7Γ2 cot x, z)

maps U diffeomorphically onto W. We note further that a point sz (GxW)H(p)

may be represented by (ί, q), with t £ G, q zW and 0 ^ t < 1. The map φ is
defined by

where the dot is understood to indicate the action of t as a transformation on
V. One may verify without difficulty that φ is a diffeomorphism and commutes
with the operation of G.

It will now suffice to show that X\τr(V) is a Z>space. By virtue of the
preceding consideration, the elements of F°(X\7r(y)) may be identified with
C°°-functions f:W->R invariant under the action of H(p). By the simple
argument previously employed in the case of regular G-varieties one sees that
X\τr(Y) is l.d.c. To verify the remaining condition, we will suppose that S
and T are closed, disjoint subsets of W, stable under H(p), and we let f denote
the function defined on S\jT which assumes the constant value 1 on S and 0
on T. By a known result37) it will suffice to show that / can be extended to
a function in F\X\7r(y)). To this end we may assume without loss of
generality that S contains the origin O of L. There must exist a closed

37) Theorem 3. 7. 2, Godement [3], p. 156.
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neighborhood S* of S, stable under H(p), such that S*Γ)T is empty. Thus
for a sufficiently small £ > 0, the region W# consisting of points (£, ξ) with
| £ | < £ must be contained in S*. On the other hand, the complementary set
W*=W-W* is stable under H(p), and (GxW*)mp) is clearly a differentiable
manifold (i.e., a pair of cylinders). Consequently there exists a C°°-function
g:W*-»R, invariant under H(p), such that g\S*nW* = l and g\T=0. We
extend g to TF by setting g\W—W* = l and obtain thus a function in
FXX\τr(V)) extending/.
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