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1. In this paper we shall be studying bounded sequences summed by a
regular matrix. The usual norm for the space of bounded sequences is |s,]
=sup|s,| and the unit ball is the set of sequences with |s,[|=1 If Ais a
regular matrix, then % denotes the set of bounded sequences summed by A, A
is called the summability field of A. If {s,} is summed by A, A-lim s, denotes
the value to which it is summed.

The following result is due to Brudno, see [4] and [2].

THEOREM 1. If ADWB, then A—lim s,=B—lim s, for every {s,} ¢D.
By the summability method U1, we denote the set of all matrices which

have U as their summability field. Let A be a regular matrix, h(A) is called the
matriz norm of A, where '

hA)= sup 3" |y, <oo

It is clear that
1 <sup|A—lims,| =< h(A)
where the sup is taken over all bounded sequences in the unit ball summed
by A. The value of sup|A—lims,| is a function of the summability field and
we define the field norm N(Y) by
N)=sup|A—lim s, |

where the sup is taken over the unit ball. We can also consider,
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1] =inf A(A)

where the infimum is taken over the matrices which have U as their summability
field. The following fundamental theorem is due to Brudno [3].

THEOREM 2. For every regular matrix A,
[T} = N0

Brudno [3] also showed that there is always a sequence {s,} in the unit

ball such that
A —lim s, = N¥).

such sequences are called extreme points of U.
If there is an A" in U, such that

h(A)=11] = N().

we shall say that the field norm of U is attained by the matrix A ; otherwise,
we shall say that the norm is not attained.

2. In [1] we discussed the extreme points of summability fields for which
the norm is attained. We proved:

THEOREM 3. If U is a summability field, and if the norm of U is
attained, then there is a matrix B belonging to the method, such that,
i) h(B)=N®)

il) in every column of B, all the non-zero elements have the same sign.

The sequence {s,}, where s,=+1 or —1 according as the characteristic
sign of the n th column of B is + or—, we call the characteristic sequence.
Clearly the characteristic sequence is an extreme point of .

If {s,}e¥ s, =0, nec E, and
lim Z lam"nl = 0,

then {s,} is said to be a sparse sequence for Y. Schur’s theorem makes it plain
that sparse sequences are independent of the particular matrix A representing
A. We shall prove the following theorem:

THEOREM 4. Let the norm of A be attained and let {t,} be a characteristic
sequence for A. Then {s,} is an extreme point of U if and only if
1) {s,} is in the unit ball;
ii) s,=t,+v,+r, (n=1,2,---), where {v,} is sparse for U, and {r,}
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converges to zero.

PROOF. Clearly if the conditions are satisfied, then {s,} is an extreme point
of %A. On the other hand, let B be the matrix given in Theorem 3 and {¢,}
the characteristic sequence.

Now B-—lim(¢,—s,)=0 and
Z bm,n(tn—sn): Z ibm,nl Itn_snl (m:l, 2’ b ')-
If |t,—s.|> a, ne E(a), then

moe L )

We can choose the functions AMm) and p(m) so that Am)—Am—1)=1,
(m=2,3,++-) and

A(m) oo
lim 3" |6yl =lim > |b,.|=0.
M=X p=1 M= p=p(m)+1

If the matrix B'=(b'p,,) is defined by the relations

b mn=bmn Mm)+1 =n= u(m))

Onn=0,1=n=Nm); p(m)+1=n=o0)
then B and B sum the same set of bounded sequences and B’ has all the
properties associated with B, (including the same characteristic sequence). We
choose a sequence of indices {m,} satisfying the following conditions:

1 M) = plmy), (B=1,2, )
2) 3 Bl < (ne E(%))

for all m, (m = m,). Let {v,} be defined by the relations:

vnzsn—tn7()"<mk+l) =n<Mmyy,); ncE <%)):

v,=0 elsewhere, (k=1,2,-- ).
Let {r,} be the sequence defined by s,—t,—v,=7, (n=1,2,---). It is clear
that {r,} converges to zero."
Let E be the set where v, # 0, then if m, = m < my,y,
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and {v,} is sparse for Y. This completes the proof of our theorem.

Brudno [2] noted that as a consequence of Theorem 1, the sum attached
to a bounded sequence in U depends only on which other sequences belong to
9; the sum for each sequence is an internal characteristic of %. From the
definition, it is clear that the extreme points are an internal characteristic of .
We note that if {s,} is not a convergent sequence, then {s,} is sparse if and
only if {£,5,} belongs to %, where {£&,} runs through the bounded sequences.
It is clear that sparse sequences are also an internal characteristic. Convergent
sequences can also be recongnized. Hence, it is possible to examine % and
determine whether or not the conclusions of Theorem 4 are satisfied. If we
could show that Theorem 4 was satisfied if and only if the norm is attained,
then we would be able to tell whether or not the norm was attained by
examining % only. The property of attaining or not attaining the norm would
be an internal characteristic of the summability field,

It would be a good result to know that Theorem 4 is true only when the
norm is attained.
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