ON THE TENSOR PRODUCTS OF C*-ALGEBERAS ## TAKATERU OKAYASU (Received April 28, 1966) T.Turumaru [6] introduced a tensor product $A_1 \bigotimes_{\alpha} A_2$ of two C^* -algebras A_1 and A_2 , which is the C^* -algebra obtained as the completion of the *-algebraic tensor product $A_1 \odot A_2$ of A_1 and A_2 with respect to the α -norm $\| \|_{\alpha}$. As Wulfsohn [7] established, the α -norm has the property: $$\left\| \sum_{k} x_{1,k} \otimes x_{2,k} \right\|_{\alpha} = \left\| \sum_{k} \pi(x_{1,k}) \otimes \pi_{2}(x_{2,k}) \right\|, x_{1,k} \in A_{1}, x_{2,k} \in A_{2}$$ for every faithful representations π_1 of A_1 and π_2 of A_2 . It was observed in [5] that the α -norm is not necessarily the unique compatible norm in $A_1 \odot A_2$ and that it is the *least* one among the all compatible norms. On the other hand, A. Guichardet [4] gave, with the corresponding tensor product, the *greatest* compatible norm $\| \ \|_{\nu}$ in $A_1 \odot A_2$ the ν -norm. These arguments will bring forward many interesting problems on the relations between compatible norms in $A_1 \odot A_2$ and corresponding tensor products, and some of them will be considered in this paper. We shall discuss on B^* -norms in $A_1 \odot A_2$ in Theorems 1 and 2, and on the enveloping C^* -algebras of *-Banach algebras in Theorem 3. The auther wishes to express his hearty thanks to Prof. M. Fukamiya and Dr. M. Takesaki for their many valuable suggestions. Let A_1,A_2 be *-Banach algebras,¹⁾ $A_1 \odot A_2$ the *-algebraic tensor product of them. For norms $\| \ \|_{\beta'}$, $\| \ \|_{\beta}$, in $A_1 \odot A_2$, we say that $\| \ \|_{\beta}$ is smaller than $\| \ \|_{\beta'}$ in symbols $\| \ \|_{\beta'} \leq \| \ \|_{\beta}$ if $\| u \|_{\beta} \leq \| u \|_{\beta'}$ for all $u \in A_1 \odot A_2$. Of course the relation " \leq " has the partial ordering property. A norm $\| \ \|_{\beta}$ in $A_1 \odot A_2$. is said to be compatible if it satisfies the condition $$||x_1 \otimes x_2||_{\beta} \leq ||x_1|| ||x_2||, x_1 \in A_1, x_2 \in A_2. \text{ (cf.[5])}$$ Now let A_1 , A_2 be C^* -algebras. The C^* -algebra $A_1 \widehat{\otimes}_{\beta} A_2$ obtained as the completion of $A_1 \widehat{\odot} A_2$ with respect to a compatible B^* -norm $\| \|_{\beta}$ in $A_1 \widehat{\odot} A_2^2$ is ¹⁾ By a *-Banach algebra we mean any Banach algebra with an isometric involution. called the tensor product of A_1 and A_2 with respect to $\| \|_{\beta}$. The α -norm in $A_1 \odot A_2$ is defined by the formula $$||u||_{\alpha} = ||\pi_1 \otimes \pi_2(u)||, u \in A_1 \odot A_2,$$ where π_1 , π_2 are any fixed faithful representations of A_1 , A_2 , respectively.^{3),4)} The value $||u||_{\alpha}$ of course does not depend on the choice of π_1 and π_2 . The ν -norm is defined by the formula $$||u||_{v} = \sup_{\pi} ||\pi(u)||, u \in A_{1} \odot A_{2},$$ where π runs over the set of all representations of $A_1 \bigcirc A_2$ such that $$\|\pi(x_1 \otimes x_2)\| \leq \|x_1\| \|x_2\|, x_1 \in A_1, x_2 \in A_2.