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The object of this paper is to examine Borel-type methods of summability,

to define strong Borel-type methods and investigate their relations with ordinary
and absolute Borel-type methods.

1. Introduction. Suppose throughout that o, a,(n = 0,1, -.+) are arbitrary
complex numbers, that @ > 0, that 8 is real and that N is a positive integer
greater than —@B/a. Let x be a real variable in the range [0, o) : in all limits
and order relationship involving z, it is to be understood that x — co.

Define s,=>_a, , 5:;,=0, ox=0—sy_,.
v=0

Borel-type sums are defined as follows:

s xan+/5—1
n

k=2 Friey 0= sy

It is known that the convergence of either series for all x =0 implies
the convergence, for all x =0 of the other (See [1]).
Borel-type means are defined as follows:

Aa,ﬁ(x)zf et a, g (t)dt,

Sa,ﬁ(x) = ae_xsa,‘g(x), Tans(x) = de"aa,,s(x).

Borel-type methods are defined as follows:
1. Summability:

(i) I A,x(x)— oy, we say that s, — o(B, a, B).
(i) If S.g(x)— o, we say that s, — o(B, a, B).

2. Absolute Summability:
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(i) If A.s(x)— oy and A, 4(x) is of bounded variation with respect to x
in the range [0, o) we say that s, —o¢|B, a, 8].

(i) If S,p(x)— o and S, 4(x) is of bounded variation with respect to x
in the range [0, o), we say that s, — ¢|B, a, 8].

3. Strong Summability:
(i) If

j;z e' | Aup-1(t)—on| dt =0(e®),
we say that s, — (B, a, B].
(i) If
f €' | S p-1(t) —o| dt = 0(e"),
we say that s, — o[B, a, 8].

4. Boundedness:
(i) I A.s(x)=0Q), we say that s,=0(1) (B,a, B).
) If S.e(x)=0Q), we say that s,=0(Q) (B, a, B).

5. Strong Boundedness:
(i) ¥

[ ¢14cs i) —aridi=0,

we say that 5,=0(Q1) [B, a, B].
Gi)) If

fz €' Sy, p-1E)— 0o | dt =0(e®),
we say that s,=0(Q) [B, a, 8]

The summability methods (B, 1,1) and (B’,1,1) are the Borel exponential
and the Borel integral methods respectively as given in ‘Divergent Series’. (See
[3] p-182). The Borel-type summability methods (B, &, 8) and (B, a, B) are due
to Borwein (See [2]). The ideas of absolute summability are also due to Borel
himself. (See [3] p.184).

We assume henceforth that the series defining a, (), s., s(x) are convergent
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for all x =0 and, since the choice of N is clearly immaterial, that aN+23
= 2; so that the functions

aa,ﬁ—l(x), azx,ﬂ(x); sa,ﬁ—-l(x), Sa,ﬁ(x)
are all continuous for x = 0. Also, we assume, without loss of generality, that
ay=a,= +++ =ay_,=0, so that oy=0.

Given a function, f(x), continuous for x =0 we write for x =0,
F@)=fa), f@)=TO) [ @—tffeds ¢>0)
This section ends with the statement of several known results which will
be used throughout the paper:
I If v >0 and f{x)=Ss.4x), then, for x>0

s xam+ﬂ+7—1
n

JAX)= Sa,p:+(X) = Z=:N T(ant BE7)"
II aa,B(x) :Snf,ﬁ(x) —Sa,B+a<x)-

101 f etay o(t)dt

00

= {F(a)}‘ljj e s, o) du f t*le~tdt. (See [1])

2. Preliminary Results. The following lemmas are required:

LEMMA 1.

() L Aud)=ea, i),

i) S @) = (s ps(a) —ses(@)),

(iii) z”l; T o(x) =™ { A0, 51(T) — e p()},
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() Acpi@)=ea @)+ | e laopt)dt=AoA2)+ Ao ),

(V) Sap-1(T) =€ "54,5-1(L) = Se 5() + Sz, 6(T)s
(IV) Ta,B-l(x) = ae_maa,ﬁ—l(x) = Ta. ,3(.7)) + T:xﬁ(x)'

The proofs are immediate.

