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The object of this paper is to examine Borel-type methods of summability,
to define strong Borel-type methods and investigate their relations with ordinary
and absolute Borel-type methods.

1. Introduction. Suppose throughout that σ, an(n = 0,1, •) are arbitrary
complex numbers, that a > 0, that β is real and that N is a positive integer
greater than — βja. Let x be a real variable in the range [0, oo) : in all limits
and order relationship involving x, it is to be understood that x —• oo.

n

Define sn = Σ av > S-i=0, σJ^=σ-sN-1.

Borel-type sums are defined as follows:

It is known that the convergence of either series for all x ^ 0 implies
the convergence, for all x ^ 0 of the other (See [1]).

Borel-type means are defined as follows:

Λa,β(x)= f e~ι aa>β(t)dt,
Jo

Sa%β(x)=curxsatβ(x\ Tatβ(x)=ae-χaajx).

Borel-type methods are defined as follows:

1. Summability:
(i) If Aa>β(x) -> σN, we say that sn —> σ(B, a, β\
(ii) If Sa,β(x) -> σ, we say that sn -> σ(B, a, β).

2. Absolute Summability:
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( i ) If Aatβ(x) —> σN and Aa,β(x) is of bounded variation with respect to x
in the range [0, oo) we say that sn —> σ\B\ ay β\.

(ii) If Satβ(x) —• σ and Sa>β(x) is of bounded variation with respect to x

in the range [0, oo), we say that sn-+σ\B,0L, β\.

3. Strong Summability:

( i ) If

we say that sn —> σ [ β , o£,

(ϋ) If

f
Jo

we say that sn -> σ[B, a, β].

4. Boundedness:

(i) If A«.β(x) = OQ),we say that sn = O(l) (B ,a, β).
(ii) If Sa,β(x) = O(l),we say that sn = O(l) (B, a, β).

5. Strong Boundedness:

(i) If

f ^ |Λr,iB-l(O-^|Λ =

we say that 5n = O(l) [£', Λ, /?].

(ii) If

f
Jo

we say that sn = O(l) [JB, a, /?].

The summability methods (B, 1,1) and (JB', 1,1) are the Borel exponential
and the Borel integral methods respectively as given in 'Divergent Series'. (See
[3] p.182). The Borel-type summability methods (B, a, β) and (B\ a, β) are due
to Borwein (See [2]). The ideas of absolute summability are also due to Borel
himself. (See [3] p.184).

We assume henceforth that the series defining aa>β(x), sa^(x) are convergent



ON BOREL-TYPE METHODS 285

for all x ^ 0 and, since the choice of N is clearly immaterial, that aN-\- β
5^ 2; so that the functions

a^^x), aa>β(x), Satβ-i(x), sa>β(x)

are all continuous for x §: 0. Also, we assume, without loss of generality, that

αo=α1= =αN-1=0, so that σN=σ.

Given a function, fix), continuous for x g: 0 we write for x i=Ξ 0,

fo(x)=f(x); Mx) = {ΓC8)}-1 J (x-tγ-*f(t)dt (δ > 0).

This section ends with the statement of several known results which will

be used throughout the paper:

I If Ί > 0 W f(x) = sαfβ(x\ then, for x>0

S

fΎ(x)=sα,β+Ύ(x)= Σ ^

Ill J* e-'α^

^{Tiά)}-1! e-usα>β(u)du / t^e^dt. (See [1])

2. Preliminary Results. The following lemmas are required:

L E M M A 1.

( i ) ~d~ Aαtβ(x)=e-χαα>β(x),

(ii) -j^ Sαtβ(x)=cte-χ{s«j-1(x)-sα,β(x)}9

(iii) ^ Tα>β(x)=αe-χ{α«ίβ-1(x)-αα,β(x)},
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Γ
i/n

(v) Saiβ-1(x)=ae-χsa)β-1(x)=Sa>β

(iv) Ta^1(x)=ae-'aatβ^(x) = Ta,β(x) + Taβ{x).

The proofs are immediate.

