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ABSOLUTE SUMMABILITY FACTORS 1.

RONALD LEE IRWIN

(Received December 24, 1965)

In this paper* some general theorems are proved which give absolute
summability factors for a certain class of matrix summability methods. The
theorems were designed primarily to include the earlier work done for Cesaro
methods .(by Fekete for Cesaro means of integral order [3], by Anderson, Chow,
and Peyerimhoff for Cesaro means of real (nonnegative) order [1],[2],[7],
respectively); the theorems do contain methods other than Cesaro. Some of the
methods used to develop the proofs are adaptations of the techniques used by
Jurkat and Peyerimhoff to prove the corresponding theorems for ordinary

summability factors ((4]). Let >_a, be an infinite series. The following notation

v=0
will be used when operating on the series with triangular matrix summability

methods A=(a,,):

n n
Sa= D @y Op=_ anS, (sequence-sequence form),
v=0 v=0
n n
Cu= D Anyyy Ay = 2 Ay =0 for v>n (series-sequence form)
v=0 “=v
and
n
Brn=0,—0p 1= Qnay, @r,=0 if v>n (series-series form)
v=0

0.,=0, Gn,=@p,—@n-1, for v=n.

The notation A = 0 will mean a,, <0 for v < n.
A method A=(a,,) is said to be normal if a,,#0 (and a,,=0 for .» > u since
A is triangular). Hence, A normal implies A" exists (A" denotes the inverse

*This is an essential portion .of a thesis submitted to the Mathematics Department, University
of Utah, in partial fulfillment of the requirements for a Doctor of Philosophy degree.
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of A).

The method A is said to be absolutely regular if > |a,| <co implies

v=0

218, <o, and 3- a,= 38, .
v=0 . »=0 v=0
|A|22|B] if AB' is absolutely regular.

Necessary and sufficient conditions for a method to be absolutely regular, as
given by Knopp and Lorentz [6], are

@ > 1@ul=M uniformly with respect to u
v=p

2 > a,,=1 (this condition is used only to preserve the sums).
v=p

A series ) a, is said to be absolutely summable by the method A if

v=0

> 18,1 <oo (we denote this by > a, € |A|). The notation », € |A|, will mean

v=0 v=0

> an € |A| whenever ) a,<|A| (sequences with this property are called
v=0 v=0

absolute Hardy-Bohr factors).
A triangular method A is said to have an absolute mean value theorem if;

(i) A=0
(ii) Appn >0
(iii) Lativ \ a5 ¥ M v < 1.

Conditions (i), (i) and (iii) imply A’ = 0.

THEOREM 1. Let A be normal and absolutely regular. Also assume A
has an absolute mean wvalue theorem, and that @,/ as v/, v=n. Then

& e |A|, if and only if &= Y auc. where c,=0().

b=y

PROOF. Note the hypothesis that A has an absolute mean value is not
used in the proof of the necessity.

If > a,clAl, then a,= Y a8, where X |8l <oo.

v=0 n=0 p=0
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By hypothesta,,G e |Al,ie.if ,8 Zam,a.,&,, thenz IB.,I<<>O

v=0
Introducing the inverse transformatlon we have

n

ZZ an Zavuﬂu ;BZ uavu

v=0

n

A n

So Br=2_cuB, with ¢,,=3> a,
=0 v=p

Thus the method (c,,) transforms every absolutely convergent series into an

absolutely convergent series, so by Knopp-Lorentz [6] we have Y |c..| = M,

n=p
uniformly with respect to p.

Thus > Bn Z,B,Lc,‘, with ¢,= Zc,.,‘
n=0

Choose a,=1 and a,=0 if »==k. With this choice for a, we have B,=a,
gnzﬁnké‘k. So

o = -
S Bn= D AubEi=c &= Bulu
n=0

n=0 p=kK

since A is triangular and absolutely regular.
To prove the sufficiency we need to show

Z Bl <<oo 1mphesz ]B

n=0

n

Z Ay,

By Knopp-Lorentz (1) we need only show > |c,.| =M, i.e. just D

n=p n=p

=M

uniformly with respect to p.

