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HARDY BOHR THEOREMS1)

J.CLEO KURTZ

(Received December 24, 1965)

The following results are a generalization of results obtained recently by
Jurkat and Peyerimhoff [ 8 ]. In this paper we will be concerned exclusively with
triangular summability methods. Let A = (anv) be the triangular matrix associated

with the method A. Given a series Σ an we use the notation

n n n

Sn=Σ a»> σn = Σ anvSυ = Σ &nvθ»
v=0 v=0 y=0

n

βn = *n -O-n-1 = Σ άnv^v {n ^ 0, σ_1 =0)
i/=0

where the relations between the matrices A, A and A are

5w y = αny = 0 if v > ft, 5_1>y = 0.

DEFINITION 1. A summability method A = (αw) is said to be normal if
ann ^ 0. In this case the inverse matrix exists and is denoted by A' = (άnv).

DEFINITION 2. If σn converges, then we say

DEFINITION 3. If Σ \βn\<°°> then we use the n o t a t i o n Σ ^ € l^-l
n=0

DEFINITION 4. If a sequence {e,,} is such that ^ anen € A whenever Σ an

e A, we say that en e AΎ.

1) This paper constitutes a significant part of a thesis for the Doctor of Philisophy degree in
Mathematics, presented to the faculty, Department of Mathematics, University of Utah.
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DEFINITION 5. If a sequence {en} is such that Σan€n£ \A\ whenever

Σan € A, then we use the notation €n z(A, \A\)r.

Part 1 contains a theorem which gives, for a certain class of matrices,
necessary and sufficient conditions for a sequence {en} to be such that en €
{Ay IAI )r. In part 2 we show that under certain restrictions on the methods B and
P, P being a weighted arithmetical mean, factors can be obtained for the
method BP if factors are known for B. In part 3 we outline an induction
argument which gives factors for BPk when factors are known for B. We thus
obtain as a special case the results for the Cesaro means which were obtained
by Bosanquet and Chow [ 4 ], and Peyerimhoff [ 12 ], in the special case en e
(Ck>\Ck\)r, k>0. Here we use the fact that Ck ^ H k and |Ck\ ^ |Hk| (feO),
where Hk denotes the Holder mean of order k. Finally, in part 4, we consider
applications of the proceeding results to several well-known means.

1. Before proceeding with the main result of this section it is convenient
to prove a few preliminary lemmas.

DEFINITION 6. If a method A has the property that given integers n,m
with n^m, there exists an integer p and a constant K depending only on the
matrix A such that

( 2 )

then A is said to have a mean value theorem.

LEMMA 1. / / A has a mean value theorem and if sn £ A, then annsn — O(l).

PROOF.2) We simply note that

hence

X) tfnΛ ^ (1 + K)sλxp\<rn I <oo.

LEMMA 2. // for A = {anv) vue have (i) anυ \ 0 as n / oo and (ii)

2) This proof has been given earlier by Peyerimhoff [10J.
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n

Σ anv — 1 (n > 0), then it follows that (a) άnυ / as v / (y ^ n, n ^ 1), (&)

„„ = 1, (c)Σ \άm - άn,v+1\ = 2avv, and (d) άn0 =0(n> 0).

PROOF, (a) Using formula (1) we have

= lim

= lim

(c) Using part (a) we see that

/ . 1 an

= 1 - 0 = 1

(d) άn0 =

n=v-\-\

= 1 - 1 =

p

LEMMA 3. If bυ / ,b0 = 0, and if A has a

A, ^ 2K bpsup I σn I (K = Max
n

PROOF. By a partial summation we have

theorem, then

, 1)).

p-1 v

and hence we obtain the estimation
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In the following theorem we will use the notation

€v(A,ά) =Σ0Ln'anv> where a = {an} withX) | a j < o o .
n=v n=0

In order that ev(A, a) always exist we assume that A has bounded columns,
which is always the case when A is regular. ev(A, a) is denned similarly, and
we have the obvious identity

( 3 )

THEOREM 1. Suppose the method A has the properties

( i ) anv>0(v^n)

(ii) anv \ 0 as n / oo

(iii) -a^anv/asv/{9>n)

(v) Mean value theorem (2).

Then necessary and sufficient conditions for a sequence {€v} to be such
that €v e (.

