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In a recent paper [2] with the above title, I discussed inclusion relations
between Riesz summability (R,\, ) and generalized Cesaro summability
(C, N, p), where p is a non-negative integer (for an account of such relations,
including those involving summability of non-integral order, and latest results,
see [1]); one of the theorems in [2] was as follows :
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It has been pointed out to me by Dr. A.Meir that the three lines of
argument preceding (38) on p.426 of [2] are fallacious. However, (38) is in
fact still true, though with the restriction 0 = = n—» — and this is enough,
since we need only the case r=n—». More precisely, we are given that
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where 0 =n—p=v=n, £ < ® = M,+1, and we show that
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(If required, the more general case of (38), with 0 =7 = n—», would follow
from this on noting that A¢(e—)=0). Though the ideas are elementary,
I have been unable to find a less tedious method than the following, to
replace the paragraph between (37) and (38) of [2]:

Write A(§) in the form (0—§£)""¢g(¢) and express g(&) as a sum of partial
fractions; differentiate each partial fraction of A(€) thus obtained n—v times
by Leibniz’ formula, and use the binomial theorem to reduce the result to
the form
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(my colleague Dr. R. A. Schaufele has obtained the same result somewhat more
briefly by the use of Laplace transforms).
But if we now denote

k(x)=(;(§-g):’_)—%l— (2= 0> )

then it follows from the expansion formula and mean-value theorem for
divided differences that
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for some 5 in Ay =9 = Myps1; and we can evaluate k®*?~™(y) by Leibniz’
formula (and the binomial theorem) to give
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Thus (38) follows (with r=n—v) and the proof of the theorem is concluded
as in [2].

Finally, the following misprint should be corrected in [2], p. 435, statement
of Theorem 6: for o(A%) read O(\3).
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