$$ For a *-Banach algebra A having at least one faithful representation, the enveloping C^* -algebra $C^*(A)$ of A means the C^* -algebra obtained as the completion of A with respect to the B^* -norm in A $$||x||_{*} = \sup_{\pi} ||\pi(x)||, x \in A,$$ where π denotes any representation of A. This notion is of course a generalization of that of the group C^* -algebra $C^*(G)$ of a locally compact group G, the enveloping C^* -algebra of $L^1(G)$. THEOREM 1. Let A_1 , A_2 be *-Banach algebras. Then each B*-norm in $A_1 \odot A_2$ is compatible. To prove this we prepare LEMMA 1. Let $A_{1,1}$, $A_{2,1}$ be the *-Banach algebras obtained as the adjunctions of the identities to *-Banach algebras A_1 , A_2 , respectively. Then each B^* -norm $\| \cdot \|_{\mathcal{B}}$ in $A_1 \odot A_2$ can be extented to a B^* -norm in $A_{1,1} \odot A_{2,1}$. ²⁾ B^* -norm means any muliplicative norm $|| ||_{\beta}$ satisfying the condition $||u^*u||_{\beta} = ||u||_{\beta}^2$ for all u. ³⁾ We mean by a representation of a *-algebra any *-homomorphism into the algebra of all bounded linear operators on some Hilbert space. ⁴⁾ In general, for representations π_1 of A_1 and π_2 of A_2 , $\pi_1 \otimes \pi_1$ means the representation of $A_1 \odot A_2$ on the tensor product Hilbert space of representation spaces of π_1 and π_2 defined by the formula $[\]pi_1 \otimes \pi_2(u) = \sum_k \pi_1(x_1, k) \otimes \pi_2(x_2, k), u = \sum_k x_{1,k} \otimes x_{2,k} \in A_1 \odot A_2.$ ⁵⁾ This definitin of the ν -norm will be simplified in Corollary of Theorem 1 by omitting the condition (*) for π . PROOF. For any $v \in A_{1,1} \bigcirc A_{2,1}$, we put $$\| v \|_{\beta} = \sup_{u} \| v u \|_{\beta}$$ where u runs over $A_1 \bigcirc A_2$ with $\|u\|_{\beta} \leq 1$. This is a multiplicative norm in $A_{1,1} \bigcirc A_{2,1}$ and an extension of $\| \|_{\beta}$. Moreover it is a B^* -norm. In fact, for any positive number $\varepsilon < 1$, there exists an element $u \in A_1 \bigcirc A_2$ with $\|u\|_{\beta} \leq 1$ such that $\varepsilon \|\| v \|\|_{\beta} \leq \|vu\|_{\beta}$. Then $$\mathcal{E}^{2} \parallel v \parallel \leq \parallel uv \parallel_{\beta}^{2} \leq \parallel u^{*}v^{*}vu \parallel_{\beta} \leq \parallel v^{*}vu \parallel_{\beta} \leq \parallel v^{*}vu \parallel_{\beta} \leq \parallel v^{*}v \parallel_{\beta}.