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ABSOLUTE SUMMABILITY FACTORS I.

RONALD LEE IRWIN

(Received December 24, 1965)

In this paper* some general theorems are proved which give absolute
summability factors for a certain class of matrix summability methods. The
theorems were designed primarily to include the earlier work done for Cesaro
methods.(by Fekete for Cesaro means of integral order [3], by Anderson,Chow,
and Peyerimhoff for Cesaro means of real (nonnegative) order [1], [2], [7],
respectively); the theorems do contain methods other than Cesaro. Some of the
methods used to develop the proofs are adaptations of the techniques used by
Jurkat and Peyerimhoff to prove the corresponding theorems for ordinary

summability factors ([4]). Let ]P aυ be an infinite series. The following notation

will be used when operating on the series with triangular matrix summability
methods A = (aμv):

n n

sn = Σ av> σn—^ΣLα«A (sequence-sequence form),
v=0 v=0

n n

σn= Σ~ΰ™av> &™ — Σ aw βnv—Q for v>n (series-sequence form)

and

n

βn'
=σ'n~-σn-ι=ΣGnυaυ>anυ=1Q if v>π (series-series form)

v=0

σ_χ=0, anv = antV-άn-lιV for vtkn.

The notation A ^ 0 will mean anυ ^ 0 for v < n.
A method A = (aμv) is said to be normal if annΦθ (and aμv=0 for v > μ since
A is triangular). Hence, A normal implies A exists (A' denotes the inverse

*This is an essential portion of a thesis submitted to the Mathematics Department, University
of Utah, in partial fulfillment of the requirements for a Doctor of Philosophy degree.
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of A).

The method A is said to be absolutely regular if ^ I av I < °° implies

, and

121J31 if AB is absolutely regular.
Necessary and sufficient conditions for a method to be absolutely regular, as

given by Knopp and Lorentz [6], are
oo

(1) Σ \&vμ\^M uniformly with respect to μ

(2) ^avll = l (this condition is used only to preserve the sums).

oo

A series Σ, av *s s a ^ *° ^ e absolutely summable by the method A if

Σ I βvI <oo (we denote this by Σ av € ] A|). The notation Xve \A\r will mean

Σ av\ € IAI whenever ]Γ] αp € | A | (sequences with this property are called

absolute Hardy-Bohr factors).
A triangular method A is said to have an absolute mean value theorem if;

( i ) A ^ O

(π) ann>0

(iii) J?+liV \ a s z//r, v^n.

Conditions (i), (ii) and (iii) imply A ^ 0.

THEOREM 1. Let A be normal and absolutely regular. Also assume A
has an absolute mean value theorem, and that anv/as v/> vt=kn* Then

oo

8V € \A\r if and only if 8V= ^ α μ i ; ^ where cμ = O(ΐ).

PROOF. Note the hypothesis that A has an absolute mean value is not
used in the proof of the necessity.

oo y oo

If Σav^ \A\, then av= ^aυμβμ where Σ i & Ί < ° °
i/=0 /i=0 μ=0



ABSOLUTE SUMMABILITY FACTORS I 249

By hypothesis Σ aβυ € | A |, i.e. if βn = Σ ί
v=0 y=0

Introducing the inverse transformation we have

, then Σ | & | < oo.

Pn = 2-f β » A 2-/ avμHμ==
n n

μ = 0

So
μ = 0

^l 1 C ^ = Σ ^nv^vμ^

Thus the method (cnμ) transforms every absolutely convergent series into an

absolutely convergent series, so by Knopp-Lorentz [6] we have Σ \cnμ\ = M,
n=μ

uniformly with respect to μ.