LEMMA 2. If

f \M\dt<oo

then

\* e*\f{t)\dt = o(e*).

PROOF. If

F(x)= Γ \f(t)\dt

then

f eι\f(t)\dt=-F(O)+e*F(x)- f etF(t)dt =

LEMMA 3. If f(x) zBVX[O, oo)̂  and J \φ(t)\dt<oo, then

W(X) = J f{χ -t)φ{t)dt € BVX[O, oo).

PROOF. zv(χ)= I f*(x-t)φ*(t)dt
J —oo

where

\f(u) («^0)
/*(«) = •

lθ (« < 0)

ίφ(u) (μ ̂  0)
φ*(u) = \

*From now on, by "BVJ[O, oo)" we mean "is of bounded variation with respect to x in the
range [0, oo)".
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Then, for 0 < x0 < x1 < < xn,

^ ί ! Σ \J*(xr-f)-f*(Xτ-i-
°° l r = l

^Vϊf Γ \φ(t)\dt
Jo

where V~f is the total variation of / in the range [0, oo). Hence, the result
follows. This is a special case of the lemma in Tatchell [4].

LEMMA 4. Suppose that f(x) is continuous for x > 0.
(i) Suppose that δ > 0, then

e~xf^x) € JSV^oo) whenever e~xf(x) € BV^O, oo).
(ii) Suppose that δ > 0,

Γ e'ιfh(f)dt € βy x [0, oo) whenever

PROOF. Let F(χ)= Γe-ιf(t)dt.
Jo

Then

anc

(;r) = Γ e-
JO

Γ(δ) f e-ιfs(t)dt= f F{t)φ(x-t)dt
Jo Jo

where

The result follows from lemma 3. Compare lemma 2 in Borwein [1].
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LEMMA 5. Iff \f(t))dt=o(e%
Jo

then

I l/β(*) I dt=o(ex) whenever δ > 0.
JO

PROOF. Let g(t) = \f(t) | . Hence gδ(t) > | f8(t) \.
By lemma 2(a) in Borwein [1], it follows that if g1(x) = o(ex), then g1+δ(x) = o(ex)
and hence the result follows.

3. Theorems. This section is divided into two parts. The first contains
theorems which give relations between methods of the same type: that is "B"
methods or "B'" methods. The second contains theorems giving relations
between the "JB" and "B" methods.

3.1 T H E O R E M 1.

(i) If sn ->σ\B,oL,β\ then sn -> σ(£, a, β).
(ii) If sn-*σ\B'A, βI then sn -> σ(B\ a, β).

The proof is immediate from the definitions.
Each of the other theorems in this section can be stated in parts corres-

ponding to the parts of theorem 1. We shall only state the part corresponding to
(i) in each case; the proofs of the other parts are obtained by replacing "Saιβ(x)"
by "Aa.β(x)" and V by V respectively.

T H E O R E M 2. // sn -> σ\B,a, β\ then sn -> σ[B, a, β].

PROOF. We have Satβ(x)-σ = o(ΐ) and f \S'a>β(t)\dt <oo.
Jo

Hence, in view of lemma 2, it follows that,

Jo

= f'
Jo
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This completes the proof of theorem 2.

T H E O R E M 3. If sn -> σ[B, a, β] then sn -> σ(J3, a, β).

PROOF. We have [ eι\S«i/β-i(ί)-σ\dt = o(ex).

Hence, it follows that,

\Sa,β(x)-σ\ =e-*\e*Sa>β(x)-e*σ\

ί 6t{S—e

/"

\σ\e~

This completes the proof of theorem 3.

THEOREM 4. If sn=O(l) [B9ayβ] then sn=O(l) (B,ayβ).

The proof is similar to that of theorem 3.

The following two results are immediate from the definitions:

THEOREM 5. If sn->σ{B,ayβ) then sn-*σ[B,ct,β + l].

THEOREM 6. If sn=O(ΐ) (B,a,β) then sn=O(l) [Bya,β+ll

Results giving relations between methods of the same type are:

THEOREM 7. // sn->σ(B, a, β) then sn-+σ(B, a, /9+δ) (δ > 0).