(a)

(b)

A, \A\)r are

*v =

oo

Σ

€V(Ά, a),

€v | < OO .

Before proceeding with the proof it is important to note that conditions
(i), (ii) and (iv) imply both regularity and absolute regularity.

PROOF. For the sufficiency we must show t h a t ^ !/β7Z|<oo whenever^ an

n

£ A, where βn = ^ άnvav^v with {ê } satisfying (a) and (b). A partial summation

and an application of (3) gives us the formula

n= Σ άnv€v(A, QL)SV + Σ
v=0 p=0
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First we consider β%\

Σ I β? I ^ Σ I *«(A cήs, i Σ 14» - <*...

An application of Lemma 2(c) and Lemma 1 gives

Σ IΛfΊ^

To establish the absolute convergence of βjp we use the representation for
ev(A,ά).

n n

£> = Σ άnvsv Σ aP
v=0 p=n+l

This gives the estimation

n=0 p=o

Σ <ZnVapvsv Σ Σ I
n=0 p=n+l

Because of conditions (i)—(iv) and Lemma 2 we may apply Lemma 3 to
both summations, thus

?(D ^2/Γsuplσ,! Σ Σ I « P M « P + Σ Σ I « P I % ^
i=0 ρ=0

p-1

p=0

Hence the conditions (a) and (b) imply ev € (A, | A | ) r .
Now suppose that ê  ̂  (A, | A ] )r and consider condition (b). Our assumption

oo

is then that the convergence of σn implies Σ \βn\<°°- Since A is normal we

can introduce the inverse matrix and write
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n v

v=0 μ=0

n n

μ=0 i/=μ μ=0

where Anμ = Σ βnυ~a'υμβυ With this interpretation the matrix (Anμ) has the
V = β

property that it transforms every convergent sequence (hence every null sequence)
into an absolutely convergent series. A theorem of Chow and Peyerimhoff [11]

OO CO

gives the necessary condition^ \Ann\ = 2Z l enl<°°
71=0

Thus the condition (b) is necessary.
To show the necessity of (a) we first observe that ev € (A, \A\\ implies

€vzAr. Peyerimhoff [10] has shown that when A is normal and regular it is
then necessary that ev — c 4- ev(A,ά). The necessity of condition (b) and the
sufficiency of conditions (a) and (b) imply that c = 0, hence

OO OO

n=v n=0

2. In what follows we will generalize Theorem 1 in such a manner that
the Cesaro means Cβ (β > 0) will be included in this generalization. Theorem 1
breaks down for β > 1 since Cβ no longer has a mean value theorem, however
the conclusion remains valid.

Let P denote a weighted arithmetical mean with Pnυ = pv/Pn, where Pn

= Po + A + pn, Pv > 0, 1 V + 0 0 and pn/Pn^ = O(l). We shall consider the
method A = BP.

LEMMA 4. Leί A and B be normal, A and B have bounded columns,
OO OO

and BCZA. Then given a = [an}y Σ \^n\<°° there exists β ={#„},Σ \βn\
71=0 W=0

<oo 5«ί:A that €n(A,a)=en(B, β).

LEMMA 5. Let A = BPy A and B have bounded columns, then

€n(A, a) - en(β9 a) = [en+1(Ά, a)-en(Ά, a)] ̂  (n ̂  1).

The preceding two lemmas have been proved by Jurkat and Peyerimhoff
[8]. We omit the proofs here.
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D E F I N I T I O N 7. If snz \B\ implies sn^ € | A | , we say that | J 5 | c | A | .

LEMMA 6. If A is regular, then

PROOF. In view of the regularity we have

oo oo oo oo y

Σ, k(Λ«)l ^ Σ Σ \*Λ<*m\ Σ lot I Σ |α«|
v=0 w=0

LEMMA 7. L*tf A = B P α72(i suppose B is regular. Then Σ - ^ - \en(B,a)\
0 0 - °°

<oo // αw<ί ora/ y ifJ2p^ \€JΛ, Λ)|<OO, andΣ \€n(A, α)|<oo implies
n=l *n-l n==0

jrfi- |β,(S,α)|<oo.