LEMMA 2. If
[ 1701de<e0

then
[ e1fwidi=ote
PROOF. If

Fay= [ 1fldr
then

f " f(®) | dt = — F(O)+ e F(z)— f " e B\t = ofe”).

LEMMA 3. If flx) e BV,[0, ©)* and fx |@(t) | dt<< oo, then

w(x)= f ) flx —t)p@)dt € BV [0, o).

PROOF. w(x)= f_ : JFr(x—t)p*(t)dt

where
) (u=0)
=]
0 (< 0)
P(u) (u=0)
P*(w) ={
0 (v <0)

*From now on, by “BV.[0,)” we mean “is of bounded variation with respect to . in the
range [0, c0)”.
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Then, for 0 < o < x;, < + + - < x,,

T Jwla) - wiz )|

= [;{"Z \f*(xr—t)—f*(xr—x"'t)l}|¢*(t)]dt

=Vef f: lp(t)| dt

where Vf is the total variation of f in the range [0, o). Hence, the result
follows. This is a special case of the lemma in Tatchell [4].

LEMMA 4. Suppose that f(x) is continuous for x = 0.
(i) Suppose that 8§ >0, then

e *f3(x) € BV ,[0,00) whenever e *f(x) € BV [0, o).
(i1) Suppose that & >0, then

f e ' fy(t)dt €e BV ,[0, o0)  whenever
0

f " ft)dt < BV [0, o).

PROOF. Let F(x)= f " et fe)dt.

Then

I@e )= [ e fitple—tds
and

16 [ epwd= [ Fope-oar
where

pu)=u’"le™".

The result follows from lemma 3. Compare lemma 2 in Borwein [1].
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LEMMA 5. Iffz | ) dt = o(e®),
then

_/; ’ | /()| dt =0(e®) whenever & > 0.

PROOF. Let ¢g(£)=|f(¢)|. Hence ¢(z) =| f3(¢)].
By lemma 2(a) in Borwein [1], it follows that if ¢,(x)=0(e"), then g,.s(x)=0(e")
and hence the result follows.

3. Theorems. This section is divided into two parts. The first contains
theorems which give relations between methods of the same type: that is “B”
methods or “B’” methods. The second contains theorems giving relations
between the “B” and “B’” methods.

3.1 THEOREM 1.

(1) If s,—oco|B,a,B| then s, — o(B,a, B).

() If s,—c|B.a, B| then s,— o(B, a, B).

The proof is immediate from the definitions.

Each of the other theorems in this section can be stated in parts corres-
ponding to the parts of theorem 1. We shall only state the part corresponding to
(i) in each case; the proofs of the other parts are obtained by replacing S, «(x)”
by “A.g(x)” and “c” by “ox” respectively.

THEOREM 2. If s, —a|B,a, 8| then s, — o|B, a, B].

PROOF. We have S, 4(z)—o=0(1) and f T 1S 4(0) | dt < oo

Hence, in view of lemma 2, it follows that,

fo " 18upat)—o| dt
_ f €| Sop(t) + S ot) —a | dt

= fx €' S, 5(t)+0()| dt

=o(e").



ON BOREL-TYPE METHODS 289

This completes the proof of theorem 2.

THEOREM 3. If s, — o[ B, a, B] then s, — o(B, a, B).

PROOF. We have [ ¢|5,,5-4(8)—a| dt =o(e").
0

Hence, it follows that,
| Se,6(x) — 0| =77 |€"S, o(x) —e%a|

j;m €' { S, 5(t) +Sa,6(t)} dt —ae”

—=e %

—e %

f‘,x & (Supn®)—c)dt—o

<e* [ ¢|Susalt)—oldt+|ole
=o(1).
This completes the proof of theorem 3.
THEOREM 4. If 5,=0(1) [B, a, 8] then s,=0Q1) (B, a, B).

The proof is similar to that of theorem 3.
The following two results are immediate from the definitions:

THEOREM 5. If s,—a(B, a, B) then s,—d[B, a, B8+1].
THEOREM 6. If s,=0Q) (B, a, B) then s,=0(Q) [B,a, 8 +11].
Results giving relations between methods of the same type are:
THEOREM 7. If s,—a(B, a, B) then s,—a(B, a, 8+3) (8§ > 0).
This is due to Borwein (2], result (II).
THEOREM 8. If 5,=0Q) (B,a, B) then s,=0Q) (B,a, B +98) (3> 0).