This is due to Borwein [2], result (II).

THEOREM 8. If sn=O(ΐ) (B,a,β) then sn=O(ΐ) (Bya,β+$) (δ >0).

This follows from analogues of lemmas 1 and 2 in [1] with O( ) instead
of
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T H E O R E M 9. // sn -> σ[By ay β] then sn -> σ[B, a, β + δ ] (δ > 0).

This follows from lemma 5.

THEOREM 10. If sn=O(ΐ) [B,a,β] then sn=O(l) [B,a,β+B] (δ>0).

This follows from the analogue of lemma 5 with O( ) instead of o( ).
Finally, in this section, there are two theorems giving the exact relation

between the strong and ordinary cases:

THEOREM 11. sn -> σ[By a, β] if and only if sn -^ σ(B, a, β) and

PROOF. We have that Sa>β-1(t)-σ=Satβ(t)-
Whence

(a) \Satβ^(t)-σ\^\Sa§β(f)^σ\

(b) ιsu*)l ^l^^co-σi + i&^co-σi.
NECESSITY. Suppose that sn —> σ[B, a, β]. Then, it follows from theorem 3

that sn-+σ(B,a9β). That is Sa>β(t)-σ = o(ΐ) and, further

Thus, using (b), it follows that

f eι\S
Jo

SUFFICIENCY. Suppose on the contrary that Sa,β(t)— σ = o(l) and that

f e*\S*tβ (t)\dt = o(eη.
Jo

Using (a), it follows at once that

f et\Sa,β.1{t)-σ\dt = o{e%
Jo

THEOREM 12. sn=O(X)[B9ct>β] if and only if sn = O(l) {B,cίyβ) and

The proof is similar to that of theorem 11.

3. 2. Theorems in this section are stated in full.

THEOREM 13. sn->σ(B,ayβ) if and only if an->0 (B,a,β) and
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Sn-±σ(B',Ct,β).

This theorem is due to Borwein [2].

THEOREM 14. sn-+σ \B,ayβ\ if and only if α w ->0 \B,ayβ\ and
sn~^σ\B\a,β\.

PROOF, (i) NECESSITY. Suppose that sn->σ\Bya, β\. T h e n we have that

Sa>β(x)=ae-*sΛ,β(x)=σ +o(l) (14.1)
SaΛx)=curxsat/fa) € BVX[O, oo). (14.2)

First, in view of theorem 13, and (14.1), we obtain that
sn -+ σ(B, a, β) and an -> 0(B, a, β).

Further, in view of (14.2) and lemma 4(i), we have that, since oί > 0,
e-χs.tβ+a(x) € BVx[0, oo).

Hence

) ) ) a i β + a ( x ) } z BVx[0, oo),
and so it follows that an -+0\B, a, β\.

Also

AΛιβ(x)= I etaatβ(t)dt= I e-usa>β(u)φ(x-u)du,
Jo Jo

where φ(v)= I ί*"1 "̂* dt.

r°°
Since I φ(v)dv = T(a+ l)<ooy it follows from (14.2) and lemma 4(a) that

Jo

Aatβ(x) € BVx[0, oo), and further that sn-+σ\B',ά, β\.
(ii) SUFFICIENCY. Suppose that sn-+σ\&,a,β\ and an -> 01B, a, βI. Then
we have that

Aa,β(x)= f e-taa,β(t)dt=σ + o(l) (14.4)

OiOo) (14.5)

=o(l) (14.6)

). (14.7)

First, in view of theorem 13, it follows from (14.4) and (14.6) that
sn—>σ (B, a, β). Further, using the notation in the second part of the proof of
the theorem in [1], we obtain that
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= I B(x-i)φ(t)dt
Jo

where (A) δ = kcί > 4 where k is a positive integer,

d °° x8n

(B) φ(x) = ^— [έΓ^/δ-iO)}, where /(:r) = ]Γ Γ β n + 1x > and satisfies

I \φ(x)\d
Jo

x<oo,

(C) 5(Λ)

Now, from (14.5), we obtain that

ί e-*{sa,β(t)-saιβ+a(fi)}dt € BVX[O, oo),
Jo

and further, in view of lemma 4 (ii), that

f έΓ« {

and hence it follows that B(x—t) is of bounded variation with respect to x in
the range [t, oo) uniformly for t > 0.

