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1. In this paper we shall deal with perturbation theory for semi-groups of
operators of class (C,) defined on a Banach space.

Let {T(§ A); €= 0} be a semi-group of operators of class (C,) and let A
be the infinitesimal generator of {7(& A),f=0}. R.S.Phillips [2] first proved
that if B is a bounded linear operator, then A+ B generates a semi-group of
operators of class (C,). Later he has introduced the following class PB(A) of
perturbing operators [1].

DEFINITION 1. A linear operator B is said to belong to the class B(A) if
(a) D(B)=D(A) and BR(\;A)V is a bounded linear operator for some N
in the resolvent set of A,

(b) BT(§; A) defined on D(A) is bounded for all &€ >0,
(c) f |BT(£;A) || 4dE< oo, where the subscript A means that the norm is
taken relative to the subspace D(A).

We shall now consider the class {B} of operators satisfying the following
conditions:

(@) D(B)>D(A) and BR(\; A) is a bounded linear operator for some A in
the resolvent set of A.

(b") There exists a constant K > 0 such that

[ 1816 a1l = K1l for all 2 D(A).

Then we can show that if A is the infinitesimal generator of a semi-group
{T(& A); £ =0} (or group {T(§ A);—oco<< £ <oo}) of class (C,) and B e {B},
then for sufficiently small |&|, A+EB generates a semi-group (or group) of
class (C,).

It is obvious that if {71(§; A);—oco<< & <o} is a group of operators of class
(C,), then each B < %P(A) is bounded on D(A).

1) The notations D(A) and R(A;A) denote the domam of operator A and the resolvent of
operator A, respectively.
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On the other hand, in this group case, it is shown by an example (see section
4) that our class contains unbounded operators. Therefore our class properly
includes the class P(A4). Main results are given in section 3.

2. Let X be Banach space and 8(X) be the Banach algebra of all bounded
linear operators from X into itself.

DEFINITION 2. {T(¢); £ = 0} is said to be a semi-group of operators of
class (C,) if

(i) T(¢) «B(X) for each £=0,

(i) T©)=I (the identity) and T(E+n)=T(&)T(n) for each & n =0,

(iii) gna TEx=x for each x < X.

The infinitesimal generator A of {T(£);£ =0} is defined as the limit in
norm

2.1) lim % [T(h)—TNz=Ax

whenever this limit exists. And if A is the infinitesimal generator of a semi-
group of operators, we denote the corresponding semi-group by {T(§; A); £ = 0}.
The following theorem is due to R.S.Phillips (see [1] or [2]).

THEOREM L Let {T(§ A);E=0} be a semi-group of class (C,) and
suppose that B e B(X). Then A+B defined on D(A) is again the infinitesimal
generator of a semi-group of class (C,) and

2.2) T A+B)= 3 Si6) for £=0,

where Sy,(&)=T(&; A) and S,c(&)x:f T(E—o; A)BS,_(o)xdo for xe X and k=1,

the series (2.2) converges absolutely, uniformly with respect to & in any
compact interval. For each k, S (€) is strongly continuous for &€= 0.
We also use the following theorem which was given by H.F.Trotter [3].
THEOREM I Let {T(& A,); €= 0},c1s,... be a sequence of semi-groups of
class (C,) satisfying the condition

1T A,)| = C exp(7€) for £=0,

where C and Y are constants independent of n and & Suppose that
(i) Ax=lim A,z exists on a dense subset of X,

(ii) for some N>, the range R(An—A) of N—A is dense in X.

Then the closure of A is the infinitesimal generator of a semi-group {T(§; A);
E=0} of class (Cy), and T(§ A)x=lim T(¢; A,)x for x< X and € =0.
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3. We first remark that if {T(% A);£=0} is a semi-group of class (C,),
then there exist real constants M >0 and o = 0 such that
@.1) 1T A)|= M exp(wt) for ¢=0.