This follows from analogues of lemmas 1 and 2 in [1] with O(.) instead

of o(-).
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THEOREM 9. If 5, — o{B, a, B8] then s, — o[B, a, 8+38] (8 > 0).
This follows from lemma 5.
THEOREM 10. If 5,=0Q) [B, a, B] then 5,=0Q) [B, a, B+38] (8§ > 0).

This follows from the analogue of lemma 5 with O(-) instead of o(-).
Finally, in this section, there are two theorems giving the exact relation
between the strong and ordinary cases:

THEOREM 11. s, — a[B, a, 8] if and only if s,— ¢(B,a, 8) and
[ &1Suae)lde=o(e).

PROOF. We have that S, z-,(t)—a=35,40)—c+S, 42).
Whence

@) 1Sap-1(8) =0 | =|Se6t)—0| + S s)1,

(b)  [Sas®)l =|Su6t)—0 |+ |Se,-1(8) —a|.

NECESSITY. Suppose that s, — o[ B, @, 8]. Then, it follows from theorem 3
that s, — o(B, a, §). That is S, s(¢)—oc=0(1) and, further

[ &1S.s6)~olds=ote,
Thus, using (b), it follows that
fo "8, o) | dE = o(e?).
SUFFICIENCY. Suppose on the contrary that S,g(t)—c=0(1) and that

j; e'|S. s @) dt=o0(e®).
Using (a), it follows at once that
f e'|S, s-1(t) —ac | dt =0(e”).
0

THEOREM 12. 5,=01)[B,a, 8] if and only if s,=0Q) (B,a,B) and
ﬁ e'| S, 5(t) | dt =O(e®).
The proof is similar to that of theorem 11.

3.2. Theorems in this section are stated in full.

THEOREM 13. s,—oB,a,B) if and only if a,—0 (B,a,B) and
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s,—a(B, a, B).

This theorem is due to Borwein [2].

THEOREM 14. s,—a |B,a,B] if and only if a,—0 |B,a, B| and
sn—a|B,a, Bl.

PROOF. (i) NECESSITY. Suppose that s, — o |B, @, 8]. Then we have that
S, s(x)=ae s, o(x)=0 +0(1) (14.1)
S..8(x) =ae™"s, g(x) € BV [0, o). (14.2)
First, in view of theorem 13, and (14.1), we obtain that-
s,—a(B,a,B) and a, — 0(B, a, B).
Further, in view of (14.2) and lemma 4(i), we have that, since a >0,
e—zsw,ﬂ+a(x) € BVz[O: Oo)'
Hence

e‘zaw,ﬁ(x):e—z{sﬂ,ﬂ(x) —Sa,ﬁ+a(x)}' € BVZ[O’ oo),
and so it follows that a, —0|B, a, B|.
Also

A= [ caserdi= [ e, swple—udu,
0 0
where @(v)= f t*le~t dt.

Since f @(v)dv=T(a+1)<oo, it follows from (14.2) and lemma 4(a) that

A, o(x) € BV,[0, o), and further that s, > ¢|B, a, B].
(i) SUFFICIENCY. Suppose that s, —>o|B,a, 8| and a,—0|B,a, 8|. Then
we have that

A f(x) = f ) eta, gt)dt =a+0(1) (14.4)
A, plx)= fo ’ e ‘a, 4t)dt € BV [0, o) (14.5)
Toi(x)=ae™"aq,s(x)=0(1) (14.6)
T. x)=ae *a, o(x) € BV [0, o). 14.7)