Hence, in view of lemma 3, it follows that

e-*sa,β+8(x) € BV.tO, oo).

Also, in view of (14.7) and lemma 4 (i), we obtain that

e-*{sa>β(x)-sa,β+h(x)} € BVx[0, oo)

since δ = &#, and so,

e~xsatβ{x) € BV.tO, oo).

Hence sn-*σ\B,a, β\.
This completes the proof of theorem 14.

THEOREM 15. sn -» σ [β, Λ, /8] ϊ f αwrf only if an -> O[JB, a, β] and

sn -

P R O O F , (i) NECESSITY, Suppose that sn -> σ[B9 a, β\ By theorem 3 it
follows that sn->σ(B, a, β)y and so, by theorem 13, that sn -> σ(B\ a, β) and
αn -> 0(β, Λ, /S). Further, from theorem 11, we have that
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Jo

that is

( \sa>β(t)-s(X>β^(
Jo

and further, in view of lemma 5, that

f I sa>β+a(t) -sa,β+a^(t) I dt = o{e%
Jo

Thus,

f |αβf/<f)-aβf*-i0Olέfc

/ \Sa.p+Jf)Sa,B*

that is

and so it follows that απ —> 0 [B, a, β].
This means that

and so, since

Aa,β(t) = Ta>β(t) = Γβ f ̂ xCO - Ta,β(t)

it follows that

Thus, sn-+σ[B,a,βl
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(ii) SUFFICIENCY. Suppose that sn -> σ[B\ a, β] and an -> 0 [£,#, /?].

By theorem 3 it follows that sn -> σ(B , tf, /S) and an —> 0 (β, ύ!, ̂ 8), and so,

by theorem 13, that sn —> σ(B, a, β) and further, from theorem 7, that
5?i —> °"CB> a, β + v) whenever z/ ̂  0. Thus

^,^+δ(^) -5α,yS+δ_1(^:) = o(ex) (15.1)

where 8 = k § l , k being a positive integer.

Further, from theorem 11, we obtain that

Γet\AUt)\dt= Γ \aatβ
Jo Jo

and

f el\T
Jo

whence

Jo

It follows from lemma 5, that

[ \sa>β-.ι(t)-sa,M-ί(
Jo

and

f \sa,β(t)-sa>β+δ(t)\dt = o(ex).
Jo

Thus, from these two results and (15.1) it follows that

f \saiβ(t)-sa>β^t)\dt= [ et\

Jo Jo

and so, by theorem 11, we further have that sn -> σ[B, a, β].

This completes the proof of theorem 15.
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THEOREM 16. sn-+σ(B\a,β) if and only if sn -> σ(B, a, β +1).

This theorem is due to Borwein [2].

THEOREM 17. sn-^σ\B',cίyβ\if and only ifsn-+σ\B, a, β + l\.

PROOF, (i) NECESSITY. Suppose that sn->σ\B\ a, β\. Then we have that

Aa>β(x)= ( e-taa>β(t)dt = σ±o(l) (17.1)
Jo

A,> f l(*)= Γ e-'a^dt € BVX[O, oo) (17.2)

First, from (17.1) and in view of theorem 16, it follows that

that is sn -> σ(B, cί,β +1).