LEMMA 1. Let {T(& A); £ =0} be a semi-group of class (C,) and suppose
that B, e B(X) for each positive integer n.

If

1
(3.2) sup f |B,T(; A)x||dé < oo for each z¢ X,
n Jo
then n_—_”s%pln(x) is finite for each \>w, where

m(x):supf e ™|B,T(&; A) x|dE for xeX.
m Jo
PROOF. Let us put

p)=sup [ 18,70 Al de for 2 X.

It is easy to see that p(x) has the following properties:

(@) 0 = p(xr)<<oo for each xe X.

(b) plx+y) = p(x)+p(y) and plax)=|a|p(x) for z,y € X and any complex
number .

(c) p(x) is a lower semi-continuous function defined on the whole space X.

Therefore by the Gelfand lemma there exists a constant K > 0 such that

p(x) = K|z| for ze X.

Then for each A > @ and each x € X we have

| e Axlae=3 [ 1B, TG A1

IA

> e [ 1B, Tt AXTU: Aallds
=3 e p(Tlhs A=K S e Tl Azl

gMKie‘“‘"”"”x” = MK[1—e ] z|.

k=0
Thus 0=r, = sup 7(x) <oo for each A > w. This concludes the proof.
|z|[=1

Since 7, defined on the open interval (w, o) is a non-negative, monotone

non-increasing function of A, the limit
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(33) r= 111’11 T

p ey
exists and 0 = r <oo.
LEMMA 2. Let {T(&; A); &€ = 0} be a semi-group of class (C,) and suppose

that B, € B(X) for each positive integer n. By Theorem 1, for each n, A+B,
defined on D(A) generates a semi-group {T(§, A+B,); &= 0} of class (C,) and

T A+B)= 5 SP@) for £20,

¢
where S{P(&)=T(¢; A) and S™M(&)x= f T(¢—o; A)B, S (0)xdo for x< X and
0
k=1

If
(3.2 sup f l |B,T(&; A)x|dE <oo for each xz€X,
then
(3.4) sup [[S{(E)] = M(ra)*exp(rt)

for x>0, £=0 and k= 0.

PROOF. From the Fubini tbheorem we have
¢
(35) SP®z= [ S B, T; A)ady

forn=1, k=1, =0 and x< X. It follows from Lemma 1 that 0 = <o
and 7(x) = rlz|| for N> @ and € X.

We shall now prove (3.4) by induction. For £=0, this is obvious from (3.1).
Suppose that it is true for 2=m. Then, by (3.5),

£
I1Seh @21 =1 [ SPE—B. Tl A)adn]
i3
= [ 159E =l 1B Tl dy

=M@ | ¢ |B,T(y; A)x|dy
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= Mrye® [ e, T Azl
0

= M(ryreri(x) = Mro™'e¥ |z

for A> o, ¢ = ( and x < X. Hence we have
sup [|STUE)] = M(r)™+'e

for A > o and &= 0. This concludes the proof.
From these lemmas and Trotter’s theorem (Theorem II) we have the
following

THEOREM 1. Let {T(& A);€=0} be a semi-group of class (C,) and
suppose that B, € B(X) for each positive integer n.
If lim B,x=Bzx for x< D(A) and if

1

(3.2) sup f |B,T(&; A)x|dE <oo for each z€ X,
n 0

then there exists an & >0 which is finite or oo such that for each & with

|&| < &, A+EB defined on D(A) generates a semi-group of class (C,).

PROOF. We put &=1/r if » %0, and we put §=c0 if »=0. The theorem
is trivial for €=0. For given & with 0 <|&| << &, there exists a positive number
M > @ such that

|8 ]TA5<1.