$$ Since ε is arbitrary, we have $$|||v|||_{\beta}^{2} \leq |||v^{*}v|||_{\beta}$$ and the opposite inequality is obvious, q.e.d. PROOF OF THEOREM 1. We can assume that A_1 and A_2 have identities which are denoted by 1's. Let $\| \|_{\beta}$ be a B^* -norm in $A_1 \odot A_2$. The mapping $A_1 \ni x_1 \rightarrow x_1 \otimes 1 \in A_1 \widehat{\otimes}_{\beta} A_2$ is a homomorphism (in fact an isomorphism) of A_1 into $A_1 \widehat{\otimes}_{\beta} A_2$, hence $$||x_1 \otimes 1||_{\beta} \leq ||x_1||, x_1 \in A_1$$ Analogously we have $$||1 \otimes x_2||_{\beta} \leq ||x_2||, x_2 \in A_2,$$ and therefore, $$||x_1 \otimes x_2||_{\beta} = ||(x_1 \otimes 1)(1 \otimes x)_2||_{\beta} \le ||x_1|| ||x_2||, x_1 \in A_1, x_2 \in A_2,$$ which completes the proof. COROLLARY. Let A_1, A_2 be C*-algebras, then $$||u||_{\nu} = \sup_{\pi} ||\pi(u)||, u \in A_1 \bigcirc A_2,$$ where π runs over the set of all representations of $A_1 \bigcirc A_2$. PROOF. For any $u \in A_1 \odot A_2$, $||u||_{\nu} \ge \sup_{\rho} ||\rho(u)||$, where ρ runs over the set of all faithful representations of $A_1 \odot A_2$ which satisfy (*). Moreover the right-hand side is equal to $\sup_{\sigma} \|\sigma(u)\|$, where σ runs over the set of all faithful representations, because by Theorem 1 we know that any faithful representation of $A_1 \odot A_2$ necessarily satisfies (*). Then, τ denoting the restriction on $A_1 \odot A_2$ of a faithful representation of $A_1 \otimes_{\nu} A_2$, we have $$||u||_{\nu} \ge \sup_{\sigma} ||\rho(u)|| = \sup_{\sigma} ||\sigma(u)|| \ge ||\tau(u)|| = ||u||_{\nu},$$ and also the desired formula, q.e.d. THEOREM 2. Let A_1, A_2 be C*-algebras, then the set of all B*-norms in $A_1 \odot A_2$ becomes a complete lattice under the ordering " \leq " with the least ellement $\| \cdot \|_{\alpha}$ and the greatest element $\| \cdot \|_{\nu}$. PROOF. For a given set N of B*-norms in $A_1(\cdot)A_2$, we put $$||u||_{\beta_0} = \sup_{\pi} ||\pi(u)||, u \in A_1 \odot A_2,$$ where π runs over the set of all representations of $A_1 \odot A_2$ which are continuous with respect to every $\| \ \|_{\beta}$ in N. Here, remark that this set contains every representations of the product type $\pi_1 \otimes \pi_2$. $\| \ \|_{\beta_0}$ is a B^* -norm and is smaller than each $\| \ \|_{\beta} \in N$. And for every B^* -norm $\| \ \|_{\beta'}$ in $A_1 \odot A_2$ which is smaller than each $\| \ \|_{\beta} \in N$, $\| \ \|_{\beta'} \leq \| \ \|_{\beta_0}$. Hence $\| \ \|_{\beta_0}$ is the infimum of N. Also we put $$||u||_{\beta_1} = \sup_{|u||\beta \in N} ||u||_{\beta}, u \in A_1 \bigcirc A_1,$$ then this is not only a B^* -norm in $A_1 \bigcirc A_2$ but also the supremum of N. q.e.d. Theorem 2 has an interpretation. For each $u \in A_1 \widehat{\otimes}_{\nu} A_2$, choosing a sequence $\{u_n\}$ in $A_1 \widehat{\odot} A_2$ converging to u with respect to $\|\cdot\|_{\nu}$, we can define well a homomorphism π_{β} of $A_1 \widehat{\otimes}_{\nu} A_2$ onto $A_1 \widehat{\otimes}_{\beta} A_2$ by $$\pi_{\beta}(u) = \| \|_{\beta} - \lim_{n} u_{n}, u \in A_{1} \widehat{\otimes}_{\nu} A_{2}.