First, in view of theorem 13, it follows from (14.4) and (14.6) that
s,—o (B, a, B). Further, using the notation in the second part of the proof of
the theorem in [1], we obtain that
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sepis()= [ Bla—dplyds

where (A) 8=*%ka > 4 where % is a positive integer,

(B) p(x)= d {e=f5-,(x)}, where flx)= Z T (8 +1) , and satisfies
[ ip@de <es,

©  B@=[ et lsd—sup sl

Now, from (14.5), we obtain that
[ 445060 =5upec®)dt < BV.[0, 20,

and further, in view of lemma 4 (ii), that

j;z e—t {Sa,ﬁ(t) _Sa,B+8(t)} dt € BVx[07 Oo),

and hence it follows that B(x—t%) is of bounded variation with respect to x in
the range [£, co) uniformly for z = 0.
Hence, in view of lemma 3, it follows that

€™%Sa,p:5(x) € BV [0, o0).
Also, in view of (14.7) and lemma 4 (i), we obtain that
€ (50 6(2) —u,9:5(2)} € BV [0, c0)
since 8=*ka, and so,
€7%5,,5(x) € BV [0, c0).

Hence s, — o |B, a, B].
This completes the proof of theorem 14.

THEOREM 15. s,— o [B,a,B] if and only if a,—O0[B,a,B] and
s, —dB, a,B]
PROOF. (i) NECESSITY, Suppose that s, — o[B,a, 8]. By theorem 3 it

follows that s,—a(B,a, 8), and so, by theorem 13, that s, — ¢(B’, @, 8) and
a, — 0B, a, B). Further, from theorem 11, we have that



ON BOREL-TYPE METHODS 293
J} 185001 de=ote;
0

that is

[} 150s®)=su0-@)1 dt =o0(e),

and further, in view of lemma 5, that

[ 15epra®)=suprenst) i =o(e.

Thus,
[ 1ustr=ausey1t
= [ lses®)=s0si@1dt+ [ Isepee®=saprani®)l
=o(e");

that is

1:: et l T:!,B(t) | dt = O(e"”),

and so it follows that a, — 0[B, a, 8]
This means that

fo * T prl®) | dt =o(e®),

and so, since

Aa,ﬂ(t) = Ta, ﬁ(t) = Ta,B—l(t) - T:x,ﬁ(t)
it follows that

f e'| A, 5(t)| dt =o(e”).

Thus, s, — o(B,a, B].
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(ii) SUFFICIENCY. Suppose that s, — o[B’, a, 8] and a, — 0 [B,a, B].

By theorem 3 it follows that s, —>o(B,a,8) and a,— 0 (B,a,B), and so,
by theorem 13, that s, — o(B,a, £) and further, from theorem 7, that

s, = o(B, a, 8+v) whenever v = 0. Thus

Sa,ﬂ+a(x) —Sa,/s+s—1(33) =o(e") (15.1)
where 8=ka =1, %k being a positive integer.

Further, fron} theorem 11, we obtain that

[ ¢1azonde= [ 1oyl de=ofer

and

fo ’ N ) dt= f ’ 0| A o(8) — A, p-1(t) | dE = 0(€%)

0

whence
j; | @, 8-1(2) | dEt = 0(€%).
It follows from lemma 5, that

[ 1505s®)=5u08-0) | dt =o0(e)

and
fo | Su, 8() — S, a45() | dt = 0(€").

Thus, from these two results and (15.1) it follows that

[ sestty=seosrde = [ 150y de=oter)

and so, by theorem 11, we further have that s, — o[B, a, B].
This completes the proof of theorem 15.
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THEOREM 16. s, —» (B, a, B) if and only if s, — o(B,a, B+1).
This theorem is due to Borwein [2].
THEOREM 17. s, —» o |B, a, Blif and only if s, — o|B,a, B+1]|.

PROOF. (i) NECESSITY. Suppose that s, — o|B’, @, 8|. Then we have that

A, ()= f ’ e ta, (t)dt =0+0() 171

A o(2)= f " e tan (t)dt € BV.[0, 00 (17.2)

First, from (17.1) and in view of theorem 16, it follows that

Se,pi1(x) =5y p1(x) =0+ 0(1),
that is s, — o(B, a, 8+1).