Introducing the representation for &, and using the fact that |c,| =M, we have,

after interchanging the order of summation,
w o [ A

oo |

2

n=p

s’

vy

1 ’ =) o i n
vauua Ay + M Z Z Z vz2 vua Av -
n=pA=n+

v=p
A
Ifn > v, then)_ @1,a,,=0. Since @, =0, &, >0,2,, =0 (u<v)and &, asv/,

v=p
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A
(v = n,) we have (observe n=\) D a4ndudr, =0 if A > p. Write

v=p

© o | A l

:E: :E: EE:Zinva$LZilv

A= n=Alvep

0 oo A
a vuahuz 2— Z Z Z anuau;palu

A=pn=Av=p

|)M>»

||
uMS

n n
Z a;uzal
v=p A=vp
Applying a similar argument to

‘n

Z Z Z aﬂvavualu~

n=p A= 'n,+1 n=p
we obtain
oo L] P
A
Z Z 1Zamamalv =2- Za#n Z Zanvaw Z ar
n=pd=n+1ir=4 n=p V= A=n+1
and have

Z 2 E,

= 4M 2Mam, MZ Z ZZ\npavu

n=pv=g

oo
n=p

=AM —2Ma,,—M 3" 8,,= 3M.
n=p
So the condition is sufficient. Using a technique similar to the one used in
the proof of Theorem 1 we have the following corollary.

COROLLARY 1. Let A be normal, absolutely regular, A" =0 and a,, >0
(the last two hypotheses imply A = 0). If €,=0G,,), @na >\ then &, <€ |A],.

Theorem 1 gives absolute Hardy-Bohr factors for all Cesaro methods
C, with 0 =< a =1, since C, has an absolute mean value theorem only when
0=a=1.

From B to BP. The notation & =¢,(4,c) will mean &= > auc, where
=0(). We now extend Theorem 1 to methods of the form BP, where B
has absolute Hardy-Bohr factor &=6&(5,¢). If s, € |B| implies s,_,<|A| (.e.
{0, S5, 51, *++} € |A]) we write lAI; |B|. We state the following lemmas
without proofs, the proofs being similar to those given by Jurkat and Peyer-
imhoff in [4].

LemMMa 1. If A and B are absolutely regular, triangular, normal and
|A|2|Bl, then given a bounded sequence c¢=/{c,} there exists a bounded
sequence ¢ ={c,} such that &4, c)=8&(B, ¢).
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LEMMA 2. Let A=BP, P a weighted mean. Then
[8v+1(A1 C) —& (A’ C)] T a ——8 (A: C) —€& (B: C) v > 0 (P—l 0)-

If A=BP then the following identity holds (v = 1)
a"“—’ an,u+1 @~ p

.~ p =Fm PVI;H (for v=0 it reduces to @,y=F o)-

THEOREM 2. Let A = BP where |A|2|B|, |A|2|B| and P is a
weighted mean. if &(B,c) <€ |B|, for every c, then &§(A,c) e |A|, for every c.

PROOF. By partial summation Lemmas 1 and 2 and the above identity we
have

n

> a4, c) = Z & (B, ¢) 5 > P,a,
. 2

v=1

+ > n&a(B, € )PP" 1 ZP,,_la,L.
v=2 =1

v

If Za,,elA] thens—‘ b

I; Pu_la,, € |B|, and since &(B,¢) € | B|, we have
v=0

Z sﬁlnve(B C)Pu Mlaﬂ\<oo

3

S (B, € )PP”——ZP_la,L < oo since &(B,c )€ | B, and |A|2|B|,
n=2|v=2

consequently 8,,(A, c)e |Al,.

The Induction from to AP*' to AP* By repeated application of
Theorem 2, &,(BP*c)< |BP*|, (for every c¢) if EH(B/\P,"‘lc) € |BP*|,* |BP~|
=2|BP<!| and lBP“lQ. |BP<'|, K=1,2,++-.. The conditions |BP*|2>|BP*|
(k=1,2,---) are satisfied if |[BP|—|B|, which is no restriction .at all in case
of Cesaro means since they _ commute (ie. C.C,C_,=C,, which is absolutely
regular). The conditions |BP*|=|BP*!| (k=1,2,---) are of a more complicated
nature and require a more detailed analysis. The following Lemma gives a
sufficient condition for |BP l;.;lBL

LEMMA 3. Let P be a weighted mean, A=BP and assume |A|=2|B|,B

absolutely regularIfP" » (. e.{O, -11},%, . € |B|,) then |A|2 lBI

* for every ¢



252 R.L.IRWIN

PROOF. Take s, € |B|. To establish the lemma we must show s,_,¢€|A].