CO ^

n=0 μ=0 n=μ

Choose αfc = l and av=0 if v=^k. With this choice for an we have βμ = aμk,

/8n = 2nΛβA:. So

since A is triangular and absolutely regular.
To prove the sufficiency we need to show

Σ l£»l<°° implies Σ I/β»l<°°

By Knopp-Lorentz (1) we need only show Σ I cnμ I ^ M , i.e. just ^nv^vμ^v

uniformly with respect to μ.
Introducing the representation for 6V, and using the fact that \cμ\^My we have,
after interchanging the order of summation,

, & nμ& v/iVy

λ=μ n=λ

anvavμa\υ

Ifλ > v, t h e n Σ « λ ^ μ = 0 . Since aλv ^ 0, a'μμ >0, aυμ ^ 0 (μ<v) and αTO
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λ

(y = w,) we have (observe n^X) ^2anυavμaλv ^ 0 if λ > μ. Write
V=μ

ΣΣ
λ=μ n=λ

Σ GiJϊvi

CO OO λ OO OO λ

i V^ V V ^ ^ ' -^ o V* V^ X""̂  ^ ^ ' ^
= i— 2^ 2-,2^βn^vμfiλy=^~2w2-, 2^anvavμaχυ

λ=μ+ln=λv=μ λ=μn=λv=μ

= 2~ Σ Σ 2 ŵ vμ
n=μv=μ

Applying a similar argument to

Σ Σ
we obtain

n=μλ=n+l

7?.

' "

n
x •> ^ ^ . ></ > ^

/ ( U"fnCl,yμCl\v

ι =μ

and have
oo

Σ
n=μ

n

Σ*
v-μ

S 4 M - 2 M α μ μ -

=4M-2Λίαμ μ-M22 δ,.,< 3M.
n=μ

So the condition is sufficient. Using a technique similar to the one used in
the proof of Theorem 1 we have the following corollary.

COROLLARY 1. Let A be normal, absolutely regular, A ^ 0 and ann>0
(the last two hypotheses imply A ^ 0). // €n = O(βnn), ann\, then Sn € \A\r.

Theorem 1 gives absolute Hardy-Bohr factors for all Cesaro methods
Ca with 0 :g a ^ 1, since Ca has an absolute mean value theorem only when
0 ^ a ^ 1.

oo

From B to JSP. The notation 8v = 8v(A,c) will mean £v= Σaμvcμ where
μ = v

cμ = O(ϊ). We now extend Theorem 1 to methods of the form BP, where B
has absolute Hardy-Bohr factor 8υ=Sv(B> C). If sn € \B\ implies 5n_x e \A\ (i.e.
{0,sQ,s19 •} € |A|) we write | A | ^ | J 5 | . We state the following lemmas
without proofs, the proofs being similar to those given by Jurkat and Peyer-
imhoff in [4].

LEMMA 1. If A and B are absolutely regular, triangular, normal and
| A | 3 | J 5 | , then given a bounded sequence c—{cμ} there exists a bounded
sequence c={cβ] such that 6V(A, C)=€V(B, C).
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LEMMA 2. Let A=BP, P a weighted mean. Then

[^+ 1(ί, c)-Sv{A, c)]^-1 =SVU, c)-€v(B> c\ v ^ 0 ( P - ^ 0 ) .

If A=BP then the following identity holds (v ^ 1)

(for v=0 it reduces to αnO = fc»o).

THEOREM 2. L^ A - 5F w/î re |A|3|.β|, | A β | β | and P is a
weighted mean, if £ „ ( § , c) € \B\r for every c, then £V(Ά, c) z \A\r for every c.

PROOF. By partial summation Lemmas 1 and 2 and the above identity we
have

«A(B, c)

μ=1

v-1

If Σ aυ e IAI, then Y] p - ^ — ^ Pp-ify € I -BI > a n d since £„(]?,c) € ISI r w e n a v e

y=0 ι>=0 y y ~ ^ μ=0

Σ > c )

μ = l

i - l

sinceev(B,c )e |J5|rand | A | 3Σ
consequently £V(A, c) e \A\r.

The Induction from to APκl to APK. By repeated application of

Theorem 2, Sv(Bpκ

yc) z \BPκ\r (for every c) if S^BP^c) €
Ξ2IJ3P*-1! and |J5PK|Ξ2 | J5P>K~11, 2C=1, 2, . The conditions
(κ = l, 2, •) are satisfied if |JB.P|Ξί |2J|, which is no restriction at all in case
of Cesaro means since they commute (i.e. CaCίC-a = Cι, which is absolutely

regular). The conditions \BPK\ZD\BPK~l\ (/t = l,2, •) are of a more complicated
nature and require a more detailed analysis. The following Lemma gives a

sufficient condition for \BP\Zk\B\.