Further, using the argument in theorem 14, we obtain that
e_xsa,ﬁ+8(x) € BVI[O, oo)

where 8=ka and k is a positive integer. So, in view of lemma 3(i), it follows
that

e—xsa,ﬁ+8+1(x) € BV'c[Oy oo)
Now, for x >0,

f e“aalﬂ(t)dt
0

= apa(@)+ [ el (17.3)
0

Also, from (17.2) and in view of lemma 4(ii), it follows that
[ e tawsmterde < BV.10, ),

and hence, from (17.2) and (17.3) that
e—zazx,ﬁ-ﬂ(x) € BVx[()’ OO),
Thus
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€7 {Su,041(Z) — Sa,p1e+1(X)} € BV,[0, o0),
and further, since @ > 0, in view of lemma 4(i),
€ " {Sa,p41(X) — S, p1541(2)} € BV,[0, o0)

mhere, as above, 8=*ka, k. being a positive integer. Hence

€725, pi1(x) € BV [0, o)
and so, we obtain that s, —¢|B, a, 8+1].
(ii) SUFFICIENCY. Suppose that s,—¢|B,a,8+1|. Then, by theorem 14,
s,—o|B,a,8+1| and a,—0|B,a,B8+1|, and so, from theorem 1, s,—
o(B,a,8+1) and a,— 0(B,a, 8+1). Thus, by theorem 16, s,—o(B,a,B.
Further, we have

Tu,ﬂ+1(x) =ae—xazz,ﬁ+1(x) € Bvx[O’ oo)

and

Acps@)= [ € pt)dt < BY.IO, o).
0
From (17.3) and these results, it immediately follows that
Aus®)= [ eanstyde < BV.IO, o0)
0

and so, we have that s,—¢|B,a, B1.
This completes the proof of theorem 17.

THEOREM 18. s, — d[(B, a, B1 if and only if s, — o[B,a, B+1]
PROOF. (i) NECESSITY. Suppose that s, — o{B’,a, 8]. From theorem 3,

it follows that s, — o(B’, @, 8) and so, from theorem 16, that s, — (B, a, 8+1).
Further; from theorem 11, we have

[ e1aldi=a [ lauso)
=o(e”).

Thus, in view of lemma 5, we have



ON BOREL-TYPE METHODS 297
[ awsn@1di=ote)

and hence

j;x l aa,ﬁﬂ(t) - dawa(t) l dt = O(Ex). (18.1)

Thus
j:c l {Sa,ﬂ+1(t) _su,ﬁ(t)} - {Sa,13+:x+1(t) _sa,ﬁ+a(f)} ldt:o(ez),

and further, in view of lemma 5, we obtain that

S 150800 =50 b0~ 5esps000) =S pa0) | de =o0(e?)

where 8=*ka, k being a positive integer.
Also, starting from (18.1) and arguing as in the second part of the proof
of theorem 15, we obtain that

J: lsa,/3+8+1(t) _Sa,ﬂ+s(t) | dt = o(e”).

Hence

@[ Iseon@—seslde= [ 1S.,01d
= O(em)7

and so, in view of theorem 11, we obtain that s, — o[ B, a, 8+1].

(ii) SUFFICIENCY. Suppose that s, — o[B, @, 8+1]. From theorem 3, it follows
that s, — o(B, a, 8+1) and so, from theorem 16, that s,—a¢(B, a, 8). Further,
from theorem 15, we obtain that s, —>¢(B’,a, #+1] and a, —0 [B,a, 8+1],
and so we have, in view of theorem 11
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f e‘ l ,[:x,ﬁ+ 1(t) | dt =a f l aa,,3+1(t) _ aa,g(t) l dt = 0(8")

0

and
fo e A, pit)|dt = fo | @u,p1(2) | dt = 0(e").
It follows immediately that

fo IS0t =a [ auslt) de=oler)

and so, from theorem 11, that s, — ¢[B, a, 8].
This completes the proof of theorem 18.

It is interesting to note that the proof of theorem 18 nowhere uses the full
strength of the hypothesis s, —o[B,a, 8. In fact, the weaker hypothesis
s,— o(B,a, 8) will do, for by theorem 14 and lemma 5(a), we can obtain that

f 'Sa,B(t) _Sa,,‘.'—l(t) _Sa,B+8<t) +sa,ﬂ+5—1(t) l dt = O(ex)
0

This gives rise to the interesting result:

THEOREM 19. s, —d(B,a, 8] if and only if s, — oB,a,B) and
a, —0 [Ba, 8].
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