Further, using the argument in theorem 14, we obtain that

where ΰ = ka and k is a positive integer. So, in view of lemma 3(i), it follows
that

e~xsa)β+d+1{x) € BVx[0, oo).
Now, for r > 0,

f e-'a^
Jo

= -^ x Λ«, β + i ( : r)+ I e-ιaa<B+ι{t)dt (17.3)
Jo

Also, from (17.2) and in view of lemma 4(ii), it follows that

f «-taM+1(i>fc€BVe[0,oo),
Jo

and hence, from (17.2) and (17.3) that

Thus
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and further, since oί > 0, in view of lemma 4(i),

e-a{saιβ+1(x)-satβ+8+1(x)l € JBT^[O, oo)

e, as above, h — ka, k, being a positive integer. Hence

and so, we obtain that sn-*σ\B,oί,β + l\.
(ii) SUFFICIENCY. Suppose that sn-^σ\B, a, /9 + l | . Then, by theorem 14,
sn->σ\B\cί, β + l\ and an -> 0|B, Λ, /3 + 11, and so, from theorem 1, sn ->
σ(β', Λ, /β +1) and αn -• 0(5, a,β +1). Thus, by theorem 16, sn -• σ(β , Λ, /3.
Further, Λve have

and

A« f*+i(*)= ί ^ ^ M + 1 (
Jo

From (17.3) and these results, it immediately follows that

Aat/£x)= [ e-ta
Jo

and so, we have that sn—>σ\B\ a, β\.
This completes the proof of theorem 17.

THEOREM 18. sn -> σ[B, a, β] if and only if sn -> σ[B, a,

PROOF, (i) NECESSITY. Suppose that sn -> σ[B\ a, β]. From theorem 3,
it follows that sn -> σ(B\ a, β) and so, from theorem 16, that sn —> σ(B,
Further, from theorem 11, we have

Γ Γ»X

et\A'a,β(t)\dt=a I \aa,e(t)\dt
Jo

Thus, in view of lemma 5, we have
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I \aa,β+i(t)\dt = o(e*),
Jo

and hence

I \aa,β+1(t)-aa>β(t)\dt = o(e*). (18.1)
Jo

Thus

/ I {Satβ+l(t)SaΛ*)} - {S«,β+« + l(t)-S«,β+a(β)} I dt = θ(β%

and further, in view of lemma 5, we obtain that

I I {Sa,β+i(t) -saι/tf)} - {Sa,β+δ+ι(t) -s*,β+&(t)} I dt = o(ex)
Jo

where ΰ = k(X, k being a positive integer.
Also, starting from (18.1) and arguing as in the second part of the proof

of theorem 15, we obtain that

Hence

I Is a t β + 8 + 1 ( t) -saιβ+δ(t) I dt = o(ex).
Jo

oίl \saiβ+1(t)-sa,β(t)\dt= I eι\Sa>β{t)\dt
Jo Jo

and so, in view of theorem 11, we obtain that sn —>σ[B, cίy /3-f-l].
(ii) SUFFICIENCY. Suppose that sn->σ[Bya,β + l\ From theorem 3, it follows
that sn -> σ(β, ciyβ + l) and so, from theorem 16, that sn->σ(B\ a, β). Further,
from theorem 15, we obtain that sn -> σ[B\ay /9 + 1] and an -> 0 [B, a, β+ 1],
and so we have, in view of theorem 11
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/ eι\Ta,β+ι{t)\dt^a \ \aa,β+1(t)-aa,β(t)\dt
Jo Jo

and

/ e*\Aatβ+1(t)\dt=a f \aa,β+ι{t)\dt = o(e%
Jo Jo

It follows immediately that

f et\Sa,β(t)\dt=a Γ \aa,β
Jo Jo

and so, from theorem 11, that sn —» σ[B\ oί, β].

This completes the proof of theorem 18.

It is interesting to note that the proof of theorem 18 nowhere uses the full

strength of the hypothesis sn —> σ[B', a> β\ In fact, the weaker hypothesis

sn—* σ(B , a, β) will do, for by theorem 14 and lemma 5(a), we can obtain that

I I Sa,β(t) -5«, α-i(ί) -Sa,β+δ(t) + *a,β+8-l(t) I dt -

This gives rise to the interesting result:

THEOREM 19. sn -»σ[B, a, β] if and only if sn -*σ(β>a,β) and

an->0 [B,a,βl
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