Since B,=&B, € B(X), it follows from Theorem I that A+ B generates a

semi-group {T(§; A+R,); €= 0} of class (C,) and

(3.6) T(& A+B)=TE A+B)= 5 5P@) for £=0,

k=0

~ ~ 4 -
where S{V(&)=T(¢;A) and S{(&)x= f T(E—o; A)B .S (o)xdo for x € Xand k= 1.
0

Further S{(§)=¢6*S(£) and hence by (3.4) we get
(3.7 sup [SPE)| = M(|&|ra)e

for £=0 and £ = 0. Hence by (3.6) we have

(3.8) [T A+EB) =3 130@)] = M- |8 r) e

k=0
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for E=0.

Since B, € B(x) and R(»; A)x= f e MT(E A)xdE for \>e and € X,

we have
B, R0 A)z =& f " e MB,T(E; A)xde

for z€ X. Let A be a real number with A = .. Hence
l€B,.R(; A)zxl| =1&|r(x) =€z for ze X.

Passing to the limit as 7 —oo we have [[EBR(\; A)x| = |&|nlx| for x€ X, so
that

lEBR(\; A= e =€lme < 1.

Then [A—(A+EB)]! exists and [N—(A+EB)]'=R(\; A) D_[EBR(\; A)F € B(X).
2 k=0
This shows that A+&B defined on D(A) is a closed linear operator and (M
—(A+&B)=X. :
Thus it follows from Theorem II that A+&B defined on D(A) is the
infinitesimal generator of a semi-group {7(§ A+&B);E=0} of class (C,), and
TE;, A+EB)x=limT(§; A+EB,)x for x € X and £= 0. This concludes the proof.

THEOREM 2. Let {T(g; A); =0} be a semi-group of class (C,).
Suppose that

(1) B is a linear operator with D(B)D>D(A) and BR(\; A) e B(X) for
some N > o,

(ii) there exists a constant K >0 such that

[ 181 Ayale = Kial

for all x e D(A).
Then there exists an & >0 which is finite or oo such that for each & with
|&] < &, A+EB defined on D(A) generates a semi-group of class (C,).

PROOF. Let us put
B,=nBR(n; A)
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for each positive integer # with 7z > », and let us put B, =0 for each positive
integer n with 7 = w. From the resolvent equation we have

BR(n; A)=BR(\; A)—(n—\)BR(; A)R(n; A)

for n>w. It follows from this formula and the assumption (i) that B, < B(X)
for all # = 1. Then we have

lim B,z=Bzx

n—r00

for x € D(A). In fact, for each x € D(A) there exists an element y < X such that
x=R(\; A)y. Hence B,x=nBR(n; A)R(\; A)y=BR(\; A)[nR(n; A)y]l>BR(\; A)y
=Bx as n—oo.

Furthermore from the assumption (ii) we have

[ 18,1 aralde= || 1RO AT Ayt

= f | BT(&; A)nR(n; A)x]| dE

= K[nR(r; Az = ;’}w MK ||
for n > » and x ¢ X. Hence

sup [ 1B, T A)alde <oo

for each x <€ X. The result now follows from Theorem 1. This concludes the
proof.

COROLLARY 1. Let {T(§ A);E€=0} be a semi-group of class (C,).
Suppose that

(i) B s a closed linear operator with D(B)>D(A),

(ii) there exists a constant K > 0 such that

[ 1B a)zide < Kz

for all x e D(A).
Then there exists an & >0 which is finite or oo such that for each & with
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|&| < &, A+EB defined on D(A) generates a semi-group of class (C,).

PROOF. For any A > w, BR(\; A) is a closed linear operator defined on the
whole space X and therefore it is bounded by the closed graph theorem. Thus
(i) implies the assumption (i) of Theorem 2. This completes the proof.

THEOREM 3. Let {T(§; A); £ =0} be a semi-group of class (C,).

Suppose that

(i) B is a linear operator with D(B)D>D(A) and BR(\; A) € B(X) for
some N> o (or B is a closed linear operator with D(B)D>D(A)),

(i) BT(& A) defined on D(A) is bounded for all &€ >0 and

[ Ww@aide <cov for each z€ X,

where for each &€ >0, U(E) denotes the linear bounded extension of BT(E; A)
to the whole space X.