Let a,=+ 7. P ZP,, 1a,-1, n=1 (the P-transform of a, ;). Shifting the index

n—1y-1

and writing a complete transformation we have (for = 1)

D B _ bw Gobobu
a, PP,, IEPV 14y +PP7¢—-1,§ P, (Pu—l‘lu) P,, a, ++PP.” -
Since |A|=2|B| andm— lBI"ZPP ZP,,_la,, and
n-ly=1

ZP WG

7‘11/1

a,,)é|B].

a, € |B| since-5"— < |B|,. obobu |B| since the series is absolutely
Pn 1 P PP

n—1 n=1T 0+ n-1
convergent. Thus s,_, € |A].
The conditions |BP<'|C|BP*| (k=1,2,---) have now been replaced by the

€ |BP¢|, (k=0,1,---). The following lemma will allow us to

conditions PI,,)_I

reduce all the conditions to the matrix B.

LEMMA 4. Let P be a weighted mean, A=BP. Also assume{ ,{if ,11;2 L .. }
0

P-1

€ |B|,, |BP|2|Bl,n < [B|, and -Mys1—N) € |B|,. When these conditions

are satisfied N, € |A|,.

PROOF. Take Y a,< |A|. By partial summation and, using the identity used
v=0
in the proof of Theorem 2 we have

Zanvav - Z bnv v PHPU—I Z Pu—lau

- Z ANy — N 1) P,,_, ( full Z P, ~1au)

v=2

oo

ZPA_lau € |B|. By hypothesis A, € |B|,, so)_

p=0 n=1

Since ) a, < |A| i by nz

v=0 PV

1
{
b PP,M ZPM 1Ay | | < oo. The hypothesis MPE_"; € |B|, (.. { f

€ |B|,) insures (by Lemma 3) us that |A|2|B)]. Also by hypothesis
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(P ZZ P, say).

n

Z nvo\' )'u 1)

v=2 v-1

P” - (Msr—M) € | Bl,, soz

Hence Mme AL

The following notation facilitates the use of Lemma 4 inductively. Let

Fyres) v (s o (] h () )

LEMMA 5. If( 1;;-1 -A) £ |Bl, (i.e.{O, (%-A)s f;} B,
v v-1 1 0

§=0,1,+-+, k—1, and if |BP|2|B| then |BP™|2|BP™'| (m=1,2,---, k).

/\

PROOF. This follows immediately by repeated application of Lemma 4. The
main result of the paper now follows immediately by Lemma 5 and Theorem 2.

THEOREM 3. If &(B,c)<|B|, (for every c¢), P a weighted mean,
\BP|2|B| and (—};—-I.A) L 1Bl (=0, 1, -+, k—1) then &(BP; o)<
v v—-1
| BP*|, (for every c).

To get absolute Hardy-Bohr factors for C,,a=0 we apply Theorems 1
and 3, Corollary 1 and Lemma 1 in the following manner. Let P=C, and
a= /ngk, where 0 < 6§ =<1 and k=0 (integral). Take B=C;. By Theorem 1
&(Cy, ¢) € |Cyl, for every c. Also |C,|=|CC,|=|CC%| (see [6] for the

-1 s
equivalence). For P=C, the expression( 1: -A) }? reduces to (v,A)S— A
v v—1

short calculation shows (v,A)SL =0 (l) thus by Corollary 1 (v,A)* —1— € |Cyl,.

Applying Theorem 3 we have & (C(,C’f ,C) € ICp@ |,» or equivalently & (Cg %) e |Cl,.
By Lemma 1 S(Cg , )= 8,,(Ca,c) Thus 8(C,,, e |Cyls
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