Tôhoku Math. Journ. Vol. 18, No. 3, 1966

A NOTE ON THE CHOQUET BOUNDARY OF A RESTRICTED FUNCTION ALGEBRA

NOZOMU MOCHIZUKI

(Received April 17, 1966)

Let A be a function algebra on a compact Hausdorff space Y, i.e., a uniformly closed subalgebra of the algebra of continuous functions C(Y) which separates the points and contains the constants. We denote by X, M(A) and $\partial(A)$ the maximal ideal space, the Choquet boundary and the Silov boundary, respectively. We assume that A is represented on X. The Choquet boundary is characterized by the extreme points of the positive linear functionals of norm 1, so M(A) is independent of the representing space X. A subset E of X is said to be a peak set in X if there exists $f \in A$ such that |f(p)| = 1 on E, |f(p)| < 1on X-E. In the relationship between the algebra A and the representing space, a subset which is an intersection of peak sets plays a distinguished role. In connection with this, the following is known ([3]).

THEOREM. If E is an intersection of peak sets in X, then the restricted algebra A | E is closed in C(E) and $\partial(A | E) \subset \partial(A) \cap E$.

The object of this note is to prove the following

THEOREM. Let E be an intersection of peak sets in X, then $M(A | E) = M(A) \cap E$.

The following is proved in [2].

LEMMA. $p_0 \in M(A)$ if and only if, for every neighborhood U of p_0 in X, there exists a sequence $\{f_n\}$ in A such that $||f_n|| \leq 1$, $|f_n(p_0)| \to 1$ and $f_n(p) \to 0$ uniformly for X-U.

PROOF OF THEOREM. First, suppose that $p_0 \in M(A) \cap E$. Let $U \cap E$ be a neighborhood of p_0 in E. There is a sequence $\{f_n\}$ in A satisfying the condition for U. Let $g_n = f_n | E$. $\{g_n\}$ satisfies the condition for $U \cap E$. Thus, $p_0 \in M(A | E)$. Conversely, let $p_0 \in M(A | E)$. We prove that $p_0 \in M(A)$. Let U be an open neighborhood of p_0 . Take $\{g_n\}$ in A | E such that $|g_n(p_0)| \rightarrow 1$, $||g_n||_E \leq 1$ and $g_n(E-U) \rightarrow 0$. Replacing g_n by $(1-1/n)g_n$ if necessary, we may assume that

A NOTE ON THE CHOQUET BOUNDARY OF A RESTRICTED FUNCTION ALGEBA 317

 $||g_n||_E < 1$. Since A | E is isometric with A/k(E). *) We have $||g_n||_E = ||\dot{f}_n||$ for some $f_n \in A$ such that $||f_n|| \leq 1$. Since $g_n = f_n | E$, $|f_n(p_0)| \to 1$ and $\sup_{E \to U} ||f_n(p)| \to 0$, so

$$|f_{n_k}(p_0)| > 1 - 1/k$$
 and $\sup_{E^-U} |f_{n_k}(p)| < 1/2k$, for some n_k .

There exists an open set G containing E-U such that

$$\sup_{a} |f_{n_k}(p)| < \sup_{E=H} |f_{n_k}(p)| + 1/2k < 1/k,$$

and by compactness of E-U we can select a finite intersection E_0 of peak sets such that $E_0-U \subset G$. E_0 is itself a peak set, so a function $g \in A$ peaks on E_0 and, since $G \cup U$ is an open set containing E_0 , we have

$$\sup_{{}_{(G \cup \mathcal{D})^c}} \left|g^{m_k}(p)f_{n_k}(p)\right| \leq \sup_{{}_{(G \cup \mathcal{D})^c}} \left|g^{m_k}(p)\right| < 1/k$$

for a large m_k . Let $h_k = g^{m_k} f_{n_k}$. Since $U^c \subset (G \cup U)^c \cup G$ and $\sup_G |h_k(p)| \leq \sup_G |f_{n_k}(p)| < 1/k$, we have $\sup_{T_c} |h_k(p)| < 1/k$.

Clearly, $||h_k|| \leq 1$ and $|h_k(p_0)| = |f_{n_k}(p_0)| > 1 - 1/k$. Thus, we have $p_0 \in M(A)$.

References

- [1] E. BISHOP AND K. DE LEEUW, The representations of linear functionals by measures on sets of extreme points, Ann. Inst. Fourier, 9(1959).
- [2] N. MOCHIZUKI, The tensor product of function algebras, Tôhoku Math. Journ., 17(1965).
- [3] J. TOMIYAMA, Some remarks on antisymmetric decomposition of function algebras, ibid., 16(1964).

TÔHOKU UNIVERSITY.