PROOF. These results follow from Lemmas 5 and 6 since

THEOREM 2. Lei β ί»e regular and set A = BP. If

(i) £CA

(ii) |5|£|A|C|AP|

(iii) |B|C|B|, |A|C|

(iv) Σ I€n(B> CL)I <oo implies en(B, a) € (B, \B\)r

oo

O) Σ p ί e » ( ^ α ) l < ° ° implies en(B,ct)e(B,\A\)r

a/so
oo

(a) Σ U n (A,Λ) |<oo ίm/>Z/es e n ( 3 , « ) € ( A , \A\)r
W=0

oo

(b) Σ p~ I €n(Λ Λ ) I < °° implies en(Άy a) e (A

PROOF.
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= Σ
μ=0

71 Ϋ~ Ή

Using Lemma 5 and the relation άnv — Pv-λ Σ p T gives the formula

n n

(4) £ άnυavev(A, a) = J

υ v P P -
Here Pv(ak) denotes Σ ί>vμ&μ, = Σ p r H " ^ (P-i(ak) — 0). Replacing J; and

^ ^ μ=0 μ = 0 •^v-^i'-l

by A P and A respectively gives

(5) Σ (AP)nvav€v(A, ά)=Σ άnV€v(A, d)pv(ak)
v=0 v-0

n n

:V^(Ά ya)Pv-i{ak) -
v=0

To prove part (a), consider (4) and suppose Σ \€n(A, ά)\ <oo. By Lemma
71 = 0

4, e.(Z, a) = en(B, β) and £ | e,(S, /9) | < °c If ^ αn € A then Σ ^ K ) 6 B,
71=0

oo

hence (iv) implies Σ €v(A d)pv(ak) € | B\ and Σ I /3^) I <° ° Similarly, Σ an £ A
71 = 0

implies Σ €v(A oί)Pv(ak) z \B\, hence (iii) and (ii) giveΣev-ι(A, ajpv^{ak) € |Λ|,

a n d Σ I Λ 2 ) | < ^ . Finally, Lemma 7 implies Σ p^~ |en(5,rt)|<oo, hence (v) and

(iii) giveJ3*»-iCft«)P»-i(e*)e I-A| a n d ^ |/9i3)| <oo. Thus we have en(Z,
71 = 0

(A, lA|) r . Part (b) is proved in a similar manner using (5).
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3. In order to proceed by induction from B to BPk (k a positive integer),
where P is as usual a positive, regular weighted mean with pn/Pn-ι — O(l),
we must guarantee that
(6)
(7)

and
(8) \BPi\<±\BPι\ (ί = 0 , l , , * ) .
In addition, it is necessary to show that condition (v) of Theorem 2 holds. If
we assume the above and suppose that B satisfies the conditions of Theorem
1, then we may assert that en € (BPk, \ BPk \ )r if and only if

) an

Obviously (6) and (7) are satisfied if we only require B CZ BP and
\B\QBP\.

If we set B = Cβ (0 < β g 1) and P = Cl9 then (6), (7), and (8) aU hold
and B satisfies the conditions of Theorem 1. For condition (5) of Theorem 2
the reader is referred to Bosanquet and Chow [4], Theorem B. The conditions
given by Bosanquet and Chow are different from ours, however they are a
consequence of ours, as has been proved by Bosanquet and Tatchell [5], Theorems
4 and 5(a). Finally, for P = Cu we have pn/Pn-\ = l/#> hence we have the
desired result.

4. As applications of Theorem 1 we state the following results without
proof.

If P denotes, as usual, a positive, regular weighted mean, then en <Ξ

( P , | P | ) r if and only if en - en(F, ct) and E |ew]<oo.
71 = 0

Suppose A is a Norlund mean with anv=pn-v/Pn> P M =/> 0 +A+ ' * * + A H
pn>0, pn-v/Pn\0 as n/oo (v^n), pn+1/pn/and pn\ , then A satisfies the
conditions of Theorem 1.

The discontinuous Riesz means (i?*, n, k), 0 < ^ < l , a r e included by Theorem 1.

If A is a regular Hausdorff method H(jι) with αnv= (?) / tv(l-t)n-vdg(t),
Jo

and if g'(t)> 0, ^"(ί)= °> t ^4τγ / a s t/Φ <t <1), then the conditions of

Theorem 1 are again satisfied. As an example, for Cβ we have g(t) = l—(l—tY,

^ = ( 1 - / 9 ) ^ - a n d the conditions
1 Γg

are satisfied for 0 < β ^ 1.
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