Then there exists an & > 0 which is finite or oo such that for each & with
|&| <&, A+&EB defined on D(A) generates a semi-group of class (C,).

1
PROOF. Let us put p(x):f [UE)x|dé for ze X. If im z,=x, then it
0 N—roo

follows from the Fatou lemma that
1
p@)= [ lim (U@,

=tim [ [U®z,|de=lim p(z,).

n—oo

Thus p(x) is a lower semi-continuous function defined on the whole space X.
Furthermore 0 = p(x) <oo, plx+y)=p(x)+p(y) and plax)=|a|p(x) for z,
ye X and any complex number a. Therefore by the Gelfand lemma there exists
a constant K > 0 such that

J WWeeide=pz) = Kz for all z< X.

This implies the condition (ii) of Theorem 2, and hence the theorem follows
from Theorem 2 and Corollary 1. This completes the proof.

2) We note that for each z€ X, U (§)x is Bochner measurable on (0, ).
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The following result is due to R.S.Phillips [1].

COROLLARY 2. Let {T(§ A); =0} be a semi-group of class (C,). If
B e PB(A), then for each complex number & A+EB defined on D(A) generates
a semi-group of class (C,).

PROOF. B e P(A) implies the assumptions of Theorem 3. We now prove
that & =o00. We define B, similarly as in the proof of Theorem 2. For each
zeX,n>wand A > 0

[ 181 Azlae= [ 1B ANnRes A1l
= [ e *IBTG AYnRos Aylde+ [ e HIBTG ARG A)ellde

= M| [ e IBTE Dl + e BTN [ 1T e el

Hence if we define r, similarly as in Lemma 1, then for each A > o we have

ro= M| [ BTG Ay dt +o MEL DL ]

where M’ is a positive constant independent of A. The above right hand side
tends to zero when A —oo, and hence r:l}m 72=0. Thus it follows from the

definition of &, in Theorem 1 that &§=oc. This completes the proof.
4. In this sectin we deal with groups of operators of class (C,). We note

that if {T(§; A);—oco< £ <oo} is a group of operators of class (C,), then there
exist real constants M >0 and o = 0 such that

(4.1) 1T A) |= M exp(w|€]) for all &,
and
4.2) N IN > @} Cp(A),

where p(A) is the resolvent set of A.

THEOREM 4. Let {T(§; A);— o< &€ <o} be a group of class (C,).

Suppose that

(i) B is a linear operator with D(B)DD(A) and BR(\; A) € B(X) for
some real A with |N>w, (or B is a closed linear operator with D(B) > D(A),)



308 1. MIYADERA

(ii) there exists a constant K >0 such that
. v
[ 1876 41218 = K121

for all x < D(A).
Then there exists an & >0 which is finite or o such that for each & with
|&] <&, A+EB defined on D(A) generates a group of class (C,).

PROOF. From the resolvent equation we get

BR(u; A)=BR(\; A)—(p—MBRM; A)R(p; A)

for all real p with || >w. Then by (i) we have
4.3) BR(u; A) € B(X)
for all real p with |u|>we. (If B is a closed linear operator with D(B)>D(A),
then we have the same result from the closed graph theorem.)

Setting T,(£)=T(§ A) for =0, {T.(£);E=0} is a semi-group of class
(C,)) and A is its infinitesimal generator. Thus by Theorem 2 there exists an
& >0 which is finite or oo such that for each & with |&| <&, A+&B defined
on D(A) generates a semi-group {7.(& A+EB);&= 0} of class (C,).

We next put T_(§)=T(—% A) for £=0. Then {T_(§);£€=0} is a semi-

group of class (Cy) and —A is its infinitesimal generator. By (4.2), u<p(—A)
for p > o, and by (4.3) and R(u; —A)=—R(—p; A) we have

BR(p; —A) € B(X) for each u > o.