$$ The kernal $\pi_{\beta}^{-1}(0) = I_{\beta}$ of π_{β} is a closed two-sided ideal in $A_1 \widehat{\otimes}_{\nu} A_2$ with $I_{\beta} \cap A_1 \widehat{\otimes} A_2 = \{0\}$. We consider the correspondence $\| \|_{\beta} \rightarrow I_{\beta}$ of the set of all B^* -norms in $A_1 \widehat{\otimes} A_2$ onto the set of all closed two-sided ideals in $A_1 \widehat{\otimes}_{\nu} A_2$ intersecting $A_1 \widehat{\otimes}_{\lambda} A_2$ only at 0. This becomes one-to-one because $A_1 \widehat{\otimes}_{\nu} A_2 / I_{\beta}$ is isomorphic to $A_1 \widehat{\otimes}_{\beta} A_2$, and moreover order-preversing. Now Theorem 2 makes us state COROLLARY. The set of all closed two-sided ideals in $A_1 \widehat{\otimes}_{\nu} A_2$ intersecting $A_1 \odot A_2$ only at 0 becomes a complete lattice under the inclusion ordering with the least element $\{0\} = I_{\nu}$ and the greatest element I_{α} . The following lemma is essentially due to Guichardet [3]. LEMMA 2. Let A_1 , A_2 be *-Banach algebras with approximating identities. For any representation π of $A_1 \odot A_2$ which is continuous with respect to the γ -norm $\| \cdot \|_{\gamma}$ in $A_1 \odot A_2$, there exist representations π^1 of A_1 and π^2 of A_2 such that $$\pi(x_1 \otimes x_2) = \pi^1(x_1)\pi^2(x_2) = \pi^2(x_2)\pi^1(x_1), x_1 \in A_1, x_2 \in A_2.$$ PROOF. Just as in the proof of Proposition 1 of [3], we put $$\pi^1(x_1) = \text{strong-lim}_{\eta} \pi(x_1 \otimes e_{2,\eta}), x_1 \in A_1,$$ $\pi^2(x_2) = \text{strong-lim}_{\xi} \pi(e_{1,\xi} \otimes x_2), x_2 \in A_2,$ $\{e_{1,\xi}\}, \{e_{2,\eta}\}$ being approximating identities of A_1, A_2 , respectively. Then π^1, π^2 are required representations. q.e.d. THEOREM 3. Let A_1,A_2 be *-Banach algebras with approximating identities each of which has at least one faithful representation. Then the enveloping C*-algebra C*($A_1 \otimes_{\gamma} A_2$), $A_1 \otimes_{\gamma} A_2$ being the projective tensor product of A_1 and A_2 , is isomorphic to the tensor product $C^*(A_1) \otimes_{\nu} C^*(A_2)$ of the enveloping C*-algebras $C^*(A_1)$ and $C^*(A_2)$. PROOF. Under the natural identifications, we may consider that the *-algebra $A_1 \odot A_2$ is contained both in $C^*(A_1 \widehat{\otimes}_{\gamma} A_2)$ and in $C^*(A_1) \widehat{\otimes}_{\nu} C^*(A_2)$. We shall prove that $\| \cdot \|_{\nu} = \| \cdot \|_{*}^{6}$ in $A_1 \odot A_2$. Since $\| \cdot \|_{\nu}$ in $A_1 \odot A_2$ is compatible by Theorem 1, $\| \cdot \|_{\nu} \leq \| \cdot \|_{\gamma}$, and the restriction π on $A_1 \odot A_2$ of a faithful repesentation of $C^*(A_1) \otimes_{\gamma} C^*(A_2)$ can be extended to a representation of $A_1 \widehat{\otimes}_{\gamma} D_2$. Then, $$||u||_{v} = ||\pi(u)|| \le \sup_{\rho} ||\rho(u)|| = ||u||_{*}, u \in A_{1} \bigcirc A_{2},$$ where ρ denotes any representation of $A_1 \otimes_{\gamma} A_2$. Next we see the opposite inequality. Since the restriction σ on $A_1 \odot A_2$ of a faithful representation of $C^*(A_1 \widehat{\otimes}_{\gamma} A_2)$ is continuous with respect to $\| \|_{\gamma}$, there exist representations σ^1 of A_1 and σ^2 of A_2 such that σ $(x_1 \otimes x_2) = \sigma^1(x_1)\sigma^2(x_2)$, $x_1 \in A_1$, $x_2 \in A_2$. We can extend σ^1 , σ^2 to representations σ_1 , σ_2 of $C^*(A_1)$, $C^*(A_2)$, respectively. Then $$\tau(u) = \sum_{k} \sigma_1(x_{1,k}) \sigma_2(x_{2,k}) \text{ for } u = \sum_{k} x_{1,k} \otimes x_{2,k} \in C^*(A_1) \odot C^*(A_2)$$ is a representation of $C^*(A_1) \odot C^*(A_2)$ and an extension of σ . Thus ⁶⁾ We sall denote the norm in the enveloping C*-algelna by || ||*. $$||u||_{*} = ||\sigma(u)|| = ||\tau(u)|| \le ||u||_{v}, u \in A_{1} \bigcirc A_{2}.$$ $$\|u-\sum_{k=1}^{k_n}x_{1,k}^n\otimes x_{2,k}^n\|_{\nu}\rightarrow 0, n\rightarrow \infty.$$ And there exist sequences $\{y_{1,k}^n\}$ in A_1 with $y_{1,k}^n\neq 0$ and $\{y_{2,k}^n\}$ in A_2 such that $$||x_{1,k}^{n}-y_{1,k}^{n}||_{*} \leq \frac{1}{nk_{n}\max_{k}||x_{2,k}^{n}||_{*}},$$ $$\|x_{2,k}^{n}-y_{2,k}^{n}\|_{*} \leq \frac{1}{nk_{n}\max_{k}\|y_{1,k}^{n}\|_{*}}, n=1,2,\cdots.$$ Then, $$\|u - \sum_{k} y_{1,k} \otimes y_{2,k}\|_{\nu}$$ $$\leq \|u - \sum_{k} x_{1,k} \otimes x_{2,k}\|_{\nu} + \|\sum_{k} x_{1,k} \otimes x_{2,k} - \sum_{k} y_{1,k} \otimes y_{2,k}\|_{\nu}$$ $$\leq \|\cdot \cdot \cdot\|_{\nu} + \sum_{k} \|(x_{1,k} - y_{1,k}) \otimes x_{2,k}\|_{\nu} + \sum_{k} \|y_{1,k} \otimes (x_{2,k} - y_{2,k})\|_{\nu}$$ $$\leq \|\cdot \cdot \cdot\|_{\nu} + \sum_{k} \|x_{1,k} - y_{1,k}\|_{+} \|x_{2,k}\|_{+} + \sum_{k} \|y_{1,k}\|_{+} \|x_{2,k} - y_{2,k}\|_{+}$$ $$\leq \|\cdot \cdot \cdot\|_{\nu} + \frac{1}{n} + \frac{1}{n} \to 0, n \to \infty. \quad \text{q.e.d.}$$ COROLLARY ([4]). Let G_1, G_2 be locally compact groups, then $C^*(G_1 \times G_2)$, $G_1 \times G_2$ being the direct product of G_1 and G_2 , is isomorphic to $C^*(G_1) \bigotimes_{\nu} C^*(G_2)$. The proof is obtained immediately via the Grothendieck theorem ([2], Theorem 1 and etc.) which asserts that the projective tensor product $L^1(G_1)$ $\bigotimes_{\gamma} L(G_2)$ is isomorphic to $L^1(G_1 \times G_2)$. ## **BIBLIOGRAPHY** - [1] J. DIXMIER, Les C*-algèbres et leurs représentations, Gauthier-Villars, Paris, 1964. - [2] A. GROTHENDIECK, Produits tensoriels topplogiques et espaces nucléaires, Memoirs Amer. Math. Soc., 16(1955). - [3] A. GUICHARDET, Caractères et représentations de produits de C*-algèbres, Ann. Éc. Norm. Sup. 81(1964), 189-206. - [4] A. GUICHARDET, Tensor products of C*-algebras, Doklady Acad. Sci. USSR, 160 (1965), 986-989; Soviet Math., 6 (1965), 210-213. - [5] M. TAKESAKI, On the cross-norm of the direct product of C*-algebras, Tôhoku Math, Journ., 16(1964), 111-122. - [6] T. TURUMARU, On the direct product of operator algebras I, Tôhoku Math. Journ., 4(1952), 242-151. - [7] A. WULFSOHN, Produit tensoriel de C*-algèbres, Bull. Sci. Math., 87(1963), 13-27. TÔHOKU UNIVERSITY.