LEMMA 3. Let P be a weighted mean, A=BP and assume \A\ 2 | J 5 | , B

absolutely regularJf —^ ^\B\r (i. e. jθ ? p ,-τf-, •[ £ | β | r )

*for every c
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PROOF. T a k e sn € \B\. T o establish t h e lemma w e must show sn-ι s\A\.
n

Let oίn=^Γτ>—Σ^-A-i, n ^ l (the p-transform of aυ^. Shifting the index

and writing a complete transformation we have (for n §: 1)

rnΓn-lv=1

 Γv-1

Since IAI = |51 and - ^ - |S 1 „ Σ p f - £ ^-Λ a n d

Σ,-pk-an^ \B\ s ince-^- € \ B \ r . ^ ^ ^ e \B\ since the series is absolutely
n=l *n-l * n - \ n=1*n*n-l

convergent. Thus sn.1e \A\.

The conditions \BPK~X\ ^\BPK\ (^ = 1,2, • • • ) have now been replaced by the
p

conditions-^— e \BPκ\r (κ=0,1, •)• The following lemma will allow us to
-L-V-l

reduce all the conditions to the matrix B.

LEMMA 4. Let P be a weighted mean, A—BP. Also assume \ 0, ̂ - , ̂ - ,^

e \B\r, \BP\ 3 \B\,\ ^ \B\r and^~^(^,+1-\v) € | β | r . Wfew ίΛβsβ conditions

are satisfied \ e \A\r.

oo

PROOF. Take^α υ € |A|. By partial summation and,using the identity used

in the proof of Theorem 2 we have
n n . v

2 a a X = 2 b λ ~ ~ ~ 2 L a

V n (\ \ \ -t^- I -P»rL V P π \
— A^f anv\A>υ — λ>v-l) p I p p 2L, Γμ>-laμ)

v=2 Γ v-\ \̂ υ-lJ- v-2 β = 1

oo oo v oo

Since Σ a* € IA \, Σ, ~pj> ~ Σ ^-i«μ ^ | β |. By hypothesis \, e | BI „ so £
y=0 v=0 -Lv-Lυ-l μ = 0 ? i = 1

^ J <oo. The hypothesis-p^- € | β | r (i.e. | θ , - ^ , - ^ ,

| B | r ) insures (by L e m m a 3) us t h a t \A\^\B). Also by hypothesis
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Hence \υ € | A | r.

The following notation facilitates the use of Lemma 4 inductively. Let

LEMMA 5. if^^.jή'-^- € |β | r (i.e. jo, ̂ . Δ J - | h . . .J e |β|r),

5-0,1, , κ - 1 , αrcd if \BP\^\B\ then \BPm\^\BPm~ι\ (m = l, 2, , *).

PROOF. This follows immediately by repeated application of Lemma 4. The
main result of the paper now follows immediately by Lemma 5 and Theorem 2.

THEOREM 3. // Sv(B9c)z\B\r (for every c), P a weighted mean,

\BP\^\B\ andl^^-Δ-p- z\B\r(s=0, 1, . . ., *-l) then 8υ(BPκ, c) e
\ Pv I -Lv-l

\BPκ\r(for every c).

To get absolute Hardy-Bohr factors for Ca, a 7^0 we apply Theorems 1
and 3, Corollary 1 and Lemma 1 in the following manner. Let P=Cλ and
a = θ + k, where 0 < 6 > ^ l a n d £ ^ 0 (integral). Take B = CΘ. By Theorem 1
Sv(6β, c)€ \Cθ\r for every c. Also \Ca\*e \CeCk\^\CeQ\ (see [6] for the

/ py-l \* p -J.

equivalence). For P=C1 the expression — Δ £° reduces to (ẑ ,Δ)s — A
\ Pv j -Lv-i ^

short calculation shows (z>,Δ)s——®\—) t n u s by Corollary 1 (i>,Δ)s— € \C$\r.

Applying Theorem 3 we have SV(<SQ, C) € |CΘC\\r, or equivalently 8υ(C^Q,c) e \Ca\r

By Lemma 1 Sv(Qt%,c)=ev(da9c). Thus εv(Ca, c) z \Ca\r.
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