Moreover by the assumption (ii)
[ 1BT @z 1de= [ 1BT(~& A)zlae

= fo BT & AYT(~ 1)zl de

— f | BT(E; AYT(—1)z| dé

< K|T(~1)z| = K|T(-1)| ||

“for all xe€ D(—A)=D(A). These imply the assumptions of Theorem 2. Then
there exists an & >0 which is finite or oo such that for each & with |&|< &,
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—A—&B defined on D(A) generates a semi-group {7T_(§ —A—&B);E= 0} of
class (C,). '

We now put &=min(§,, &). Setting S.(&)=T.(§; A+EB)T_(¢; —A—E&B) for
each & with |&]<< &, S.(B)x(xe D(A)) is (strongly) continuously differentiable
for £=0 and

4 S(Ba=IT.(& A+eBYA+B)T(¢ —A—eBa
+T.(& A+&EB)(—A—&B)T-(¢; —A—€B)]z=0,

and further S, (&)x —» x as € —>0. It follows that S (&)x=x for each x e D(A)
and since D(A) is dense in X the same is true for each x<¢ X. Thus T,(§;
A+EB)T_(§;, —A—&B)=1,; a similar argument shows that T_(§ —A—¢&B)T.(§
A+&B)=I and hence T_(§;, —A—&B)=[T.(8; A+&B)]"'. We define

T.(& A+EB) for E=0,
T A+EB)=
T (—& —A—EB) for £ <0,

where |&| << &. Then it is easy to see that {T(§ A+EB); —co<< £ <o} is a
group of class (C)) and A +&B is its infinitesimal generator. This concludes. the
proof.

If {T( A); —co<<E<<oo} is a group of class (C,), then each Be P(A) is
bounded on D(A). In fact, the assumption || BT(§; A)|l,<co for & > 0 implies that

| Bz|| = [BT(&; A)IT(—& A)z|=|BT(E A)|LT(—& Al | =]
for x < D(A).

Finally we show that there exists an unbounded operator satisfying the
assumptions of Theorem 4.

EXAMPLE. We consider the Lebesgue space L,(— oo, o) and we define

(4.4) [T(E)x)(t)= (¢ +&)

for all real & and x e L,(—oo, oo). It is easy to see that {T(§); —co<< & oo} is
a group of operators of class (C,) and D(A) is the class of all absolutely
continuous functions such that z(¢) and z'(¢) belong to L,(—co.c0).

Let b(¢) be a function such that b(¢) € L,(— o0, o) and b(¢) & L..(— o0, o),
and we define an operator B by
(4.5) [Bx)()=0b(t)x(t)
for x(t) € L,(— oo, o) such that b(¢)z(¢) € L,(— o0, o0). If 2 € D(A), then x¢ L.
(— o0, 00). This shows that D(B)>D(A).
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We shall next prove that B is a closed linear operator. Suppose x, € D(B),

00

lz—zl= [ 120)~2(0)|dt—0 and Bz, ~3l= [ 1b@z0) =50\t 0.

Then there exists a subsequence {n,} such that limx, (¢)=xz(¢) a.e. ¢, and for
arbitrary & > 0 there exists a positive integer n. such that

00

| 1m0y <

for n = n.. Hence

0o

[ 1@z 0-ye1de<e

for n, = n.. Passing to the limit as n, =0, by the Fatou lemma, we have

00

| b@a-y1ae=e;

so that b(8)x(t)=y(t) a.e. t. Consequently x € D(B) and Bx=y. Thus B is a
closed linear operator.
Further

[ iBr@cdae= [ [ 1b@ate+g)aeae=1pila

for all x < D(A).

Therefore the operator B satisfies the assumptions of Theorem 4. But the
operator B isn’t bounded since & & L..(— oo, oo).
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